metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl- $\kappa^{3}P$,Si,P'}chloridoplatinum(II)

Yong-Hua Li,* Yuan Zhang, Min-Min Zhao and Xian Li

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: liyhnju@hotmail.com

Received 26 August 2008; accepted 9 September 2008

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.048; data-to-parameter ratio = 22.0.

In the title compound, $[Pt(C_{37}H_{55}P_2Si)Cl]$, prepared from MeSiH[(cy)₂PC₆H₄]₂ and $[Pt(cod)Cl_2]$ (cy = cyclohexyl; cod = cycloocta-1,5-diene), the Pt^{II} atom is coordinated by two P atoms, one Si atom and one Cl atom in a distorted square-planar geometry. The two P atoms are in a *trans* arrangement and the four cyclohexane rings adopt a chair conformation.

Related literature

For related literature, see: van der Boom & Milstein (2003); Brost *et al.* (1997); Moulton & Shaw (1976).

Experimental

Crystal data	
$[Pt(C_{37}H_{55}P_2Si)Cl] M_r = 820.38 Monoclinic, P2_1/c a = 13.104 (3) Å$	b = 16.579 (3) Å c = 17.770 (4) Å $\beta = 108.97 (3)^{\circ}$ $V = 3650.9 (15) \text{ Å}^{3}$

Z = 4
Mo $K\alpha$ radiation
$\mu = 4.06 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD area-	36373 measured reflections
detector diffractometer	8374 independent reflections
Absorption correction: multi-scan	7059 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.035$
$T_{\rm min} = 0.120, \ T_{\rm max} = 0.200$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ 380 parameters $wR(F^2) = 0.047$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 1.00 \text{ e Å}^{-3}$ 8374 reflections $\Delta \rho_{min} = -0.55 \text{ e Å}^{-3}$

T = 153 (2) K $0.48 \times 0.40 \times 0.40 \text{ mm}$

Table 1 Selected geometric parameters (Å, °).

Pt1-Si1	2.2790 (7)	Pt1-P2	2.2929 (7)
Pt1-P1	2.2925 (8)	Pt1-Cl1	2.4597 (7)
Si1-Pt1-P1	84.89 (3)	Si1-Pt1-Cl1	178.03 (2)
Si1-Pt1-P2	84.57 (3)	P1-Pt1-Cl1	93.68 (3)
P1-Pt1-P2	162.15 (2)	P2-Pt1-Cl1	97.15 (3)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Starter Fund of Southeast University for financial support to buy a CCD X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2153).

References

- Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.
- Brost, R. D., Bruce, G. C., Joslin, F. L. & Stobart, S. R. (1997). Organometallics,
- 16, 5669–5680. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1272 [doi:10.1107/S1600536808028857]

$Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl-<math>\kappa^{3}P$, Si, P' chloridoplatinum(II)

Yong-Hua Li, Yuan Zhang, Min-Min Zhao and Xian Li

S1. Comment

Pincers ligands incorporating two phosphine arms and a central donor site have attracted a substantial amount of interest since the initial investigations of "PCP" ligands by Moulton & Shaw (1976). Several variations of the central donor atom have been explored (Boom & Milstein, 2003). However, the "PSiP" pincers-like transition metal complexes have rarely been reported. We report here the synthesis and structure of a new $Pt(\eta^3-PSiP)$ complex. The molecular structure of the title compound is shown in Fig. 1.

The pincers-like title compound contains two stable five-membered cyclometalated rings with the P—Pt—Si angles of 84.89 (3) and 84.57 (3) ° (Table 1). The Pt atom is coordinated by two P atoms, one Si atom and one Cl atom in a distorted square-planar geometry. The bond distances of Pt—Si and Pt—Cl are 2.2790 (7) and 2.4597 (7) Å, respectively, which are similar to the other Pt analogue with pincers-like tridentate PSiP ligand, Pt[SiMe(CH₂CH₂CH₂PPh₂)₂]Cl (Brost *et al.*, 1997). The two P donor atoms are in a *trans* arrangement with a P—Pt—P angle of 162.15 (2)°. The four cyclohexane rings adopt the chair conformation.

S2. Experimental

Dropwise addition of a solution of $MeSiH[(cy)_2PC_6H_4]_2$ (0.124 g, 0.21 mmol) (cy = cyclohexyl) in dry THF (5 ml) to a solution of [Pt(cod)Cl₂] (0.079 g, 0.21 mmol) (cod = cycloocta-1,5-diene) in a mixture of THF (7 ml) and NEt₃ (1 ml) resulted in rapid formation of a white precipitate. Removal of the volatiles left solid material, which gave the product after thorough washing (yield 78%, 0.134 g). Colorless crystals suitable for X-ray diffraction were obtained by slow evaporation of a benzene solution (5 ml) of the compound (0.028 g) after 2 d.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.98 (CH), 0.97 (CH₂), 0.96 (CH₃) Å and U_{iso} (H) = 1.2(or 1.5 for methyl) U_{eq} (C).

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

{Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl- κ³P,Si,P'}chloridoplatinum(II)

Crystal data

[Pt(C₃₇H₅₅P₂Si)Cl] $M_r = 820.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.104 (3) Å b = 16.579 (3) Å c = 17.770 (4) Å $\beta = 108.97$ (3)° V = 3650.9 (15) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.120, T_{\max} = 0.200$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.047$ F(000) = 1664 $D_x = 1.493 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8404 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 4.06 \text{ mm}^{-1}$ T = 153 KBlock, colorless $0.48 \times 0.40 \times 0.40 \text{ mm}$

36373 measured reflections 8374 independent reflections 7059 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 27.5^\circ, \theta_{min} = 1.6^\circ$ $h = -16 \rightarrow 17$ $k = -21 \rightarrow 21$ $l = -23 \rightarrow 23$

S = 0.978374 reflections 380 parameters 0 restraints

Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2]$
Secondary atom site location: difference Fourier	where $P = (F_0^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.003$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 1.00 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta ho_{\min} = -0.55 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.79709 (6)	0.29114 (4)	0.75245 (4)	0.02238 (15)
C1	0.8794 (2)	0.38510 (15)	0.79101 (16)	0.0312 (6)
H9	0.9530	0.3703	0.8182	0.047*
H10	0.8507	0.4127	0.8272	0.047*
H11	0.8762	0.4200	0.7472	0.047*
C2	0.6609 (2)	0.33576 (15)	0.69588 (15)	0.0258 (6)
C3	0.6388 (2)	0.38438 (17)	0.62824 (16)	0.0383 (7)
H1	0.6903	0.3894	0.6028	0.046*
C4	0.5422 (3)	0.42510 (19)	0.59835 (18)	0.0459 (8)
H2	0.5281	0.4550	0.5518	0.055*
C5	0.4668 (2)	0.42180 (17)	0.63697 (16)	0.0371 (7)
H3	0.4031	0.4511	0.6178	0.045*
C6	0.4859 (2)	0.37465 (15)	0.70450 (15)	0.0291 (6)
H4	0.4351	0.3724	0.7307	0.035*
C7	0.5818 (2)	0.33037 (15)	0.73334 (14)	0.0236 (5)
C8	0.8674 (2)	0.23542 (15)	0.69018 (14)	0.0242 (5)
C9	0.8662 (2)	0.25752 (16)	0.61413 (15)	0.0284 (6)
Н5	0.8272	0.3027	0.5900	0.034*
C10	0.9217 (2)	0.21384 (17)	0.57387 (16)	0.0341 (7)
H6	0.9181	0.2288	0.5226	0.041*
C11	0.9826 (2)	0.14780 (19)	0.60967 (16)	0.0367 (7)
H7	1.0214	0.1190	0.5831	0.044*
C12	0.9855 (2)	0.12458 (17)	0.68555 (16)	0.0313 (6)
H8	1.0269	0.0804	0.7098	0.038*
C13	0.92692 (19)	0.16711 (16)	0.72559 (14)	0.0236 (5)
P1	0.61006 (5)	0.26215 (4)	0.81899 (4)	0.01969 (13)
P2	0.91721 (5)	0.13477 (4)	0.82203 (4)	0.02147 (14)
Pt1	0.773705 (7)	0.200163 (5)	0.841596 (5)	0.01795 (3)
Cl1	0.74599 (5)	0.10572 (4)	0.93994 (3)	0.02439 (13)
C14	0.50326 (19)	0.18463 (14)	0.78938 (14)	0.0217 (5)
H52	0.5189	0.1456	0.8331	0.026*
C15	0.3878 (2)	0.21183 (16)	0.77279 (18)	0.0338 (6)
H12	0.3691	0.2507	0.7297	0.041*
H13	0.3810	0.2382	0.8197	0.041*
C16	0.3096 (2)	0.14051 (18)	0.75032 (18)	0.0387 (7)
H14	0.3256	0.1030	0.7945	0.046*
H15	0.2363	0.1597	0.7395	0.046*
C17	0.3191 (2)	0.09773 (18)	0.67749 (17)	0.0400 (7)

H16	0.2704	0.0519	0.6648	0.048*
H17	0.2984	0.1343	0.6324	0.048*
C18	0.4322 (2)	0.06942 (18)	0.69221 (19)	0.0434 (8)
H18	0.4378	0.0447	0.6442	0.052*
H19	0.4502	0.0290	0.7339	0.052*
C19	0.5119 (2)	0.13911 (17)	0.71671 (16)	0.0317 (6)
H20	0.4987	0.1764	0.6725	0.038*
H21	0.5846	0.1183	0.7287	0.038*
C20	0.5814(2)	0.32223 (15)	0.89640 (15)	0.0262 (6)
H53	0.5119	0.3491	0.8720	0.031*
C21	0.6675 (2)	0.38825 (16)	0.92785 (16)	0.0315 (6)
H22	0.6709	0.4219	0 8841	0.038*
H23	0.7376	0.3635	0.9519	0.038*
C22	0.6391 (3)	0.3033 0.44040 (17)	0.99003(17)	0.030 0.0410(7)
H24	0.6953	0.4803	1 0112	0.049*
H25	0.5720	0.4688	0.9645	0.049*
C23	0.5720 0.6275(2)	0.30036 (18)	1.05603 (16)	0.049
U25 H26	0.6275 (2)	0.39050 (18)	1.0030	0.0388 (7)
1120 Ц27	0.6060	0.4245	1.0950	0.047*
C24	0.0909	0.3070 0.22208 (18)	1.0004	0.047°
U24 U28	0.3430 (3)	0.32308 (18)	1.02020 (17)	0.0393 (7)
П20 1120	0.4/40	0.3400	1.0025	0.047*
П29 С25	0.5451	0.2897	1.0703	0.047°
C25	0.5719(2)	0.27061 (17)	0.96458 (16)	0.0335 (6)
H30	0.6394	0.2425	0.9895	0.040*
H31	0.5157	0.2306	0.9441	0.040*
C26	1.0505 (2)	0.14993 (17)	0.89855 (15)	0.0288 (6)
H54	1.0436	0.1302	0.9486	0.035*
C27	1.1442 (2)	0.1034 (2)	0.88627 (16)	0.0391 (7)
H32	1.1545	0.1208	0.8371	0.047*
H33	1.1272	0.0463	0.8817	0.047*
C28	1.2483 (2)	0.1173 (2)	0.95581 (19)	0.0495 (9)
H34	1.2405	0.0942	1.0038	0.059*
H35	1.3074	0.0897	0.9450	0.059*
C29	1.2751 (2)	0.2056 (2)	0.96936 (19)	0.0505 (9)
H36	1.2933	0.2268	0.9245	0.061*
H37	1.3378	0.2118	1.0166	0.061*
C30	1.1819 (2)	0.2537 (2)	0.97950 (17)	0.0452 (8)
H38	1.1999	0.3106	0.9826	0.054*
H39	1.1713	0.2383	1.0291	0.054*
C31	1.0772 (2)	0.24003 (18)	0.91103 (15)	0.0327 (6)
H40	1.0840	0.2627	0.8626	0.039*
H41	1.0186	0.2677	0.9224	0.039*
C32	0.90420 (19)	0.02456 (15)	0.80991 (14)	0.0239 (5)
H55	0.9576	0.0076	0.7852	0.029*
C33	0.9287 (2)	-0.02323 (15)	0.88762 (15)	0.0285 (6)
H42	0.9990	-0.0082	0.9239	0.034*
H43	0.8750	-0.0113	0.9129	0.034*
C34	0.9270 (2)	-0.11266 (17)	0.86878 (17)	0.0351 (7)
			× ,	

H44	0.9416	-0.1433	0.9177	0.042*	
H45	0.9835	-0.1245	0.8463	0.042*	
C35	0.8189 (2)	-0.13878 (17)	0.81058 (18)	0.0391 (7)	
H46	0.7635	-0.1328	0.8354	0.047*	
H47	0.8225	-0.1953	0.7976	0.047*	
C36	0.7884 (2)	-0.08889 (16)	0.73421 (17)	0.0365 (7)	
H48	0.8372	-0.1015	0.7050	0.044*	
H49	0.7159	-0.1031	0.7010	0.044*	
C37	0.7934 (2)	0.00123 (15)	0.75192 (15)	0.0275 (6)	
H50	0.7379	0.0153	0.7748	0.033*	
H51	0.7797	0.0312	0.7028	0.033*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0229 (4)	0.0234 (4)	0.0197 (3)	-0.0075 (3)	0.0055 (3)	0.0016 (3)
C1	0.0347 (16)	0.0268 (14)	0.0318 (14)	-0.0124 (12)	0.0105 (12)	-0.0021 (12)
C2	0.0263 (14)	0.0236 (13)	0.0234 (13)	-0.0072 (11)	0.0025 (11)	0.0038 (11)
C3	0.0382 (17)	0.0409 (17)	0.0336 (15)	-0.0076 (14)	0.0087 (13)	0.0117 (13)
C4	0.0450 (19)	0.0461 (19)	0.0362 (17)	-0.0073 (15)	-0.0012 (15)	0.0230 (14)
C5	0.0279 (16)	0.0321 (16)	0.0380 (16)	-0.0043 (12)	-0.0076 (13)	0.0108 (13)
C6	0.0250 (14)	0.0227 (14)	0.0325 (14)	-0.0067 (11)	-0.0005 (12)	0.0021 (11)
C7	0.0269 (14)	0.0192 (12)	0.0198 (12)	-0.0066 (11)	0.0008 (11)	0.0014 (10)
C8	0.0218 (13)	0.0264 (13)	0.0233 (13)	-0.0145 (11)	0.0057 (11)	-0.0043 (11)
C9	0.0298 (15)	0.0296 (15)	0.0245 (13)	-0.0153 (12)	0.0068 (12)	-0.0017 (11)
C10	0.0440 (18)	0.0397 (17)	0.0207 (13)	-0.0213 (14)	0.0135 (13)	-0.0062 (12)
C11	0.0377 (17)	0.0468 (18)	0.0320 (15)	-0.0157 (14)	0.0200 (14)	-0.0129 (14)
C12	0.0265 (15)	0.0388 (16)	0.0294 (14)	-0.0083 (12)	0.0101 (12)	-0.0049 (12)
C13	0.0180 (13)	0.0298 (14)	0.0222 (12)	-0.0105 (11)	0.0054 (10)	-0.0036 (11)
P1	0.0205 (3)	0.0193 (3)	0.0179 (3)	-0.0017 (3)	0.0045 (3)	0.0005 (2)
P2	0.0151 (3)	0.0279 (3)	0.0203 (3)	-0.0040 (3)	0.0043 (3)	0.0009 (3)
Pt1	0.01686 (5)	0.02063 (5)	0.01516 (5)	-0.00361 (4)	0.00354 (3)	0.00086 (4)
Cl1	0.0328 (3)	0.0227 (3)	0.0213 (3)	0.0015 (3)	0.0137 (3)	0.0035 (2)
C14	0.0198 (13)	0.0233 (13)	0.0198 (12)	-0.0034 (10)	0.0033 (10)	0.0037 (10)
C15	0.0257 (15)	0.0345 (16)	0.0399 (16)	-0.0010 (12)	0.0086 (13)	-0.0012 (13)
C16	0.0266 (15)	0.0383 (17)	0.0513 (18)	-0.0048 (13)	0.0128 (14)	0.0040 (14)
C17	0.0362 (17)	0.0354 (16)	0.0436 (17)	-0.0076 (14)	0.0063 (14)	-0.0053 (14)
C18	0.0410 (19)	0.0401 (18)	0.0491 (19)	-0.0130 (14)	0.0148 (15)	-0.0134 (15)
C19	0.0322 (16)	0.0340 (15)	0.0297 (14)	-0.0127 (12)	0.0113 (12)	-0.0088 (12)
C20	0.0276 (14)	0.0246 (13)	0.0255 (13)	0.0013 (11)	0.0077 (11)	-0.0014 (11)
C21	0.0408 (17)	0.0240 (14)	0.0288 (14)	-0.0044 (12)	0.0100 (13)	-0.0043 (11)
C22	0.048 (2)	0.0273 (15)	0.0414 (17)	-0.0023 (14)	0.0053 (15)	-0.0083 (13)
C23	0.0417 (18)	0.0408 (17)	0.0291 (15)	0.0085 (14)	0.0050 (13)	-0.0085 (13)
C24	0.0437 (19)	0.0451 (18)	0.0312 (15)	0.0015 (14)	0.0141 (14)	-0.0079 (13)
C25	0.0352 (16)	0.0336 (15)	0.0303 (14)	-0.0012 (13)	0.0089 (13)	-0.0041 (12)
C26	0.0182 (13)	0.0439 (17)	0.0217 (13)	-0.0082 (12)	0.0031 (11)	0.0022 (12)
C27	0.0186 (14)	0.061 (2)	0.0355 (16)	-0.0029 (14)	0.0061 (12)	0.0026 (15)
C28	0.0167 (14)	0.078 (3)	0.0464 (19)	-0.0048 (16)	0.0004 (14)	0.0082 (17)

supporting information

C29	0.0211 (15)	0.084 (3)	0.0388 (17)	-0.0208 (16)	-0.0005 (13)	0.0099 (17)
C30	0.0386 (18)	0.059 (2)	0.0303 (15)	-0.0290 (16)	0.0009 (14)	0.0019 (15)
C31	0.0265 (15)	0.0449 (17)	0.0237 (13)	-0.0166 (13)	0.0043 (12)	0.0004 (12)
C32	0.0157 (12)	0.0263 (13)	0.0288 (13)	0.0015 (10)	0.0059 (11)	0.0013 (11)
C33	0.0208 (14)	0.0318 (15)	0.0330 (14)	0.0051 (11)	0.0087 (12)	0.0073 (12)
C34	0.0310 (16)	0.0359 (16)	0.0424 (16)	0.0111 (13)	0.0174 (13)	0.0140 (13)
C35	0.0387 (18)	0.0237 (15)	0.058 (2)	0.0011 (13)	0.0205 (16)	0.0021 (14)
C36	0.0301 (16)	0.0315 (16)	0.0474 (18)	-0.0021 (13)	0.0118 (14)	-0.0067 (13)
C37	0.0195 (13)	0.0262 (14)	0.0327 (14)	-0.0001 (11)	0.0030 (11)	0.0009 (12)

Geometric parameters (Å, °)

Si1—C2	1.891 (3)	C19—H21	0.9700
Sil—Cl	1.892 (3)	C20—C25	1.521 (4)
Sil—C8	1.894 (3)	C20—C21	1.540 (4)
Pt1—Si1	2.2790 (7)	C20—H53	0.9800
С1—Н9	0.9600	C21—C22	1.541 (4)
C1—H10	0.9600	C21—H22	0.9700
C1—H11	0.9600	C21—H23	0.9700
C2—C3	1.397 (4)	C22—C23	1.497 (4)
C2—C7	1.405 (4)	C22—H24	0.9700
C3—C4	1.379 (4)	С22—Н25	0.9700
C3—H1	0.9300	C23—C24	1.526 (4)
C4—C5	1.376 (4)	C23—H26	0.9700
C4—H2	0.9300	C23—H27	0.9700
C5—C6	1.385 (4)	C24—C25	1.527 (4)
С5—Н3	0.9300	C24—H28	0.9700
С6—С7	1.401 (4)	C24—H29	0.9700
C6—H4	0.9300	С25—Н30	0.9700
C7—P1	1.835 (2)	С25—Н31	0.9700
C8—C9	1.396 (3)	C26—C27	1.524 (4)
C8—C13	1.403 (4)	C26—C31	1.534 (4)
C9—C10	1.379 (4)	C26—H54	0.9800
С9—Н5	0.9300	C27—C28	1.532 (4)
C10—C11	1.382 (4)	С27—Н32	0.9700
С10—Н6	0.9300	С27—Н33	0.9700
C11—C12	1.391 (4)	C28—C29	1.507 (4)
С11—Н7	0.9300	C28—H34	0.9700
C12—C13	1.396 (4)	С28—Н35	0.9700
С12—Н8	0.9300	C29—C30	1.518 (5)
C13—P2	1.839 (2)	С29—Н36	0.9700
P1—C20	1.833 (3)	C29—H37	0.9700
P1-C14	1.846 (2)	C30—C31	1.526 (4)
Pt1—P1	2.2925 (8)	C30—H38	0.9700
P2—C32	1.841 (3)	С30—Н39	0.9700
P2-C26	1.849 (3)	C31—H40	0.9700
Pt1—P2	2.2929 (7)	C31—H41	0.9700
Pt1—Cl1	2.4597 (7)	C32—C37	1.532 (3)

C14—C15	1.513 (4)	C32—C33	1.533 (3)
C14—C19	1.531 (3)	С32—Н55	0.9800
С14—Н52	0.9800	C33—C34	1.519 (4)
C15—C16	1.530 (4)	C33—H42	0.9700
C15—H12	0.9700	C33—H43	0.9700
C15 H12	0.9700	C_{24} C_{25}	1.520 (4)
C16 C17	0.9700	C_{24} U_{44}	1.320 (4)
	1.310 (4)	C34—H44	0.9700
C16—H14	0.9700	C34—H45	0.9700
C16—H15	0.9700	C35—C36	1.527 (4)
C17—C18	1.495 (4)	C35—H46	0.9700
С17—Н16	0.9700	С35—Н47	0.9700
C17—H17	0.9700	C36—C37	1.524 (4)
C18—C19	1.523 (4)	C36—H48	0.9700
C18—H18	0.9700	C36—H49	0.9700
C18—H19	0.9700	С37—Н50	0.9700
C19—H20	0.9700	С37—Н51	0.9700
C2—Si1—C1	101.47 (12)	С25—С20—Н53	107.6
C_2 Sil C_2	11574(12)	$C_{21} = C_{20} = H_{53}$	107.6
C_1 Sil C8	106.56(12)	P1 C20 H53	107.6
$C_{1} = S_{11} = C_{0}$	100.30(12) 108.15(8)	11 - 0.20 - 1155	107.0 100.0(2)
$C_2 = S_{11} = P_{11}$	100.13(8) 118.97(0)	$C_{20} = C_{21} = C_{22}$	109.9(2)
	110.07 (9)	С20—С21—Н22	109.7
C8—SII—Pti	106.50 (8)	C22—C21—H22	109.7
Sil—Cl—H9	109.5	С20—С21—Н23	109.7
Si1—C1—H10	109.5	C22—C21—H23	109.7
H9—C1—H10	109.5	H22—C21—H23	108.2
Si1—C1—H11	109.5	C23—C22—C21	111.6 (2)
H9—C1—H11	109.5	С23—С22—Н24	109.3
H10—C1—H11	109.5	C21—C22—H24	109.3
C3—C2—C7	117.8 (3)	С23—С22—Н25	109.3
C3—C2—Si1	125.4 (2)	C21—C22—H25	109.3
C7—C2—Si1	115.93 (18)	H24—C22—H25	108.0
C4—C3—C2	121.4 (3)	C22—C23—C24	111.3 (2)
C4—C3—H1	119.3	C22—C23—H26	109.4
C2_C3_H1	119.3	C_{24} C_{23} H_{26}	109.4
$C_{2} = C_{3} = C_{4}$	1204(3)	$C_{22} = C_{23} = H_{27}$	109.1
$C_5 C_4 H_2$	110.8	$C_{22} C_{23} H_{27}$	109.4
$C_3 = C_4 = H_2$	117.0	124 - 223 - 1127	109.4
$C_3 = C_4 = H_2$	119.0	$H_{20} = C_{23} = H_{27}$	100.0
C4 - C5 - C6	119.8 (3)	$C_{23} = C_{24} = C_{25}$	111.8 (3)
C4—C5—H3	120.1	C23—C24—H28	109.3
С6—С5—Н3	120.1	C25—C24—H28	109.3
C5—C6—C7	120.1 (3)	С23—С24—Н29	109.3
С5—С6—Н4	120.0	С25—С24—Н29	109.3
C7—C6—H4	120.0	H28—C24—H29	107.9
C6—C7—C2	120.4 (2)	C20—C25—C24	110.4 (2)
C6—C7—P1	122.8 (2)	С20—С25—Н30	109.6
C2—C7—P1	116.83 (19)	С24—С25—Н30	109.6
C9—C8—C13	118.4 (2)	C20—C25—H31	109.6

C9—C8—Si1	125.7 (2)	С24—С25—Н31	109.6
C13—C8—Si1	115.90 (18)	H30—C25—H31	108.1
C10—C9—C8	121.5 (3)	C27—C26—C31	110.9 (2)
С10—С9—Н5	119.2	C27—C26—P2	115.99 (19)
С8—С9—Н5	119.2	C31—C26—P2	110.80 (18)
C9—C10—C11	120.0 (2)	С27—С26—Н54	106.1
С9—С10—Н6	120.0	C31—C26—H54	106.1
С11—С10—Н6	120.0	P2—C26—H54	106.1
C10—C11—C12	119.7 (3)	C26—C27—C28	110.9 (2)
C10—C11—H7	120.2	С26—С27—Н32	109.5
C12—C11—H7	120.2	С28—С27—Н32	109.5
C11—C12—C13	120.5 (3)	С26—С27—Н33	109.5
С11—С12—Н8	119.7	С28—С27—Н33	109.5
С13—С12—Н8	119.7	Н32—С27—Н33	108.0
C12—C13—C8	119.8 (2)	C29—C28—C27	112.0 (3)
C12—C13—P2	122.9 (2)	С29—С28—Н34	109.2
C8—C13—P2	117.15 (19)	С27—С28—Н34	109.2
C20—P1—C7	104.61 (12)	С29—С28—Н35	109.2
C20—P1—C14	105.71 (12)	С27—С28—Н35	109.2
C7—P1—C14	105.24 (11)	H34—C28—H35	107.9
C20—P1—Pt1	121.34 (9)	C28—C29—C30	112.0 (2)
C7—P1—Pt1	110.28 (9)	С28—С29—Н36	109.2
C14—P1—Pt1	108.49 (8)	С30—С29—Н36	109.2
C13—P2—C32	102.25 (12)	С28—С29—Н37	109.2
C13—P2—C26	108.10 (11)	С30—С29—Н37	109.2
C32—P2—C26	104.49 (12)	Н36—С29—Н37	107.9
C13—P2—Pt1	108.18 (9)	C29—C30—C31	112.2 (3)
C32—P2—Pt1	115.95 (8)	С29—С30—Н38	109.2
C26—P2—Pt1	116.71 (9)	C31—C30—H38	109.2
Si1—Pt1—P1	84.89 (3)	С29—С30—Н39	109.2
Si1—Pt1—P2	84.57 (3)	С31—С30—Н39	109.2
P1—Pt1—P2	162.15 (2)	Н38—С30—Н39	107.9
Si1—Pt1—Cl1	178.03 (2)	C30—C31—C26	111.3 (2)
P1—Pt1—C11	93.68 (3)	C30—C31—H40	109.4
P2—Pt1—Cl1	97.15 (3)	C26—C31—H40	109.4
C15—C14—C19	109.0 (2)	C30—C31—H41	109.4
C15—C14—P1	117.74 (18)	C26—C31—H41	109.4
C19—C14—P1	109.06 (17)	H40—C31—H41	108.0
C15—C14—H52	106.8	C37—C32—C33	110.5 (2)
C19—C14—H52	106.8	C37—C32—P2	111.14 (17)
P1—C14—H52	106.8	C33—C32—P2	115.04 (17)
C14—C15—C16	111.3 (2)	С37—С32—Н55	106.5
C14—C15—H12	109.4	С33—С32—Н55	106.5
C16—C15—H12	109.4	Р2—С32—Н55	106.5
C14—C15—H13	109.4	C34—C33—C32	108.8 (2)
С16—С15—Н13	109.4	С34—С33—Н42	109.9
H12—C15—H13	108.0	С32—С33—Н42	109.9
C17—C16—C15	110.5 (2)	C34—C33—H43	109.9

C17—C16—H14	109.5	С32—С33—Н43	109.9
C15—C16—H14	109.5	H42—C33—H43	108.3
C17—C16—H15	109.5	C33—C34—C35	111.8 (2)
C15—C16—H15	109.5	C33—C34—H44	109.2
H14—C16—H15	108.1	C35—C34—H44	109.2
C18—C17—C16	110.5 (2)	С33—С34—Н45	109.2
С18—С17—Н16	109.6	C35—C34—H45	109.2
С16—С17—Н16	109.6	H44—C34—H45	107.9
С18—С17—Н17	109.6	C34—C35—C36	111.6 (2)
С16—С17—Н17	109.6	С34—С35—Н46	109.3
H16—C17—H17	108.1	С36—С35—Н46	109.3
C17—C18—C19	111.1 (3)	С34—С35—Н47	109.3
С17—С18—Н18	109.4	С36—С35—Н47	109.3
C19—C18—H18	109.4	H46—C35—H47	108.0
C17—C18—H19	109.4	C37—C36—C35	111.5 (2)
C19—C18—H19	109.4	C37—C36—H48	109.3
H18—C18—H19	108.0	C35—C36—H48	109.3
C18 - C19 - C14	112.5 (2)	C37—C36—H49	109.3
C18 - C19 - H20	109.1	$C_{35} - C_{36} - H_{49}$	109.3
C_{14} C_{19} H_{20}	109.1	H48-C36-H49	109.5
C18 - C19 - H21	109.1	$C_{36} - C_{37} - C_{32}$	100.0 110.7(2)
C14-C19-H21	109.1	$C_{36} = C_{37} = H_{50}$	109 5
H_{20} $-C_{19}$ H_{21}	107.8	$C_{32} - C_{37} - H_{50}$	109.5
C_{25} C_{20} C_{21}	1105(2)	$C_{36} = C_{37} = H_{51}$	109.5
$C_{25} = C_{20} = P_{1}$	112 44 (18)	$C_{32} - C_{37} - H_{51}$	109.5
$C_{21} = C_{20} = P_1$	110.72 (18)	H50-C37-H51	109.5
021 020 11	110.72 (10)		100.1
C1—Si1—C2—C3	64.5 (3)	C26—P2—Pt1—Si1	100.07 (10)
C8—Si1—C2—C3	-50.4 (3)	C13—P2—Pt1—P1	32.02 (12)
Pt1—Si1—C2—C3	-169.7 (2)	C32—P2—Pt1—P1	-82.07 (12)
C1—Si1—C2—C7	-104.1 (2)	C26—P2—Pt1—P1	154.11 (11)
C8—Si1—C2—C7	140.99 (19)	C13—P2—Pt1—Cl1	158.94 (8)
Pt1—Si1—C2—C7	21.7 (2)	C32—P2—Pt1—Cl1	44.85 (9)
C7—C2—C3—C4	-0.8 (4)	C26—P2—Pt1—Cl1	-78.97 (10)
Si1—C2—C3—C4	-169.2 (2)	C20—P1—C14—C15	47.3 (2)
C2—C3—C4—C5	3.1 (5)	C7—P1—C14—C15	-63.1 (2)
C3—C4—C5—C6	-2.6 (5)	Pt1—P1—C14—C15	178.91 (17)
C4—C5—C6—C7	-0.1 (4)	C20—P1—C14—C19	172.15 (18)
C5—C6—C7—C2	2.4 (4)	C7—P1—C14—C19	61.8 (2)
C5—C6—C7—P1	-176.5 (2)	Pt1—P1—C14—C19	-56.25 (18)
C3—C2—C7—C6	-2.0 (4)	C19—C14—C15—C16	56.0 (3)
Si1—C2—C7—C6	167.58 (19)	P1—C14—C15—C16	-179.13 (19)
C3—C2—C7—P1	177.00 (19)	C14—C15—C16—C17	-58.6 (3)
Si1—C2—C7—P1	-13.5 (3)	C15—C16—C17—C18	57.8 (3)
C2—Si1—C8—C9	37.3 (2)	C16—C17—C18—C19	-56.2 (3)
C1—Si1—C8—C9	-74.6 (2)	C17—C18—C19—C14	55.6 (3)
Pt1—Si1—C8—C9	157.52 (19)	C15—C14—C19—C18	-54.8 (3)
C2-Si1-C8-C13	-144.02(18)	P1-C14-C19-C18	175.4 (2)
			(2)

C1—Si1—C8—C13	104.1 (2)	C7—P1—C20—C25	165.15 (19)
Pt1—Si1—C8—C13	-23.8 (2)	C14—P1—C20—C25	54.3 (2)
C13—C8—C9—C10	0.1 (4)	Pt1-P1-C20-C25	-69.5 (2)
Si1—C8—C9—C10	178.77 (19)	C7—P1—C20—C21	-70.7 (2)
C8—C9—C10—C11	-1.8 (4)	C14—P1—C20—C21	178.52 (17)
C9-C10-C11-C12	1.5 (4)	Pt1—P1—C20—C21	54.7 (2)
C10-C11-C12-C13	0.4 (4)	C25—C20—C21—C22	-57.3 (3)
C11—C12—C13—C8	-2.1 (4)	P1-C20-C21-C22	177.45 (18)
C11—C12—C13—P2	174.4 (2)	C20—C21—C22—C23	56.5 (3)
C9—C8—C13—C12	1.8 (4)	C21—C22—C23—C24	-55.3 (3)
Si1—C8—C13—C12	-176.97 (19)	C22—C23—C24—C25	55.1 (3)
C9—C8—C13—P2	-174.89 (18)	C21—C20—C25—C24	57.2 (3)
Si1—C8—C13—P2	6.3 (3)	P1-C20-C25-C24	-178.5 (2)
C6—C7—P1—C20	-49.8 (2)	C23—C24—C25—C20	-55.9 (3)
C2-C7-P1-C20	131.3 (2)	C13—P2—C26—C27	-60.2 (2)
C6—C7—P1—C14	61.4 (2)	C32—P2—C26—C27	48.2 (2)
C2-C7-P1-C14	-117.6 (2)	Pt1—P2—C26—C27	177.69 (17)
C6—C7—P1—Pt1	178.19 (18)	C13—P2—C26—C31	67.4 (2)
C2-C7-P1-Pt1	-0.7 (2)	C32—P2—C26—C31	175.79 (17)
C12—C13—P2—C32	-39.7 (2)	Pt1-P2-C26-C31	-54.71 (19)
C8—C13—P2—C32	136.91 (19)	C31—C26—C27—C28	55.7 (3)
C12—C13—P2—C26	70.2 (2)	P2-C26-C27-C28	-176.7 (2)
C8—C13—P2—C26	-113.2 (2)	C26—C27—C28—C29	-55.5 (3)
C12-C13-P2-Pt1	-162.57 (19)	C27—C28—C29—C30	53.9 (4)
C8—C13—P2—Pt1	14.0 (2)	C28—C29—C30—C31	-53.1 (3)
C2—Si1—Pt1—P1	-16.37 (9)	C29—C30—C31—C26	53.7 (3)
C1—Si1—Pt1—P1	98.44 (11)	C27—C26—C31—C30	-55.1 (3)
C8—Si1—Pt1—P1	-141.38 (8)	P2-C26-C31-C30	174.6 (2)
C2—Si1—Pt1—P2	149.20 (9)	C13—P2—C32—C37	-71.31 (19)
C1—Si1—Pt1—P2	-95.99 (11)	C26—P2—C32—C37	176.08 (18)
C8—Si1—Pt1—P2	24.19 (8)	Pt1—P2—C32—C37	46.13 (19)
C20—P1—Pt1—Si1	-111.73 (10)	C13—P2—C32—C33	162.15 (18)
C7—P1—Pt1—Si1	10.95 (9)	C26—P2—C32—C33	49.5 (2)
C14—P1—Pt1—Si1	125.73 (9)	Pt1—P2—C32—C33	-80.41 (18)
C20—P1—Pt1—P2	-165.73 (11)	C37—C32—C33—C34	59.5 (3)
C7—P1—Pt1—P2	-43.05 (12)	P2-C32-C33-C34	-173.69 (17)
C14—P1—Pt1—P2	71.72 (11)	C32—C33—C34—C35	-58.3 (3)
C20—P1—Pt1—Cl1	66.92 (10)	C33—C34—C35—C36	55.5 (3)
C7—P1—Pt1—Cl1	-170.41 (8)	C34—C35—C36—C37	-52.8 (3)
C14—P1—Pt1—Cl1	-55.63 (8)	C35—C36—C37—C32	54.3 (3)
C13—P2—Pt1—Si1	-22.03 (8)	C33—C32—C37—C36	-58.1 (3)
C32—P2—Pt1—Si1	-136.12 (9)	P2-C32-C37-C36	172.88 (18)