metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trichlorido(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)(dimethyl sulfoxide- κO)-indium(III)

Roya Ahmadi,^a Khadijeh Kalateh,^a Anita Abedi,^b Vahid Amani^a* and Hamid Reza Khavasi^c

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: v_amani2002@yahoo.com

Received 13 September 2008; accepted 15 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.036; *wR* factor = 0.086; data-to-parameter ratio = 25.1.

In the molecule of the title compound, $[InCl_3(C_{12}H_{12}N_2)-(C_2H_6OS)]$, the In^{III} atom is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 4,4'-dimethyl-2,2'-bipyridine ligand, one O atom from dimethyl sulfoxide and three Cl atoms. In the crystal structure, intermolecular C-H···Cl hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For related literature, see: Ahmadi, Kalateh *et al.* (2008); Ahmadi, Khalighi *et al.* (2008); Amani *et al.* (2007); Ilyukhin & Malyarick (1994); Khavasi *et al.* (2007); Khalighi *et al.* (2008); Malyarick *et al.* (1992); Nan *et al.* (1987); Yousefi, Khalighi *et al.* (2008); Yousefi, Tadayon Pour *et al.* (2008).

Experimental

Crystal data [InCl₃(C₁₂H₁₂N₂)(C₂H₆OS)] $M_r = 483.54$ Monoclinic, $P2_1/n$ a = 8.2565 (17) Å b = 23.456 (5) Å c = 10.121 (2) Å $\beta = 105.95$ (3)°

 $V = 1884.7 (7) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.79 \text{ mm}^{-1}$ T = 298 (2) K $0.49 \times 0.46 \times 0.44 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998) $T_{\rm min} = 0.404, T_{\rm max} = 0.455$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	201 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.86 \ {\rm e} \ {\rm \AA}^{-3}$
5046 reflections	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

13791 measured reflections

 $R_{\rm int} = 0.038$

5046 independent reflections

4804 reflections with $I > 2\sigma(I)$

Table 1

0

Selected geometric parameters (Å, °).

Cl1-In1	2.4180 (12)	O1-In1	2.233 (2)
Cl2-In1	2.4592 (10)	N1-In1	2.293 (2)
Cl3-In1	2.4398 (9)	N2-In1	2.294 (2)
Cl1-In1-Cl2	99.03 (4)	N1-In1-Cl1	93.59 (7)
Cl1-In1-Cl3	98.15 (3)	N1-In1-Cl2	89.72 (7)
Cl3-In1-Cl2	96.15 (3)	N1-In1-Cl3	165.87 (6)
O1-In1-Cl1	90.56 (7)	N2-In1-Cl1	162.86 (7)
O1-In1-Cl2	168.67 (6)	N2-In1-Cl2	89.26 (7)
O1-In1-Cl3	88.39 (6)	N2-In1-Cl3	95.83 (7)
O1-In1-N1	83.64 (9)	N1-In1-N2	71.34 (9)
O1-In1-N2	79.94 (9)		

able 2			
Ivdrogen-bond	geometry	(Å.	0)

Hydrogen-bond geometry (A, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \cdots Cl1$ $C10 - H10C \cdots Cl2^{i}$	0.93	2.77	3.427 (4)	128
	0.96	2.80	3.700 (4)	156

Symmetry code: (i) -x + 2, -y, -z + 2.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2532).

References

- Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.
- Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.
- Amani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007). Polyhedron, 26, 4908–4914.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ilyukhin, A. B. & Malyarick, M. A. (1994). Kristallografiya, 39, 439-443.

- Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.
- Khavasi, H. R., Amani, V. & Safari, N. (2007). Z. Kristallogr. 222, 155-156.
- Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). *Polyhedron*, **11**, 1067–1073.
- Nan, D., Naidong, W., Zhenchao, D. & Shengzhi, H. (1987). *Jiegou Huaxue*, 6, 145–149.
- Sheldrick, G. M. (1998). *SADABS*. Bruker AXS, Madison, Wisconsin, USA. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.
- Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.

supporting information

Acta Cryst. (2008). E64, m1306-m1307 [doi:10.1107/S1600536808029553]

Trichlorido(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)(dimethyl sulfoxide- κO)indium(III)

Roya Ahmadi, Khadijeh Kalateh, Anita Abedi, Vahid Amani and Hamid Reza Khavasi

S1. Comment

Recently, we reported the syntheses and crystal structures of $[Zn(5,5'-dmbpy)Cl_2]$, (II), (Khalighi *et al.*, 2008), $[Zn(6-mbpy)Cl_2]$, (III), (Ahmadi, Kalateh *et al.*, 2008), $[Cd(5,5'-dmbpy)(\mu-Cl)_2]_n$, (IV), (Ahmadi, Khalighi *et al.*, 2008), (Hg(4,4'-dmbpy)I_2], (V), (Yousefi, Tadayon Pour *et al.*, 2008) and $[Cu(5,5'-dcbpy)(en)(H_2O)_2].2.5H_2O$, (VI), (Yousefi, Khalighi *et al.*, 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-dicarboxylate and en is ethylenediamine]. We have also reported the synthesis and crystal structures of iron(III) complexes of [Fe(bipy)Cl_3(DMSO)], (VII) and [Fe(phen)Cl_3(DMSO)], (VIII), (Amani *et al.*, 2007) and [Fe(phen)Cl_3(CH_3OH)].CH_3OH, (IX), (Khavasi *et al.*, 2007) [where bipy is 2,2'-bipyridine, DMSO is dimethyl sulfoxide and phen is 1,10-phenanthroline]. There are several In^{III} complexes, with formula, [In(N—N)Cl_3(*L*)], (*L* = DMSO, H₂O and EtOH), such as [In(bipy)Cl_3(H_2O)], (X), [In(bipy)Cl_3(EtOH)], (XI) and [In(bipy)Cl_3(H_2O)].H₂O, (XII), (Malyarick *et al.*, 1992), [In(phen)Cl_3(DMSO)], (XIII), (Nan *et al.*, 1987), [In(phen)Cl_3(H_2O)], (XIV) and [In(phen)Cl_3(EtOH)].EtOH, (XV), (Ilyukhin & Malyarick, 1994) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the In^{III} atom is six-coordinated in a distorted octahedral configuration by two N atoms from 4,4'-dimethyl-2,2' -bipyridine, one O atom from dimethyl sulfoxide and three Cl atoms. The In—Cl and In—N bond lengths and angles (Table 1) are within normal ranges, as in (XI), (XII), (XIII) and (XV).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

For the preparation of the title compound, (I), a solution of 4,4'-dimethyl -2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of InCl₃.4H₂O (0.16 g, 0.55 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were isolated after one week by methanol diffusion to a colorless solution in DMSO (yield; 0.19 g, 71.4%).

S3. Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Trichlorido(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)(dimethyl sulfoxide- κO)indium(III)

Crystal data	
$[InCl_3(C_{12}H_{12}N_2)(C_2H_6OS)]$	F(000) = 960
$M_r = 483.54$	$D_{\rm x} = 1.704 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2052 reflections
a = 8.2565 (17) Å	$\theta = 1.7 - 29.3^{\circ}$
b = 23.456(5) Å	$\mu = 1.79 \text{ mm}^{-1}$
c = 10.121 (2) Å	T = 298 K
$\beta = 105.95 (3)^{\circ}$	Prism, colorless
V = 1884.7 (7) Å ³	$0.49 \times 0.46 \times 0.44$ mm
Z = 4	

Data collection

Bruker SMART CCD area-detector	13791 measured reflections
diffractometer	5046 independent reflections
Radiation source: fine-focus sealed tube	4804 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.038$
φ and ω scans	$\theta_{max} = 29.3^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>SADABS</i> ; Sheldrick, 1998)	$k = -28 \rightarrow 32$
$T_{\min} = 0.404, T_{\max} = 0.455$	$l = -13 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.16	H-atom parameters constrained
5046 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0263P)^2 + 2.6542P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.018$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.86$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.69$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

			TT
X	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
0.67799 (2)	0.143868 (8)	0.722848 (19)	0.03114 (7)
0.46060 (14)	0.15508 (4)	0.50881 (9)	0.0586 (2)
0.89844 (14)	0.10102 (4)	0.63344 (12)	0.0620 (3)
0.78999 (10)	0.24070 (3)	0.74202 (8)	0.04094 (16)
0.41807 (11)	0.23105 (4)	0.82159 (9)	0.04457 (18)
0.4998 (3)	0.17216 (10)	0.8405 (2)	0.0410 (5)
0.5893 (3)	0.05448 (10)	0.7626 (2)	0.0345 (5)
0.8245 (3)	0.11591 (10)	0.9400 (2)	0.0329 (5)
0.4701 (4)	0.02601 (15)	0.6694 (3)	0.0443 (7)
0.4125	0.0447	0.5892	0.053*
0.4290 (4)	-0.03006 (14)	0.6877 (3)	0.0440 (7)
0.3452	-0.0484	0.6207	0.053*
0.5131 (4)	-0.05872 (13)	0.8059 (3)	0.0378 (6)
0.4753 (5)	-0.12005 (14)	0.8289 (4)	0.0501 (8)
0.4398	-0.1232	0.9113	0.060*
0.5747	-0.1426	0.8378	0.060*
	x 0.67799 (2) 0.46060 (14) 0.89844 (14) 0.78999 (10) 0.41807 (11) 0.4998 (3) 0.5893 (3) 0.8245 (3) 0.4701 (4) 0.4125 0.4290 (4) 0.3452 0.5131 (4) 0.4753 (5) 0.4398 0.5747	xy $0.67799 (2)$ $0.143868 (8)$ $0.46060 (14)$ $0.15508 (4)$ $0.89844 (14)$ $0.10102 (4)$ $0.78999 (10)$ $0.24070 (3)$ $0.41807 (11)$ $0.23105 (4)$ $0.4998 (3)$ $0.17216 (10)$ $0.5893 (3)$ $0.05448 (10)$ $0.8245 (3)$ $0.11591 (10)$ 0.4125 0.0447 $0.4290 (4)$ $-0.03006 (14)$ 0.3452 -0.0484 $0.5131 (4)$ $-0.05872 (13)$ $0.4753 (5)$ $-0.12005 (14)$ 0.4398 -0.1232 0.5747 -0.1426	xyz $0.67799(2)$ $0.143868(8)$ $0.722848(19)$ $0.46060(14)$ $0.15508(4)$ $0.50881(9)$ $0.89844(14)$ $0.10102(4)$ $0.63344(12)$ $0.78999(10)$ $0.24070(3)$ $0.74202(8)$ $0.41807(11)$ $0.23105(4)$ $0.82159(9)$ $0.4998(3)$ $0.17216(10)$ $0.8405(2)$ $0.5893(3)$ $0.05448(10)$ $0.7626(2)$ $0.8245(3)$ $0.11591(10)$ $0.9400(2)$ $0.4701(4)$ $0.02601(15)$ $0.6694(3)$ 0.4125 0.0447 0.5892 $0.4290(4)$ $-0.03006(14)$ 0.6207 $0.5131(4)$ $-0.05872(13)$ $0.8059(3)$ $0.4753(5)$ $-0.12005(14)$ $0.8289(4)$ 0.4398 -0.1232 0.9113 0.5747 -0.1426 0.8378

H4C	0.3872	-0.1335	0.7522	0.060*
C5	0.6370 (4)	-0.02882 (13)	0.9026 (3)	0.0369 (6)
H5	0.6968	-0.0468	0.9832	0.044*
C6	0.6714 (3)	0.02770 (12)	0.8790 (3)	0.0308 (5)
C7	0.8006 (3)	0.06232 (12)	0.9795 (3)	0.0311 (5)
C8	0.8859 (4)	0.04184 (13)	1.1078 (3)	0.0359 (6)
H8	0.8674	0.0047	1.1325	0.043*
С9	1.0000 (4)	0.07688 (13)	1.2006 (3)	0.0374 (6)
C10	1.0914 (5)	0.05639 (17)	1.3414 (4)	0.0530 (9)
H10A	1.0620	0.0799	1.4089	0.064*
H10B	1.2106	0.0585	1.3532	0.064*
H10C	1.0601	0.0176	1.3524	0.064*
C11	1.0221 (4)	0.13209 (14)	1.1568 (3)	0.0403 (6)
H11	1.0970	0.1569	1.2147	0.048*
C12	0.9325 (4)	0.14978 (13)	1.0270 (3)	0.0400 (6)
H12	0.9482	0.1867	0.9995	0.048*
C13	0.5259 (7)	0.2699 (2)	0.9695 (5)	0.0731 (13)
H13A	0.6407	0.2757	0.9686	0.088*
H13B	0.5234	0.2489	1.0504	0.088*
H13C	0.4720	0.3061	0.9699	0.088*
C14	0.2249 (5)	0.2199 (2)	0.8626 (5)	0.0722 (13)
H14A	0.2464	0.2014	0.9503	0.087*
H14B	0.1527	0.1963	0.7935	0.087*
H14C	0.1711	0.2559	0.8661	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.03794 (11)	0.02645 (10)	0.03083 (10)	-0.00110 (7)	0.01249 (7)	0.00088 (7)
Cl1	0.0729 (6)	0.0538 (5)	0.0380 (4)	-0.0016 (4)	-0.0033 (4)	0.0062 (3)
Cl2	0.0772 (6)	0.0409 (4)	0.0877 (7)	0.0027 (4)	0.0561 (6)	-0.0066 (4)
C13	0.0448 (4)	0.0282 (3)	0.0536 (4)	-0.0030 (3)	0.0197 (3)	0.0006 (3)
S1	0.0475 (4)	0.0469 (4)	0.0438 (4)	0.0125 (3)	0.0200 (3)	0.0068 (3)
01	0.0441 (11)	0.0412 (12)	0.0434 (11)	0.0053 (9)	0.0216 (9)	0.0042 (9)
N1	0.0379 (12)	0.0297 (12)	0.0350 (11)	-0.0049 (9)	0.0085 (9)	-0.0006 (9)
N2	0.0326 (11)	0.0296 (11)	0.0373 (12)	-0.0019 (9)	0.0111 (9)	0.0009 (9)
C1	0.0473 (17)	0.0394 (16)	0.0392 (15)	-0.0067 (14)	0.0002 (13)	0.0022 (12)
C2	0.0460 (17)	0.0384 (16)	0.0441 (16)	-0.0122 (13)	0.0067 (13)	-0.0062 (13)
C3	0.0455 (15)	0.0313 (14)	0.0406 (14)	-0.0055 (12)	0.0183 (12)	-0.0046 (11)
C4	0.068 (2)	0.0322 (16)	0.0527 (19)	-0.0109 (15)	0.0213 (17)	-0.0040 (14)
C5	0.0446 (15)	0.0312 (14)	0.0354 (13)	-0.0030 (12)	0.0116 (12)	0.0015 (11)
C6	0.0335 (12)	0.0290 (13)	0.0311 (12)	-0.0019 (10)	0.0109 (10)	-0.0028 (10)
C7	0.0329 (12)	0.0294 (13)	0.0321 (12)	0.0000 (10)	0.0109 (10)	-0.0018 (10)
C8	0.0405 (14)	0.0284 (13)	0.0382 (14)	-0.0002 (11)	0.0095 (11)	-0.0007 (11)
C9	0.0377 (14)	0.0364 (15)	0.0356 (14)	0.0029 (12)	0.0059 (11)	-0.0030 (11)
C10	0.061 (2)	0.051 (2)	0.0391 (16)	0.0022 (17)	-0.0007 (15)	0.0011 (14)
C11	0.0388 (15)	0.0365 (15)	0.0424 (15)	-0.0051 (12)	0.0058 (12)	-0.0067 (12)
C12	0.0416 (15)	0.0314 (14)	0.0478 (16)	-0.0073 (12)	0.0136 (13)	-0.0020 (12)
		· /	· /			

supporting information

C13	0.091 (3)	0.064 (3)	0.079 (3)	-0.017 (2)	0.048 (3)	-0.028 (2)
C14	0.042 (2)	0.100 (4)	0.079 (3)	0.017 (2)	0.025 (2)	0.007 (3)

Geometric parameters (Å, °)

Geometric parameters (A,)			
Cl1—In1	2.4180 (12)	C7—N2	1.350 (4)
Cl2—In1	2.4592 (10)	C7—C8	1.382 (4)
Cl3—In1	2.4398 (9)	C8—C9	1.400 (4)
O1—In1	2.233 (2)	C8—H8	0.9300
O1—S1	1.526 (2)	C9—C11	1.397 (4)
N1—In1	2.293 (2)	C9—C10	1.497 (4)
N2—In1	2.294 (2)	C10—H10A	0.9600
C1—N1	1.339 (4)	C10—H10B	0.9600
C1—C2	1.383 (5)	C10—H10C	0.9600
C1—H1	0.9300	C11—C12	1.382 (5)
C2—C3	1.382 (5)	C11—H11	0.9300
C2—H2	0.9300	C12—N2	1.331 (4)
C3—C5	1.395 (4)	C12—H12	0.9300
C3—C4	1.504 (4)	C13—S1	1.770 (5)
C4—H4A	0.9600	C13—H13A	0.9600
C4—H4B	0.9600	C13—H13B	0.9600
C4—H4C	0.9600	C13—H13C	0.9600
C5—C6	1.390 (4)	C14—S1	1.775 (4)
С5—Н5	0.9300	C14—H14A	0.9600
C6—N1	1.343 (4)	C14—H14B	0.9600
C6—C7	1.495 (4)	C14—H14C	0.9600
Cl1—In1—Cl2	99.03 (4)	H4B—C4—H4C	109.5
Cl1—In1—Cl3	98.15 (3)	C6—C5—C3	120.3 (3)
Cl3—In1—Cl2	96.15 (3)	С6—С5—Н5	119.9
O1—In1—Cl1	90.56 (7)	С3—С5—Н5	119.9
O1—In1—Cl2	168.67 (6)	N1—C6—C5	121.3 (3)
O1—In1—Cl3	88.39 (6)	N1—C6—C7	115.9 (2)
O1—In1—N1	83.64 (9)	C5—C6—C7	122.8 (3)
O1—In1—N2	79.94 (9)	N2—C7—C8	121.6 (3)
N1—In1—Cl1	93.59 (7)	N2—C7—C6	116.1 (2)
N1—In1—Cl2	89.72 (7)	C8—C7—C6	122.3 (3)
N1—In1—Cl3	165.87 (6)	C7—C8—C9	120.1 (3)
N2—In1—C11	162.86 (7)	С7—С8—Н8	119.9
N2—In1—Cl2	89.26 (7)	С9—С8—Н8	119.9
N2—In1—Cl3	95.83 (7)	C11—C9—C8	117.0 (3)
N1—In1—N2	71.34 (9)	C11—C9—C10	121.6 (3)
O1—S1—C13	104.9 (2)	C8—C9—C10	121.4 (3)
O1—S1—C14	103.4 (2)	C9—C10—H10A	109.5
C13—S1—C14	98.8 (2)	C9—C10—H10B	109.5
H14B—C14—H14C	109.5	H10A—C10—H10B	109.5
S1—O1—In1	122.38 (12)	C9—C10—H10C	109.5
C1—N1—C6	118.7 (3)	H10A—C10—H10C	109.5

C1—N1—In1	122.7 (2)	H10B-C10-H10C	109.5
C6—N1—In1	118.26 (18)	C12—C11—C9	119.8 (3)
C12—N2—C7	119.1 (3)	C12—C11—H11	120.1
C12—N2—In1	123.0 (2)	С9—С11—Н11	120.1
C7—N2—In1	117.94 (18)	N2—C12—C11	122.4 (3)
N1—C1—C2	122.7 (3)	N2—C12—H12	118.8
N1—C1—H1	118.7	C11—C12—H12	118.8
C2—C1—H1	118.7	S1—C13—H13A	109.5
C3—C2—C1	119.7 (3)	S1—C13—H13B	109.5
C3—C2—H2	120.2	H13A—C13—H13B	109.5
C1—C2—H2	120.2	S1-C13-H13C	109.5
C2—C3—C5	117.4 (3)	H13A—C13—H13C	109.5
$C_2 - C_3 - C_4$	121 6 (3)	H_{13B} C_{13} H_{13C}	109.5
$C_{2} = C_{3} = C_{4}$	121.0(3) 121.1(3)	S1-C14-H14A	109.5
$C_3 - C_4 - H_4 A$	109 5	S1 - C14 - H14B	109.5
$C_3 - C_4 - H_4B$	109.5	$H_{14} - C_{14} + H_{14}B$	109.5
$H_{4} - C_{4} - H_{4} B$	109.5	S1-C14-H14C	109.5
$C_3 - C_4 - H_4C$	109.5	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
	109.5		109.5
n4A—C4—n4C	109.3		
\$1 01 In1 N1	-154 51 (17)	NI CI C2 C3	-0.1(5)
S1 = O1 = In1 = N2	134.31(17) 133.38(17)	$R_{1}^{}C_{2}^{}C_{3}^{}C_{5$	0.1(3)
$S_1 = O_1 = I_{11} = O_2$	-60.07(15)	$C_1 = C_2 = C_3 = C_3$	0.2(3)
S1 = O1 = III = O12	-00.97(13)	$C_1 = C_2 = C_3 = C_4$	-1/8.7(3)
SI = OI = InI = CIS	3/.1/(15)	$C_2 = C_3 = C_5 = C_6$	0.4(5)
SI = OI = InI = CI2	151.0(2)	C4 - C5 - C6	1/9.4 (3)
CI-NI-InI-OI	98.2 (3)	$C_3 = C_5 = C_6 = N_1$	-1.2(4)
C6-NI-InI-OI	-88.1 (2)	$C_3 = C_5 = C_6 = C_7$	1/9.0 (3)
CI = NI = InI = N2	1/9.7 (3)	C_{5} — C_{6} — N_{1} — C_{1}	1.3 (4)
C6-N1-In1-N2	-6.6(2)	C/-C6-NI-CI	-178.9(3)
CI—NI—InI—CII	8.0 (3)	C5—C6—N1—In1	-172.7(2)
C6—N1—In1—C11	-1/8.3(2)	C/—C6—NI—Ini	7.1 (3)
CI—NI—InI—Cl3	154.2 (2)	NI-C6-C7-N2	-2.2 (4)
C6—N1—In1—Cl3	-32.1 (4)	C5—C6—C7—N2	177.6 (3)
C1—N1—In1—Cl2	-91.0 (3)	N1—C6—C7—C8	175.1 (3)
C6—N1—In1—Cl2	82.7 (2)	C5—C6—C7—C8	-5.1 (4)
C12—N2—In1—O1	-88.9 (2)	C8—C7—N2—C12	-0.2 (4)
C7—N2—In1—O1	91.9 (2)	C6—C7—N2—C12	177.1 (3)
C12—N2—In1—N1	-175.5 (3)	C8—C7—N2—In1	179.0 (2)
C7—N2—In1—N1	5.30 (19)	C6—C7—N2—In1	-3.7 (3)
C12—N2—In1—Cl1	-146.1 (2)	N2—C7—C8—C9	0.2 (4)
C7—N2—In1—Cl1	34.7 (4)	C6—C7—C8—C9	-177.0 (3)
C12—N2—In1—Cl3	-1.6 (2)	C7—C8—C9—C11	-0.2 (4)
C7—N2—In1—Cl3	179.24 (19)	C7—C8—C9—C10	178.6 (3)
C12—N2—In1—Cl2	94.5 (2)	C8—C9—C11—C12	0.3 (5)
C7—N2—In1—Cl2	-84.65 (19)	C10—C9—C11—C12	-178.5 (3)
In1—O1—S1—C13	-105.2 (2)	C9—C11—C12—N2	-0.3 (5)
In1—O1—S1—C14	151.6 (2)	C11—C12—N2—C7	0.3 (5)
C2-C1-N1-C6	-0.6(5)	C11—C12—N2—In1	-178.9 (2)

C2—C1—N1—In1	173.1 (3)
--------------	-----------

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	D—H···A
C1—H1···Cl1	0.93	2.77	3.427 (4)	128
C10—H10 <i>C</i> ···Cl2 ⁱ	0.96	2.80	3.700 (4)	156

Symmetry code: (i) -x+2, -y, -z+2.