

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Carboxyanilinium chloride monohydrate

Syed Azeem Rashid Ali Zaidi,^a M. Nawaz Tahir,^b* Javed Iqbal^a and Muhammad Ashraf Chaudhary^c

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, and ^cDepartment of Chemistry, F.C. College & University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 6 September 2008; accepted 12 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 16.1.

In the molecule of the title compound, $C_7H_8NO_2^+ \cdot Cl^- \cdot H_2O_2$, an intramolecular N-H···O hydrogen bond results in the formation of a non-planar six-membered ring adopting a flattened boat conformation. In the crystal structure, intermolecular O-H···O and N-H···Cl hydrogen bonds link the molecules. There is a C=O··· π contact between the carbonyl unit and the centroid of the benzene ring. There is a C= $O \cdots \pi$ contact $[C \cdots Cg = 3.5802 (18), C - O \cdots Cg = 89 (1)^{\circ}]$ between the carbonyl unit and the centroid of the benzene ring.

Related literature

For applications of anthranilic acid derivatives, see: Congiu et al. (2005); Nittoli et al. (2005). For a related structure, see: Bahadur et al. (2007); For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_7H_8NO_2^+ \cdot Cl^- \cdot H_2O$ $M_r = 191.61$ Monoclinic, C2/c a = 23.094 (4) Å b = 4.7833 (8) Å c = 16.381 (3) Å $\beta = 91.605 \ (9)^{\circ}$

V = 1808.8 (5) Å³ Z = 8Mo Ka radiation $\mu = 0.39 \text{ mm}^{-1}$ T = 296 (2) K $0.28 \times 0.10 \times 0.06 \text{ mm}$ organic compounds

9747 measured reflections

 $R_{\rm int} = 0.025$

2238 independent reflections

1749 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker Kappa APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.975, T_{\max} = 0.985
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.101$	independent and constrained
S = 1.05	refinement
2238 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
139 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01 - H1 \cdots O3^{i} \\ N1 - H1A \cdots O2 \\ N1 - H1B \cdots Cl1^{ii} \\ N1 - H1C \cdots Cl1^{iii} \\ 03 - H3A \cdots Cl1 \\ 03 - H3B \cdots O2^{iv} \end{array}$	0.82 (2) 0.91 (2) 0.88 (2) 0.958 (19) 0.76 (3) 0.78 (3)	1.73 (2) 1.91 (2) 2.28 (2) 2.181 (19) 2.42 (3) 2.04 (3)	2.539 (2) 2.6820 (19) 3.1464 (16) 3.1231 (16) 3.1452 (18) 2.777 (3)	171 (2) 142.1 (18) 166.6 (18) 167.5 (18) 160 (3) 159 (3)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, y, $-z + \frac{1}{2}$; (iii) x, -y + 1, $z + \frac{1}{2}$; (iv) $x, -y + 2, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2527).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2722-02723
- Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Congiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245-8252
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nittoli, T., Curran, K., Insaf, S., DiGrandi, M., Orlowski, M., Chopra, R., Agarwal, A., Howe, A. Y. M., Prashad, A., Floyd, M. B., Johnson, B., Sutherland, A., Wheless, K., Feld, B., O'Connell, J., Mansour, T. S. & Bloom, J. (2005). J. Med. Chem. 48, 7560-7581.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o1957 [doi:10.1107/S1600536808029267]

2-Carboxyanilinium chloride monohydrate

Syed Azeem Rashid Ali Zaidi, M. Nawaz Tahir, Javed Iqbal and Muhammad Ashraf Chaudhary

S1. Comment

Anthranilic acid is widely used for various purposes such as production of dyes, pigments and saccharin. Its derivatives also have importance in medicinal chemistry and are used as antiinflammatory and anticancer agents (Congiu *et al.*, 2005) and for inhibition of Hepatitis C NS5B polymerase (Nittoli *et al.*, 2005). The title compound has been prepared to see its bioactivity with hope that it will be a good antibactarial agent at the economical cost and to utilize for preparing further derivatives. Crystal structures of proton transfer compound of 2-aminobenzoic acid with nitric acid (Bahadur *et al.*, 2007) has been reported, where the intramolecular N-H…O hydrogen bond has also been observed.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a nonplanar six-membered ring B (N1/O2/C1/C2/C7/H1A) having total puckering amplitude, Q_T, of 0.127 (3) Å, and flattened boat conformation [φ = -21.25 (3)°, θ = 44.41 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular O-H···O and N-H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The C=O··· π contact (Table 1) between the carbonyl moiety and the centroid of the benzene ring may further stabilize the structure.

S2. Experimental

For the preparation of the title compound, 2-aminobenzoic acid (4.11 g, 3 mmol) and trichloroacetic acid (1.64 g, 1 mmol) were neutrilized with Na_2CO_3 separately in H_2O , and then mixed together. Na_2CO_3 (3.18 g) was added to the resulting mixture and refluxed for 4 h. The refluxed solution was cooled, and concenterated HCl was added to get PH = 1. The solution was kept in open air for 3 d to get the suitable crystals.

S3. Refinement

H atoms were located in difference syntheses and refined as $[O-H = 0.82 (2) \text{ Å} (\text{for OH}); O-H = 0.76 (3) \text{ and } 0.78 (3) \text{ Å} (\text{for H}_2O); N-H = 0.88 (2)-0.958 (19) \text{ Å}, (\text{ for NH}_3) \text{ and } C-H = 0.93 (2)-0.96 (2) \text{ Å} (\text{for CH})] \text{ and constrained to ride on their parent atoms with } U_{iso}(H) = xU_{eq}(C,N,O)$, where x = 1.5 for NH₃ H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

2-Carboxyanilinium chloride monohydrate

Crystal data

C₇H₈NO₂⁺·Cl⁻·H₂O $M_r = 191.61$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.094 (4) Å b = 4.7833 (8) Å c = 16.381 (3) Å $\beta = 91.605$ (9)° V = 1808.8 (5) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.5 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.975, T_{\max} = 0.985$ F(000) = 800 $D_x = 1.407 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2238 reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 296 KPrism, brown $0.28 \times 0.10 \times 0.06 \text{ mm}$

9747 measured reflections 2238 independent reflections 1749 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.3^\circ, \theta_{min} = 2.5^\circ$ $h = -30 \rightarrow 30$ $k = -6 \rightarrow 3$ $l = -21 \rightarrow 20$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2238 reflections	and constrained refinement
139 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 1.0872P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	<i>x</i>	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.05634 (2)	0.81018 (10)	0.08328 (3)	0.0425 (2)
O1	0.24332 (5)	0.7928 (3)	0.36801 (9)	0.0551 (5)
O2	0.17708 (5)	0.9236 (3)	0.45555 (8)	0.0493 (4)
O3	0.18909 (7)	0.6690 (4)	0.07558 (14)	0.0796 (7)
N1	0.07438 (6)	0.6617 (3)	0.45470 (9)	0.0340 (4)
C1	0.19199 (7)	0.7781 (3)	0.39900 (10)	0.0338 (5)
C2	0.15328 (6)	0.5699 (3)	0.35784 (9)	0.0304 (4)
C3	0.17259 (8)	0.4219 (4)	0.29012 (10)	0.0408 (5)
C4	0.13710 (9)	0.2318 (4)	0.25017 (11)	0.0462 (6)
C5	0.08157 (8)	0.1841 (4)	0.27706 (12)	0.0466 (6)
C6	0.06160 (7)	0.3269 (4)	0.34388 (11)	0.0398 (5)
C7	0.09727 (6)	0.5188 (3)	0.38354 (9)	0.0300 (4)
H1	0.2619 (10)	0.922 (5)	0.3885 (14)	0.0661*
H1A	0.0991 (9)	0.802 (4)	0.4684 (12)	0.0510*
H1B	0.0399 (10)	0.732 (4)	0.4423 (13)	0.0510*
H1C	0.0724 (9)	0.534 (4)	0.4996 (12)	0.0510*
Н3	0.2113 (9)	0.452 (4)	0.2717 (11)	0.0489*
H3A	0.1584 (14)	0.692 (7)	0.0892 (19)	0.0955*
H3B	0.1945 (14)	0.777 (6)	0.041 (2)	0.0955*
H4	0.1511 (9)	0.133 (5)	0.2061 (13)	0.0554*
Н5	0.0582 (9)	0.052 (4)	0.2493 (12)	0.0558*
H6	0.0245 (9)	0.298 (4)	0.3628 (12)	0.0477*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0314 (2)	0.0499 (3)	0.0463 (3)	-0.0004 (2)	0.0035 (2)	-0.0055 (2)
01	0.0320 (7)	0.0668 (9)	0.0673 (9)	-0.0189 (6)	0.0174 (6)	-0.0255 (7)
O2	0.0401 (7)	0.0554 (8)	0.0531 (7)	-0.0144 (6)	0.0133 (6)	-0.0206 (6)
O3	0.0408 (8)	0.0837 (13)	0.1153 (15)	0.0249 (8)	0.0207 (9)	0.0514 (11)
N1	0.0255 (7)	0.0362 (8)	0.0406 (8)	-0.0012 (6)	0.0081 (5)	-0.0030 (6)
C1	0.0283 (8)	0.0362 (8)	0.0372 (8)	-0.0030 (6)	0.0049 (6)	0.0006 (7)
C2	0.0279 (7)	0.0312 (8)	0.0323 (7)	-0.0017 (6)	0.0041 (6)	0.0009 (6)
C3	0.0357 (9)	0.0456 (10)	0.0416 (9)	-0.0040 (8)	0.0111 (7)	-0.0063 (8)
C4	0.0512 (11)	0.0487 (10)	0.0391 (9)	-0.0031 (8)	0.0077 (8)	-0.0135 (8)
C5	0.0445 (10)	0.0462 (10)	0.0486 (10)	-0.0088 (8)	-0.0048 (8)	-0.0109 (8)
C6	0.0292 (8)	0.0435 (10)	0.0466 (9)	-0.0053 (7)	0.0018 (7)	-0.0030 (8)
C7	0.0278 (7)	0.0307 (8)	0.0315 (7)	0.0005 (6)	0.0031 (6)	0.0014 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.304 (2)	С2—С3	1.399 (2)
1.216 (2)	C2—C7	1.393 (2)
0.82 (2)	C3—C4	1.377 (3)
0.78 (3)	C4—C5	1.387 (3)
0.76 (3)	C5—C6	1.380 (3)
1.463 (2)	C6—C7	1.383 (2)
0.88 (2)	С3—Н3	0.96 (2)
0.958 (19)	C4—H4	0.93 (2)
0.91 (2)	С5—Н5	0.94 (2)
1.487 (2)	С6—Н6	0.93 (2)
3.1452 (18)	N1…O2	2.6820 (19)
3.3227 (16)	C1···C3 ^{iv}	3.581 (2)
3.1464 (16)	C1····O3 ^{vi}	3.339 (2)
3.1231 (16)	C1····C4 ^{iv}	3.477 (3)
2.96 (2)	C3···C1 ^x	3.581 (2)
2.42 (3)	C3···O1 ^{viii}	3.338 (2)
3.13 (2)	C4···C1 ^x	3.477 (3)
2.28 (2)	C1…H1A	2.46 (2)
2.84 (2)	$H1 \cdots H3B^{vi}$	2.27 (4)
2.181 (19)	H1…H3A ^{vi}	2.27 (4)
3.338 (2)	H1···O3 ^{vi}	1.73 (2)
2.539 (2)	H1A…C1	2.46 (2)
2.777 (3)	H1A···O2	1.91 (2)
2.6820 (19)	H1A…Cl1 ^{vii}	2.84 (2)
2.777 (3)	H1B…Cl1 ⁱⁱ	2.28 (2)
2.539 (2)	H1B…H6	2.47 (3)
3.339 (2)	H1C…Cl1 ^{ix}	2.181 (19)
3.1452 (18)	H3…O1	2.372 (19)
2.86 (2)	H3…O1 ^{viii}	2.655 (19)
	$\begin{array}{c} 1.304 (2) \\ 1.216 (2) \\ 0.82 (2) \\ 0.78 (3) \\ 0.76 (3) \\ 1.463 (2) \\ 0.958 (19) \\ 0.958 (19) \\ 0.91 (2) \\ 1.487 (2) \\ \hline \\ 3.1452 (18) \\ 3.3227 (16) \\ 3.1464 (16) \\ 3.1231 (16) \\ 2.96 (2) \\ 2.42 (3) \\ 3.13 (2) \\ 2.28 (2) \\ 2.84 (2) \\ 2.181 (19) \\ 3.338 (2) \\ 2.539 (2) \\ 2.777 (3) \\ 2.6820 (19) \\ 2.777 (3) \\ 2.539 (2) \\ 3.339 (2) \\ 3.1452 (18) \\ 2.86 (2) \\ \hline \end{array}$	$1.304 (2)$ $C2-C3$ $1.216 (2)$ $C2-C7$ $0.82 (2)$ $C3-C4$ $0.78 (3)$ $C4-C5$ $0.76 (3)$ $C5-C6$ $1.463 (2)$ $C6-C7$ $0.88 (2)$ $C3-H3$ $0.958 (19)$ $C4-H4$ $0.91 (2)$ $C5-H5$ $1.487 (2)$ $C6-H6$ $3.1452 (18)$ $N1\cdots O2$ $3.3227 (16)$ $C1\cdots C3^{iv}$ $3.1452 (18)$ $N1\cdots O2$ $3.3227 (16)$ $C1\cdots C3^{iv}$ $3.1464 (16)$ $C1\cdots C3^{iv}$ $3.1231 (16)$ $C1\cdots C4^{iv}$ $2.96 (2)$ $C3\cdots C1^x$ $2.42 (3)$ $C3\cdots O1^{viii}$ $3.13 (2)$ $C4\cdots C1^x$ $2.28 (2)$ $C1\cdots H1A$ $2.84 (2)$ $H1\cdots H38^{vi}$ $2.181 (19)$ $H1\cdots O3^{vi}$ $2.539 (2)$ $H1A\cdots C11^{viii}$ $2.777 (3)$ $H1A\cdots C11^{viii}$ $2.777 (3)$ $H1B\cdots H6$ $3.339 (2)$ $H1C\cdots C11^{ix}$ $3.1452 (18)$ $H3\cdots O1^{viii}$

O1····H3 ^{vi}	2.655 (19)	H3A····O2 ⁱ	2.90 (3)
O1…H3	2.372 (19)	H3A…H1 ^{viii}	2.27 (4)
O2…H3A ^{vii}	2.90 (3)	H3A…Cl1	2.42 (3)
O2…H3B ^{vii}	2.04 (3)	H3B…H1 ^{viii}	2.27 (4)
O2…H1A	1.91 (2)	H3B····O2 ⁱ	2.04 (3)
O3…H1 ^{viii}	1.73 (2)	H4…O1 ^{viii}	2.86 (2)
N1…Cl1 ^{ix}	3.1231 (16)	H5…Cl1 ^x	2.96 (2)
N1…Cl1 ^{vii}	3.3227 (16)	H6…Cl1 ^{xi}	3.13 (2)
N1…Cl1 ⁱⁱ	3.1464 (16)	H6…H1B	2.47 (3)
C1—01—H1	110.7 (16)	C3—C4—C5	120.07 (17)
H3A—O3—H3B	107 (3)	C4—C5—C6	120.20 (17)
C7—N1—H1C	109.9 (12)	C5—C6—C7	119.54 (15)
H1A—N1—H1B	109.5 (18)	N1—C7—C2	121.21 (13)
H1B—N1—H1C	110.9 (19)	C2—C7—C6	121.35 (14)
C7—N1—H1A	107.7 (13)	N1—C7—C6	117.43 (13)
H1A—N1—H1C	109.0 (17)	С2—С3—Н3	119.5 (11)
C7—N1—H1B	109.8 (14)	С4—С3—Н3	119.7 (11)
O1—C1—O2	123.05 (15)	C5—C4—H4	120.6 (13)
O1—C1—C2	113.64 (14)	C3—C4—H4	119.3 (13)
O2—C1—C2	123.31 (15)	C4—C5—H5	118.7 (13)
C3—C2—C7	118.04 (14)	С6—С5—Н5	121.1 (13)
C1—C2—C7	122.14 (13)	С5—С6—Н6	121.5 (12)
C1—C2—C3	119.82 (14)	С7—С6—Н6	119.0 (12)
C2—C3—C4	120.80 (17)		
O1—C1—C2—C3	-2.8 (2)	C3—C2—C7—N1	178.91 (14)
O1—C1—C2—C7	178.32 (14)	C3—C2—C7—C6	0.3 (2)
O2—C1—C2—C3	176.32 (16)	C2—C3—C4—C5	-0.3 (3)
O2—C1—C2—C7	-2.5 (2)	C3—C4—C5—C6	0.1 (3)
C1—C2—C3—C4	-178.82 (16)	C4—C5—C6—C7	0.3 (3)
C7—C2—C3—C4	0.1 (2)	C5-C6-C7-N1	-179.16 (16)
C1—C2—C7—N1	-2.2 (2)	C5—C6—C7—C2	-0.5 (3)
C1—C2—C7—C6	179.17 (15)		

Symmetry codes: (i) *x*, -*y*+2, *z*-1/2; (ii) -*x*, *y*, -*z*+1/2; (iii) *x*, -*y*+1, *z*-1/2; (iv) *x*, *y*+1, *z*; (v) -*x*, *y*+1, -*z*+1/2; (vi) -*x*+1/2, *y*+1/2, -*z*+1/2; (vii) *x*, -*y*+2, *z*+1/2; (viii) -*x*+1/2, *y*-1/2, -*z*+1/2; (vii) *x*, -*y*+2, *z*+1/2; (viii) -*x*+1/2, *y*-1/2, -*z*+1/2; (viii) *x*, -*y*+2, *z*+1/2; (viii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1/2; (viii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1/2; (viii) -*x*+1/2;

	Hydrogen-	bond g	geometry	(Å,	9
--	-----------	--------	----------	-----	---

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.82 (2)	1.73 (2)	2.539 (2)	171 (2)
0.91 (2)	1.91 (2)	2.6820 (19)	142.1 (18)
0.88 (2)	2.28 (2)	3.1464 (16)	166.6 (18)
0.958 (19)	2.181 (19)	3.1231 (16)	167.5 (18)
0.76 (3)	2.42 (3)	3.1452 (18)	160 (3)
	<i>D</i> —H 0.82 (2) 0.91 (2) 0.88 (2) 0.958 (19) 0.76 (3)	D—H H···A 0.82 (2) 1.73 (2) 0.91 (2) 1.91 (2) 0.88 (2) 2.28 (2) 0.958 (19) 2.181 (19) 0.76 (3) 2.42 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

			supporting informat		
O3—H3 B ···O2 ⁱ	0.78 (3)	2.04 (3)	2.777 (3)	159 (3)	
C1—O2···C g^{iv}	1.22 (1)	3.40 (1)	3.5802 (18)	89 (1)	

Symmetry codes: (i) x, -y+2, z-1/2; (ii) -x, y, -z+1/2; (iv) x, y+1, z; (vi) -x+1/2, y+1/2, -z+1/2; (ix) x, -y+1, z+1/2.