Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,2-Bis(2-furylmethylene)hydrazine

Qi Ma, ${ }^{\text {a,b }}$ Li-Ping Lu ${ }^{\text {b }}$ and Miao-Li Zhu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
Correspondence e-mail: miaoli@sxu.edu.cn
Received 22 September 2008; accepted 24 September 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.105$; data-to-parameter ratio $=12.8$.

Crystals of the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, were obtained from a condensation reaction of hydrazine hydrate with furfural. In the crystal structure, the molecule is centrosymmetric and almost planar and the furan rings are parallel by symmetry.

Related literature

For background, see: Casellato \& Vigato (1977); For related structures, see: Fan et al. (2008); Shan et al. (2004); Shan, Tian et al. (2008); Shan, Wang et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=188.18$
Orthorhombic, Pbca
$a=6.877(2) \AA$
$b=8.996$ (3) \AA
$c=15.171$ (4) \AA
$V=938.6(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$\mu=0.10 \mathrm{~mm}$
$T=298(2) \mathrm{K}$
$0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.954, T_{\text {max }}=0.963$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 65$ parameters
$w R\left(F^{2}\right)=0.105 \quad$ H-atom parameters constrained
$S=1.05$
829 reflections

4129 measured reflections 829 independent reflections 677 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.081$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2006.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2802).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Casellato, U. \& Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.
Fan, Z., Shan, S., Wang, S.-H. \& Wang, W.-L. (2008). Acta Cryst. E64, o1341. Shan, S., Fan, Z., Hu, W.-X. \& Xu, D.-J. (2004). Acta Cryst. E60, o2473-o2475. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. \& Xu, Y.-L. (2008). Acta Cryst. E64, o1153.
Shan, S., Wang, W.-L., Xie, P.-J., Xu, Y.-L. \& Wang, S.-H. (2008). Acta Cryst. E64, 01386.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2026 [doi:10.1107/S1600536808030729]

1,2-Bis(2-furylmethylene)hydrazine

Qi Ma, Li-Ping Lu and Miao-Li Zhu

S1. Comment

Schiff bases have been studied for decades (Casellato \& Vigato 1977) and they are still one of the most prevalent mixeddonor ligands in coordination chemistry, with numerous applications including single-molecule magnetism, materials science and catalysis. Here, the synthsis and crystal structure of the title compound (I) are reported.
The molecule of (I) is centrosymmetric, with the midpoint of the $\mathrm{N}-\mathrm{N}$ bond located on the inversion center. The C5N 1 double bond distance of 1.272 (2) \AA is shorter than the $\mathrm{C}=\mathrm{N}$ bond distance found in related hydrazone structures, i.e. 1.295 (2) \AA in (E)-3-methoxyacetophenone 4-nitrophenylhydrazone (Fan et al., 2008), 1.298 (2) \AA in (E)-2-furylmethylketone 2,4-dinitrophenylhydrazone (Shan, Tian et al., 2008) and 1.293 (2) \AA in benzylideneacetone 2,4-dinitrophenylhydrazone (Shan et al., 2004). It is indistinguishable from the length of 1.273 (1) \AA in 2-methylbenzaldehyde 2-methylbenzylidenehydrazone (Shan, Wang et al., 2008).

S2. Experimental

Hydrazine hydrate (35% solution in water, $0.71 \mathrm{~g}, 5 \mathrm{mmol}$) and furfural ($0.96 \mathrm{~g}, 10 \mathrm{mmol}$) were mixed, at the same time adding 2 or 3 drops of formic acid, and stirred at room temperature in 30 ml of ethanol solution for 2 days, and then the filtrate was kept open to slowly evaporate for a few days, depositing yellow blocks of (I).

S3. Refinement

The H atoms attached were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

A view of the molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level (arbitrary spheres for the H atoms). The unlabelled atoms are generated by the symmetry operation (1-x, $2-y,-z)$.

1,2-Bis(2-furylmethylene)hydrazine

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=188.18$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=6.877$ (2) \AA
$b=8.996$ (3) \AA
$c=15.171$ (4) \AA
$V=938.6(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=392 \\
& D_{\mathrm{x}}=1.332 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5207 \text { reflections } \\
& \theta=2.6-25.3^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.50 \times 0.40 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.954, T_{\text {max }}=0.963$

> 4129 measured reflections
> 829 independent reflections
> 677 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.081$
> $\theta_{\max }=25.3^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-10 \rightarrow 10$
> $l=-18 \rightarrow 9$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.05$
829 reflections
65 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$-0.0467(2)$	$0.88870(18)$	$0.18436(11)$	$0.0736(5)$
H1	-0.0937	0.8074	0.2157	0.088^{*}
C2	$-0.1336(2)$	$1.01970(19)$	$0.18094(10)$	$0.0719(5)$
H2	-0.2492	1.0466	0.2084	0.086^{*}
C3	$-0.0168(2)$	$1.10963(17)$	$0.12769(10)$	$0.0642(5)$

H3	-0.0400	1.2085	0.1131	0.077^{*}
C4	$0.13456(19)$	$1.02755(14)$	$0.10149(8)$	$0.0529(4)$
C5	$0.2964(2)$	$1.06191(15)$	$0.04628(9)$	$0.0566(4)$
H5	0.3049	1.1570	0.0225	0.068^{*}
N1	$0.42950(18)$	$0.96866(13)$	$0.02805(8)$	$0.0613(4)$
O1	$0.12017(16)$	$0.88799(10)$	$0.13632(7)$	$0.0669(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0695(10)$	$0.0698(11)$	$0.0815(11)$	$-0.0135(8)$	$0.0114(9)$	$0.0137(8)$
C2	$0.0637(10)$	$0.0800(12)$	$0.0721(11)$	$0.0049(8)$	$0.0084(7)$	$0.0085(8)$
C3	$0.0722(11)$	$0.0589(10)$	$0.0616(9)$	$0.0093(7)$	$0.0038(7)$	$0.0082(7)$
C4	$0.0639(9)$	$0.0452(8)$	$0.0496(7)$	$-0.0049(6)$	$-0.0044(6)$	$0.0007(6)$
C5	$0.0690(10)$	$0.0485(8)$	$0.0522(8)$	$-0.0055(7)$	$0.0007(7)$	$0.0013(6)$
N1	$0.0649(8)$	$0.0541(8)$	$0.0649(8)$	$-0.0033(6)$	$0.0084(5)$	$0.0045(5)$
O1	$0.0698(8)$	$0.0479(7)$	$0.0830(8)$	$-0.0029(5)$	$0.0078(5)$	$0.0057(4)$

Geometric parameters ($A,{ }^{\circ}$)

C1-C2	1.322 (2)	C3-H3	0.9300
$\mathrm{C} 1-\mathrm{O} 1$	1.359 (2)	C4-O1	1.3657 (16)
C1-H1	0.9300	C4-C5	1.427 (2)
C2-C3	1.397 (2)	C5-N1	1.2721 (18)
C2-H2	0.9300	C5-H5	0.9300
C3-C4	1.3364 (19)	$\mathrm{N} 1-\mathrm{N} 1{ }^{\text {i }}$	1.408 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	111.39 (14)	C3-C4-O1	109.66 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	124.3	C3-C4-C5	131.47 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	124.3	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	118.87 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	106.18 (15)	N1-C5-C4	123.10 (13)
C1-C2-H2	126.9	N1-C5-H5	118.4
C3-C2-H2	126.9	C4-C5-H5	118.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	107.45 (14)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$	111.29 (15)
C4-C3-H3	126.3	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	105.32 (12)
C2-C3-H3	126.3		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.05 (19)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-0.4 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.23 (18)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	179.64 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	-0.32 (17)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	-0.14 (18)
C2-C3-C4-C5	179.42 (15)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1$	0.29 (16)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	179.91 (15)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1$	-179.49 (12)

[^0]
[^0]: Symmetry code: (i) $-x+1,-y+2,-z$.

