organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2SR,3RS)-Benzyl[4-chloro-1-(4-chlorophenyl)-1-methoxycarbonyl-2-butyl]ammonium chloride

Åsmund Kaupang, Marianne Bolsønes, Thywill Gamadeku, Tore Hansen, Martin Johanson Hennum and Carl Henrik Görbitz*

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Received 22 September 2008; accepted 24 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.159; data-to-parameter ratio = 19.5.

In the racemic hydrochloride salt of the title ester, $C_{19}H_{22}Cl_2NO_2^+ \cdot Cl^-$, the pentanoic acid chain shows a mixture of trans and gauche orientations to give an overall helical conformation. The dihedral angle between the two aromatic rings is 26.11 (10)°. The charged secondary amine function participates in two N-H···Cl hydrogen bonds.

Related literature

For a related structure, see: Froimowitz et al. (1998).

Experimental

Crystal data

$C_{19}H_{22}Cl_2NO_2^+ \cdot Cl^-$	$\gamma = 103.015 \ (3)^{\circ}$
$M_r = 402.73$	$V = 954.8 (4) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 9.263 (2) Å	Mo $K\alpha$ radiation
b = 10.432 (3) Å	$\mu = 0.49 \text{ mm}^{-1}$
c = 11.490 (3) Å	T = 296 (2) K
$\alpha = 115.954 \ (3)^{\circ}$	$0.60 \times 0.38 \times 0.1$
$\beta = 93.925 \ (3)^{\circ}$	

Data collection

Bruker APEX II CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.782, T_{\max} = 0.915$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	227 parameters
$wR(F^2) = 0.159$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
4422 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

0.18 mm

8767 measured reflections

 $R_{\rm int} = 0.024$

4422 independent reflections

3320 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H2···Cl3	0.90	2.28	3.0890 (18)	150
$N1 - H1 \cdots Cl3^i$	0.90	2.59	3.2447 (18)	131

Symmetry code: (i) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2801).

References

Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Froimowitz, M., Wu, K.-M., George, C., VanDerveer, D., Shi, Q. & Deutsch, H. M. (1998). Struct. Chem. 9, 295-303.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2038 [doi:10.1107/S1600536808030742]

(2*SR*,3*RS*)-Benzyl[4-chloro-1-(4-chlorophenyl)-1-methoxycarbonyl-2-butyl]ammonium chloride

Åsmund Kaupang, Marianne Bolsønes, Thywill Gamadeku, Tore Hansen, Martin Johanson Hennum and Carl Henrik Görbitz

S1. Comment

The title molecule, (I), is a β -amino acid ester resulting from a rhodium-catalyzed C—H insertion reaction between methyl-(4-chlorophenyl)diazo acetate and Boc-protected *N*-benzyl-3-chloropropanamine. Full details will be published elsewhere.

S2. Experimental

Colourless blocks of (I) were grown by diffusion of diethylether into 100 μ l of a solution containing about 5 mg of the title compound in methanol.

S3. Refinement

The H atoms were positioned with idealized geometry (N–H = 0.90 Å, C–H = 0.93-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level and H-atoms are shown as spheres of arbitrary size.

Figure 2

Molecular packing and unit cell of (I) viewed along the *a* axis. Hydrogen bonding is indicated by dashed lines, H-atoms bonded to C have been omitted for clarity.

(2SR,3RS)-Benzyl[4-chloro-1-(4-chlorophenyl)-1-methoxycarbonyl- 2-butyl]ammonium chloride

Crystal data

$C_{19}H_{22}Cl_2NO_2^+ \cdot Cl_2$
$M_r = 402.73$
Triclinic, P1
Hall symbol: -P 1
a = 9.263 (2) Å
<i>b</i> = 10.432 (3) Å
c = 11.490 (3) Å
$\alpha = 115.954 (3)^{\circ}$
$\beta = 93.925 (3)^{\circ}$
$\gamma = 103.015 (3)^{\circ}$
$V = 954.8 (4) \text{ Å}^3$

Data collection

Bruker APEXII CCD	$T_{\min} =$
diffractometer	8767
Radiation source: fine-focus sealed tube	4422
Graphite monochromator	3320
Detector resolution: 8.3 pixels mm ⁻¹	$R_{\rm int} =$
sets of exposures each taken over $0.5^{\circ} \omega$	$\theta_{\rm max} =$
rotation scans	h = -
Absorption correction: multi-scan	k = -
(SADABS; Sheldrick, 1996)	l = -1

Z = 2 F(000) = 420 $D_x = 1.401 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3509 reflections $\theta = 2.0-28.7^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.60 \times 0.38 \times 0.18 \text{ mm}$

 $T_{\min} = 0.782, T_{\max} = 0.915$ 8767 measured reflections 4422 independent reflections 3320 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.7^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 10$ $k = -13 \rightarrow 12$ $l = -15 \rightarrow 15$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.159$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.04	H-atom parameters constrained
4422 reflections	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2 + 0.1562P]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Crystal grew over 48 h.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Data were collected by measuring three sets of exposures with the detector set at $2\theta = 29^\circ$, crystal-to-detector distance 6.00 cm. Refinement of F^2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.64470 (8)	0.98821 (8)	0.38456 (7)	0.0691 (2)
C12	0.26825 (11)	-0.01534 (7)	-0.06864 (6)	0.0787 (3)
C13	0.17315 (6)	0.47020 (7)	-0.12520 (5)	0.05352 (19)
01	0.11480 (18)	0.6582 (2)	0.40412 (15)	0.0512 (4)
O2	0.28993 (18)	0.62358 (19)	0.52192 (14)	0.0473 (4)
N1	0.18786 (18)	0.67376 (17)	0.17013 (15)	0.0330 (3)
H1	0.1142	0.6505	0.2107	0.040*
H2	0.1838	0.5903	0.0966	0.040*
C1	0.2347 (2)	0.6371 (2)	0.41927 (17)	0.0346 (4)
C2	0.3435 (2)	0.6218 (2)	0.32432 (17)	0.0321 (4)
H21	0.4452	0.6583	0.3773	0.039*
C3	0.3372 (2)	0.7230 (2)	0.25943 (17)	0.0314 (4)
H31	0.3497	0.8237	0.3299	0.038*
C4	0.4634 (2)	0.7305 (2)	0.18192 (19)	0.0377 (4)
H41	0.4571	0.6302	0.1166	0.045*
H42	0.4464	0.7852	0.1349	0.045*
C5	0.6210(2)	0.8022 (3)	0.2633 (2)	0.0457 (5)
H51	0.6930	0.8014	0.2058	0.055*
H52	0.6418	0.7446	0.3064	0.055*
C6	0.3211 (2)	0.4594 (2)	0.22692 (18)	0.0338 (4)
C7	0.4464 (2)	0.4091 (3)	0.1945 (2)	0.0431 (5)
H71	0.5425	0.4744	0.2344	0.052*
C8	0.4308 (3)	0.2642 (3)	0.1046 (2)	0.0507 (6)
H81	0.5154	0.2315	0.0833	0.061*
С9	0.2888 (3)	0.1685 (2)	0.0466 (2)	0.0495 (6)
C10	0.1623 (3)	0.2137 (3)	0.0776 (2)	0.0494 (5)

H101	0.0668	0.1469	0.0380	0.059*
C11	0.1778 (2)	0.3591 (2)	0.1681 (2)	0.0423 (5)
H111	0.0925	0.3903	0.1899	0.051*
C12	0.1968 (3)	0.6398 (3)	0.6215 (2)	0.0590 (7)
H121	0.2542	0.6480	0.6984	0.088*
H122	0.1100	0.5545	0.5872	0.088*
H123	0.1646	0.7278	0.6445	0.088*
C13	0.1553 (3)	0.7857 (2)	0.1302 (2)	0.0416 (5)
H131	0.2240	0.7983	0.0735	0.050*
H132	0.0535	0.7461	0.0790	0.050*
C14	0.1697 (2)	0.9353 (2)	0.2434 (2)	0.0387 (4)
C15	0.0533 (3)	0.9580 (3)	0.3120 (3)	0.0589 (6)
H151	-0.0319	0.8791	0.2907	0.071*
C16	0.0627 (4)	1.0968 (3)	0.4118 (3)	0.0726 (8)
H161	-0.0156	1.1104	0.4583	0.087*
C17	0.1861 (4)	1.2151 (3)	0.4434 (3)	0.0646 (7)
H171	0.1906	1.3089	0.5097	0.077*
C18	0.3036 (3)	1.1941 (3)	0.3761 (2)	0.0562 (6)
H181	0.3883	1.2736	0.3974	0.067*
C19	0.2947 (3)	1.0547 (3)	0.2771 (2)	0.0456 (5)
H191	0.3742	1.0408	0.2322	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0507 (4)	0.0516 (4)	0.0684 (4)	-0.0046 (3)	0.0023 (3)	0.0063 (3)
C12	0.1402 (8)	0.0425 (4)	0.0514 (4)	0.0395 (4)	0.0239 (4)	0.0128 (3)
C13	0.0418 (3)	0.0546 (4)	0.0430 (3)	0.0064 (2)	0.0086 (2)	0.0077 (2)
01	0.0410 (9)	0.0740 (12)	0.0479 (8)	0.0263 (8)	0.0165 (7)	0.0306 (8)
O2	0.0516 (9)	0.0586 (10)	0.0389 (7)	0.0191 (8)	0.0122 (6)	0.0269 (7)
N1	0.0316 (8)	0.0309 (8)	0.0339 (7)	0.0081 (6)	0.0027 (6)	0.0138 (6)
C1	0.0379 (10)	0.0281 (9)	0.0313 (9)	0.0053 (8)	0.0045 (7)	0.0103 (7)
C2	0.0278 (9)	0.0334 (10)	0.0332 (8)	0.0074 (7)	0.0039 (7)	0.0149 (7)
C3	0.0289 (9)	0.0284 (9)	0.0306 (8)	0.0048 (7)	0.0015 (7)	0.0106 (7)
C4	0.0349 (10)	0.0377 (11)	0.0375 (9)	0.0058 (8)	0.0077 (8)	0.0170 (8)
C5	0.0351 (11)	0.0457 (12)	0.0527 (12)	0.0067 (9)	0.0097 (9)	0.0220 (10)
C6	0.0390 (10)	0.0330 (10)	0.0340 (9)	0.0136 (8)	0.0097 (7)	0.0176 (8)
C7	0.0411 (11)	0.0451 (12)	0.0520 (11)	0.0188 (9)	0.0169 (9)	0.0261 (10)
C8	0.0627 (15)	0.0514 (14)	0.0564 (13)	0.0329 (12)	0.0298 (11)	0.0307 (11)
C9	0.0855 (18)	0.0354 (11)	0.0353 (10)	0.0277 (12)	0.0167 (11)	0.0175 (9)
C10	0.0565 (14)	0.0359 (11)	0.0491 (12)	0.0099 (10)	-0.0034 (10)	0.0175 (10)
C11	0.0390 (11)	0.0360 (11)	0.0491 (11)	0.0110 (9)	0.0030 (9)	0.0180 (9)
C12	0.0731 (17)	0.0678 (17)	0.0396 (11)	0.0207 (14)	0.0212 (11)	0.0263 (12)
C13	0.0464 (12)	0.0381 (11)	0.0405 (10)	0.0126 (9)	-0.0013 (8)	0.0194 (9)
C14	0.0373 (11)	0.0360 (11)	0.0447 (10)	0.0133 (8)	0.0010 (8)	0.0201 (9)
C15	0.0377 (12)	0.0492 (14)	0.0818 (17)	0.0139 (10)	0.0119 (11)	0.0227 (13)
C16	0.0671 (19)	0.0614 (18)	0.087 (2)	0.0355 (15)	0.0280 (16)	0.0221 (15)
C17	0.083 (2)	0.0421 (14)	0.0609 (15)	0.0286 (14)	0.0017 (14)	0.0136 (12)

supporting information

C18	0.0662 (16)	0.0382 (12)	0.0588 (14)	0.0058 (11)	-0.0061 (12)	0.0246 (11)
C19	0.0476 (12)	0.0427 (12)	0.0502 (11)	0.0100 (9)	0.0065 (9)	0.0267 (10)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
Cl1—C5	1.776 (2)	C8—C9	1.370 (4)
Cl2—C9	1.745 (2)	C8—H81	0.9300
O1—C1	1.196 (3)	C9—C10	1.372 (3)
O2—C1	1.330 (2)	C10-C11	1.379 (3)
O2—C12	1.454 (3)	C10—H101	0.9300
N1—C3	1.502 (2)	C11—H111	0.9300
N1—C13	1.508 (3)	C12—H121	0.9600
N1—H1	0.9000	C12—H122	0.9600
N1—H2	0.9000	C12—H123	0.9600
C1—C2	1.517 (3)	C13—C14	1.501 (3)
C2—C6	1.522 (3)	C13—H131	0.9700
C2—C3	1.544 (3)	С13—Н132	0.9700
C2—H21	0.9800	C14—C15	1.381 (3)
C3—C4	1.526 (3)	C14—C19	1.381 (3)
С3—Н31	0.9800	C15—C16	1.376 (4)
C4—C5	1.508 (3)	C15—H151	0.9300
C4—H41	0.9700	C16—C17	1.370 (4)
C4—H42	0.9700	C16—H161	0.9300
C5—H51	0.9700	C17—C18	1.380 (4)
С5—Н52	0.9700	C17—H171	0.9300
C6—C7	1.387 (3)	C18—C19	1.379 (3)
C6—C11	1.395 (3)	C18—H181	0.9300
C7—C8	1.374 (3)	C19—H191	0.9300
C7—H71	0.9300		
C1—O2—C12	116.08 (18)	С9—С8—Н81	120.4
C3—N1—C13	115.50 (15)	С7—С8—Н81	120.4
C3—N1—H1	108.4	C8—C9—C10	121.5 (2)
C13—N1—H1	108.4	C8—C9—Cl2	119.32 (19)
C3—N1—H2	108.4	C10—C9—Cl2	119.2 (2)
C13—N1—H2	108.4	C9—C10—C11	119.5 (2)
H1—N1—H2	107.5	C9—C10—H101	120.3
O1—C1—O2	124.21 (18)	C11-C10-H101	120.3
O1—C1—C2	124.68 (17)	C10-C11-C6	120.2 (2)
O2—C1—C2	111.11 (17)	C10-C11-H111	119.9
C1—C2—C6	111.18 (15)	C6-C11-H111	119.9
C1—C2—C3	111.11 (15)	O2—C12—H121	109.5
C6—C2—C3	114.25 (14)	O2—C12—H122	109.5
C1—C2—H21	106.6	H121—C12—H122	109.5
C6—C2—H21	106.6	O2—C12—H123	109.5
C3—C2—H21	106.6	H121—C12—H123	109.5
N1—C3—C4	109.14 (15)	H122—C12—H123	109.5
N1—C3—C2	111.71 (14)	C14—C13—N1	114.43 (16)

C_{1} C_{2} C_{2}	112 24 (1()	C14 C12 U121	100 7
C4—C3—C2	112.34 (10)		108.7
NI-C3-H31	107.8	NI	108.7
C4—C3—H31	107.8	C14—C13—H132	108.7
C2—C3—H31	107.8	N1—C13—H132	108.7
C5—C4—C3	115.28 (16)	H131—C13—H132	107.6
C5—C4—H41	108.5	C15—C14—C19	118.5 (2)
C3—C4—H41	108.5	C15—C14—C13	120.1 (2)
C5—C4—H42	108.5	C19—C14—C13	121.3 (2)
C3—C4—H42	108.5	C16—C15—C14	120.4 (2)
H41—C4—H42	107.5	C16—C15—H151	119.8
C4—C5—Cl1	111.82 (16)	C14—C15—H151	119.8
C4—C5—H51	109.3	C17—C16—C15	120.8 (3)
Cl1—C5—H51	109.3	C17—C16—H161	119.6
C4—C5—H52	109.3	C15—C16—H161	119.6
Cl1—C5—H52	109.3	C16—C17—C18	119.6 (2)
H51—C5—H52	107.9	С16—С17—Н171	120.2
C7—C6—C11	118.70 (19)	C18—C17—H171	120.2
C7—C6—C2	119.31 (18)	C19—C18—C17	119.6 (2)
$C_{11} - C_{6} - C_{2}$	121.99 (17)	C19—C18—H181	120.2
C8-C7-C6	121.0(2)	C17 - C18 - H181	120.2
C8-C7-H71	119 5	C18 - C19 - C14	120.2 121.2(2)
C6-C7-H71	119.5	C18 - C19 - H191	119.4
$C_{0} - C_{8} - C_{7}$	119.5	C_{14} C_{19} H_{191}	119.4
0,00,00	119.1 (2)		117.4
C1—C2—C3—C4	170.19 (15)	C3—C2—C6—C11	-84.9 (2)
C2—C3—C4—C5	-65.1 (2)	C11—C6—C7—C8	1.2 (3)
C3—C4—C5—Cl1	-59.2 (2)	C2—C6—C7—C8	-178.37 (18)
C3—C2—C1—O2	-145.64 (16)	C6—C7—C8—C9	-0.2 (3)
C2-C1-O2-C12	178.60 (18)	C7—C8—C9—C10	-0.8(3)
C1—C2—C6—C7	-138.62 (18)	C7—C8—C9—Cl2	179.55 (17)
C2-C3-N1-C13	164.81 (16)	C8—C9—C10—C11	0.7 (3)
C3—N1—C13—C14	-53.8 (2)	Cl2—C9—C10—C11	-179.63 (16)
N1—C13—C14—C15	-80.7 (3)	C9—C10—C11—C6	0.3 (3)
C12—O2—C1—O1	-1.5 (3)	C7—C6—C11—C10	-1.3 (3)
Q1—C1—C2—C6	-93.9(2)	C2-C6-C11-C10	178.28 (18)
O2—C1—C2—C6	85.91 (19)	N1—C13—C14—C19	102.7 (2)
Q1—C1—C2—C3	34.5 (3)	C19—C14—C15—C16	-0.1(4)
C13 - N1 - C3 - C4	-70.3(2)	C_{13} C_{14} C_{15} C_{16}	-176.8(2)
C1 - C2 - C3 - N1	-66.78(18)	C14-C15-C16-C17	11(5)
C6-C2-C3-N1	60.0 (2)	C_{15} C_{16} C_{17} C_{18}	-14(5)
$C_{6} - C_{2} - C_{3} - C_{4}$	-630(2)	C_{16} C_{17} C_{18} C_{19}	07(4)
$N_1 - C_3 - C_4 - C_5$	$170\ 40\ (17)$	C17 - C18 - C19 - C14	0.7(1)
C_{3} C_{2} C_{4} C_{5} C_{5}	94 6 (2)	C15-C14-C19-C18	-0.6(3)
$C_1 = C_2 = C_6 = C_{11}^{11}$	41.8(2)	C_{13} C_{14} C_{19} C_{18}	176 10 (10)
01 - 02 - 00 - 011	TIO (2)	013-014-013-010	1/0.10(17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H2…Cl3	0.90	2.28	3.0890 (18)	150
N1—H1····Cl3 ⁱ	0.90	2.59	3.2447 (18)	131

Symmetry code: (i) -x, -y+1, -z.