Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-rac-[1-Oxo-2-phenethyl-3-(2thienyl)-1,2,3,4-tetrahydroisoquinolin-4yl]methyl 4-methylbenzenesulfonate

Mehmet Akkurt,^a* Sema Öztürk Yıldırım,^a Milen G. Bogdanov,^b Meglena I. Kandinska^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bFaculty of Chemistry, University of Sofia, 1, James Bourchier blvd., 1164 Sofia, Bulgaria, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 9 September 2008; accepted 12 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.091; wR factor = 0.307; data-to-parameter ratio = 16.5.

The title compound, $C_{29}H_{27}NO_4S_2$, was synthesized by reaction of *trans-rac*-4-(hydroxymethyl)-2-phenethyl-3-(thiophen-2-yl)-3,4-dihydroisoquinolin-1(2*H*)-one and 4-methylbenzene-1-sulfonyl chloride in the presence of Et₃N in CH₂Cl₂. The relative orientations of the benzene ring (*A*) of the 3,4-dihydroisoquinolinone ring system, the thiophene ring (*B*), the benzene ring (*C*) of the methylbenzene group and the phenyl ring (*D*) result in the following dihedral angles: A/B =80.91 (16), A/C = 22.79 (18), A/D = 9.9 (2), B/C = 80.73 (19), B/D = 88.9 (2) and C/D = 29.9 (2)°. The crystal structure is stabilized by weak intermolecular C–H···O hydrogen bonds and C–H··· π interactions.

Related literature

For chemical background, see: Kandinska *et al.* (2006); Rothweiler *et al.* (2008). For ring puckering parameters, see: Cremer & Pople (1975).

 $\gamma = 78.330 \ (4)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.24 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.026$

Z = 2

V = 1289.24 (10) Å³

 $0.58 \times 0.52 \times 0.48 \; \text{mm}$

24485 measured reflections

5417 independent reflections 4537 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $C_{29}H_{27}NO_4S_2$ $M_r = 517.66$ Triclinic, $P\overline{1}$ a = 7.2529 (3) Å b = 8.6727 (4) Å c = 20.9899 (10) Å $\alpha = 86.021$ (4)° $\beta = 87.396$ (4)°

Data collection

```
STOE IPDS 2 diffractometer
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
T_{min} = 0.872, T_{max} = 0.892
```

Refinement

ł

5

$R[F^2 > 2\sigma(F^2)] = 0.090$	328 parameters
$vR(F^2) = 0.306$	H-atom parameters constrained
S = 1.36	$\Delta \rho_{\rm max} = 2.04 \text{ e } \text{\AA}^{-3}$
417 reflections	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C9-H9\cdots O4^{i} \\ C12-H12\cdots Cg1^{ii} \end{array}$	0.98	2.34	3.285 (3)	161
	0.93	2.65	3.567 (4)	168

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z. Cg1 is the centroid of the thiophene ring (S2/C18–C21).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe

organic compounds

IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2793).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403–414.
- Rothweiler, U., Czarna, A., Krajewski, M., Ciombor, J., Kalinski, C., Khazak, V., Ross, G., Skobeleva, N., Weber, L. & Holak, T. A. (2008). *Chem. Med. Chem.* 3, 1118–1128.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2008). E64, o1955-o1956 [doi:10.1107/S1600536808029309]

trans-rac-[1-Oxo-2-phenethyl-3-(2-thienyl)-1,2,3,4-tetrahydroisoquinolin-4-yl]methyl 4-methylbenzenesulfonate

Mehmet Akkurt, Sema Öztürk Yıldırım, Milen G. Bogdanov, Meglena I. Kandinska and Orhan Büyükgüngör

S1. Comment

The title compound, (I), was synthesized as part of a research project (Kandinska *et al.*, 2006) seeking precursors for the production of new tetrahydroquinolone derivatives with biological activity (Rothweiler *et al.*, 2008).

In the molecule of (I) (Fig.1), the benzene ring A (C10—C15) of 3,4-dihydroisoquinolinone ring system is essentially planar, with an r.m.s. deviation of 0.005 (3) Å for C11 and its other six-membered part is not planar [its Puckering parameters (Cremer & Pople, 1975) are $Q_T = 0.444$ (3) Å, $\theta = 118.4$ (4) ° and $\varphi = 93.4$ (4) °]. The thiophene ring B (S2—C18—C21) is almost planar, with an r.m.s. deviation for fitted atoms of 0.004 Å. The rings C (C1—C6) and D (C24—C29) are almost planar, with an r.m.s. deviation for fitted atoms of 0.012 Å and 0.021 Å, respectively. The dihedral angles between the planes of these rings are A/B = 80.91 (16), A/C = 22.79 (18), A/D = 9.9 (2), B/C = 80.73 (19), B/D = 88.9 (2) and C/D = 29.9 (2)°. An interesting feature of the crystal structure is the long C18—C19 bond of 1.594 (3) Å.

The crystal structure of (I) is stabilized by weak intra- and intermolecular C—H···O hydrogen bonds and C—H·· π interactions (Table 1 and Fig. 2).

S2. Experimental

Compound(I) was synthesized by reaction between *trans-rac*-4-(hydroxymethyl)-2-phenethyl-3-(thiophen-2-yl)-3,4-di-hydroisoquinolin-1(2*H*)-one (5.91 g, 0.0163 mol) and 4-methylbenzene-1-sulfonyl chloride (6.22 g, 0.033 mol) in the presence of Et₃N (6.8 ml, 0.049 mol) in CH₂Cl₂. After working up the reaction mixture, compound (I) crystallized as colourless prisms from hexane–ethyl acetate (9:1 v/v) (yield 7.5 g, 89%; m.p. 385–386 K). Elemental analysis, calculated for C₂₉H₂₇NO₄S₂: C 67.29, H 5.26°; found: C 66.90, H 5.45°. IR (KBr) 3000 cm⁻¹ (C—H), 1647 cm-1 (C=O), 1603 cm-1 (ArH), 1467 cm⁻¹ (ArH), 1358 cm⁻¹ (S=O), 1172 cm⁻¹ (S=O). ¹H NMR (250 MHz, CDCl₃) δ (p.p.m.) = 2.32 (s, 3H, *Ph*—CH₃), 2.69 (t, 2H, J = 8.3 Hz, *Ph*—CH₂), 3.05–3.17 (m, 1H, *N*—CH₂^a), 3.45–3.54 (ddd, 1H, J = 1.3, 5.1 and 10 Hz, *-OCH₂* -*C*H), 3.69 (t, 1H, J = 10.3 Hz, *-SO₃*—CH₂^a), 4.04–4.23 (m, 2H, *-SO₃*—CH₂^b & *N*—CH₂^b), 5.10 (d, 1H, J = 0.8 Hz, *Th*—CH), 6.81 (dd, 1H, J = 3.5 and 4.9 Hz, *Th*-H), 6.76–6.81 (m, 1H, *Ph*-H), 7.06 (dd, 1H, J = 1.4 and 4.9 Hz, *Th*-H), 7.10–7.16 (m, 1H, *Ph*-H), 7.17–7.23 (m, 3H, *H*-Ph), 7.24–7.28 (m, 2H, *Th*-H, *Ph*-H), 7.28–7.33 (m, 2H, *Ph*-H), 7.40–7.48 (m, 2H, *Ph*-H), 7.78 (d, 2H, J = 8.3, *Ph*-H), 8.08–8.15 (m, 1H, *Ph*-H). ¹³C NMR (63 MHz, CDCl₃) δ = 162.8, 145.4, 142.7, 138.4,133.4, 132.6, 132.4, 130.1, 129.0, 128.8, 128.7, 128.5, 128.4, 127.8, 126.5,126.4, 125.6, 125.1, 70.0, 56.8, 48.5, 45.8, 34.1, 21.5.

S3. Refinement

The H atoms were positioned geometrically, with C—H = 0.93-0.97 Å, and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The maximum difference peak and deepest difference hole are situated 0.13 Å from C19 and 0.36 Å

from S2, respectively.

Figure 1

The molecular structure of (I), with 20% probability displacement ellipsoids for the non-hydrogen atoms.

Figure 2

View of the packing and C—H···O4(x + 1, y, z) hydrogen bonding interactions of (I).

trans-rac-[1-Oxo-2-phenethyl-3-(2-thienyl)-1,2,3,4-tetrahydroisoquinolin-4-yl]methyl 4-methylbenzenesulfonate

Crystal data	
$C_{29}H_{27}NO_4S_2$	$\gamma = 78.330 \ (4)^{\circ}$
$M_r = 517.66$	$V = 1289.24 (10) \text{ Å}^3$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 544
a = 7.2529 (3) Å	$D_{\rm x} = 1.334 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.6727 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 20.9899 (10) Å	Cell parameters from 39940 reflections
$\alpha = 86.021 \ (4)^{\circ}$	$\theta = 2.0 - 27.2^{\circ}$
$\beta = 87.396 \ (4)^{\circ}$	$\mu = 0.24 \text{ mm}^{-1}$

T = 293 KPrism, colourless

Data collection

Duiu concenton	
STOE IPDS 2 diffractometer	$T_{\min} = 0.872, T_{\max} = 0.892$ 24485 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4	5417 independent reflections
mm long-fine focus	4537 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.026$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 26.8^\circ, \ \theta_{\rm min} = 2.0^\circ$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: integration	$k = -10 \rightarrow 10$
(X-RED32; Stoe & Cie, 2002)	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.091$	Hydrogen site location: inferred from
$wR(F^2) = 0.307$	neighbouring sites
S = 1.36	H-atom parameters constrained
5417 reflections	$w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$
328 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 2.04$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -1.13 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.58 \times 0.52 \times 0.48 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.03368 (13)	0.63784 (11)	0.12882 (4)	0.0578 (3)	
S2	-0.29088 (17)	0.44287 (14)	0.45285 (5)	0.0773 (4)	
01	-0.0694 (5)	0.7915 (3)	0.11138 (12)	0.0735 (10)	
O2	0.2311 (4)	0.6020 (4)	0.11655 (14)	0.0790 (10)	
03	0.0077 (4)	0.6048 (3)	0.20349 (10)	0.0617 (8)	
O4	-0.6871 (3)	0.6854 (3)	0.33989 (14)	0.0648 (9)	
N1	-0.3988 (3)	0.5354 (3)	0.31787 (12)	0.0412 (7)	
C1	-0.0691 (5)	0.4960 (4)	0.09658 (15)	0.0562 (10)	
C2	0.0407 (6)	0.3512 (5)	0.0825 (2)	0.0755 (16)	
C3	-0.0429 (8)	0.2421 (6)	0.0565 (3)	0.0875 (17)	
C4	-0.2337 (7)	0.2725 (5)	0.04587 (19)	0.0735 (13)	
C5	-0.3386 (6)	0.4142 (6)	0.0618 (2)	0.0726 (14)	
C6	-0.2604 (5)	0.5268 (5)	0.08621 (18)	0.0635 (11)	
C7	-0.3220 (11)	0.1501 (8)	0.0164 (3)	0.103 (2)	

C8	-0.1329 (4)	0.7120 (3)	0.23876 (13)	0.0446 (8)
C9	-0.1186 (3)	0.6570 (3)	0.30901 (12)	0.0351 (7)
C10	-0.2305 (3)	0.7881 (3)	0.34681 (12)	0.0359 (7)
C11	-0.1458 (4)	0.9049 (3)	0.36804 (15)	0.0451 (8)
C12	-0.2536 (6)	1.0252 (4)	0.40202 (17)	0.0569 (10)
C13	-0.4427 (5)	1.0301 (4)	0.41386 (17)	0.0585 (10)
C14	-0.5271 (4)	0.9165 (4)	0.39273 (17)	0.0532 (9)
C15	-0.4213 (4)	0.7938 (3)	0.35887 (13)	0.0397 (7)
C16	-0.5138(4)	0.6687 (4)	0.33822 (14)	0.0430 (8)
C17	-0.1943(3)	0.5055 (3)	0.32432 (12)	0.0360 (7)
C18	-0.1405(3)	0.4301 (3)	0.38941 (13)	0.0376 (7)
C19	0.0641(3)	0.3302(3)	0 40474 (9)	0.0283(6)
C20	0.0312(6)	0.2882(5)	0.47633(19)	0.0203(0)
C21	-0.1398(6)	0.2002(3) 0.3405(4)	0.50120 (17)	0.0635(11) 0.0648(13)
C22	-0.4795(4)	0.3999(4)	0.30120(17) 0.30376(15)	0.0495(9)
C22	-0.4857(6)	0.3999(4) 0.3814(5)	0.30370(13) 0.23322(17)	0.0495(9)
C24	-0.5652(5)	0.3814(3) 0.2386(4)	0.23322(17) 0.21043(15)	0.0019(11) 0.0513(0)
C24	-0.4571(6)	0.2380(4) 0.1171(5)	0.21943(13) 0.1868(2)	0.0513(9)
C25	-0.5350(8)	-0.0002(5)	0.1808(2) 0.1722(2)	0.0083(12)
C20	-0.3330(8)	-0.0092(3)	0.1725(3) 0.1026(2)	0.0870(18)
C27	-0.7135(8)	-0.0202(3)	0.1920(3)	0.090(2)
C28	-0.8213(7)	0.1004(7)	0.2275(3)	0.092(2)
029	-0.7470(0)	0.2295 (5)	0.2383 (2)	0.0088 (14)
H2	0.10880	0.32830	0.09050	0.0910*
H3	0.03060	0.14590	0.04590	0.1050*
H5	-0.46//0	0.43490	0.05570	0.08/0*
H6	-0.33490	0.62340	0.09580	0.0760*
H/A	-0.35930	0.18720	-0.02620	0.1540*
H/B	-0.43050	0.13350	0.04180	0.1540*
H7C	-0.23190	0.05260	0.01500	0.1540*
H8A	-0.25770	0.71120	0.22420	0.0540*
H8B	-0.11040	0.81860	0.23240	0.0540*
H9	0.01370	0.63840	0.32080	0.0420*
H11	-0.01820	0.90240	0.35960	0.0540*
H12	-0.19770	1.10280	0.41680	0.0680*
H13	-0.51390	1.11130	0.43640	0.0700*
H14	-0.65510	0.92090	0.40090	0.0640*
H17	-0.13800	0.43030	0.29270	0.0430*
H19	0.17110	0.30490	0.37840	0.0340*
H20	0.12680	0.22890	0.50100	0.0760*
H21	-0.17070	0.31930	0.54400	0.0780*
H22A	-0.60630	0.41290	0.32220	0.0590*
H22B	-0.40510	0.30460	0.32370	0.0590*
H23A	-0.35940	0.37080	0.21450	0.0740*
H23B	-0.56290	0.47550	0.21340	0.0740*
H25	-0.33280	0.11990	0.17470	0.0820*
H26	-0.46430	-0.08790	0.14830	0.1040*
H27	-0.76280	-0.10670	0.18340	0.1070*
H28	-0.94180	0.09300	0.24300	0.1100*

supporting information

H29	-0.82200	0 0	0.31230	0.25920	0.0830*	
Atomic d	isplacement para	ameters $(Å^2)$				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0696 (6)	0.0664 (6)	0.0362 (4)	-0.0129 (4)	0.0092 (3)	-0.0030 (3)
S2	0.0886 (8)	0.0798 (7)	0.0602 (6)	-0.0132 (5)	0.0112 (5)	-0.0016 (5)
01	0.109 (2)	0.0652 (16)	0.0445 (13)	-0.0169 (14)	0.0046 (13)	0.0039 (11)
O2	0.0700 (16)	0.110 (2)	0.0585 (16)	-0.0238 (15)	0.0145 (13)	-0.0087 (15)
O3	0.0799 (16)	0.0613 (13)	0.0357 (11)	0.0033 (11)	0.0104 (10)	-0.0042 (9)
04	0.0301 (10)	0.0819 (17)	0.0867 (18)	-0.0192 (10)	0.0030 (10)	-0.0149 (14)
N1	0.0336 (10)	0.0471 (12)	0.0478 (13)	-0.0179 (9)	-0.0014 (9)	-0.0082 (10)
C1	0.0664 (19)	0.0632 (18)	0.0348 (13)	-0.0045 (15)	0.0080 (13)	-0.0060 (12)
C2	0.070 (2)	0.077 (3)	0.074 (3)	0.0044 (19)	-0.0009 (19)	-0.023 (2)
C3	0.094 (3)	0.076 (3)	0.086 (3)	0.007 (2)	-0.009 (2)	-0.027 (2)
C4	0.100 (3)	0.078 (2)	0.0468 (18)	-0.028 (2)	0.0008 (18)	-0.0057 (17)
C5	0.061 (2)	0.098 (3)	0.057 (2)	-0.0111 (19)	-0.0052 (16)	-0.0051 (19)
C6	0.065 (2)	0.067 (2)	0.0523 (18)	0.0027 (16)	-0.0040 (15)	-0.0067 (15)
C7	0.141 (5)	0.107 (4)	0.074 (3)	-0.051 (4)	-0.013 (3)	-0.017 (3)
C8	0.0441 (13)	0.0495 (14)	0.0388 (14)	-0.0091 (11)	0.0072 (11)	0.0015 (11)
C9	0.0308 (10)	0.0401 (12)	0.0361 (12)	-0.0118 (9)	0.0023 (9)	-0.0035 (9)
C10	0.0378 (12)	0.0361 (12)	0.0359 (12)	-0.0130 (9)	-0.0006 (9)	-0.0004 (9)
C11	0.0488 (14)	0.0408 (13)	0.0491 (15)	-0.0170 (11)	-0.0061 (12)	-0.0009 (11)
C12	0.082 (2)	0.0363 (13)	0.0566 (18)	-0.0194 (14)	-0.0076 (16)	-0.0060 (12)
C13	0.077 (2)	0.0389 (14)	0.0564 (18)	-0.0045 (14)	0.0073 (16)	-0.0088 (13)
C14	0.0483 (15)	0.0509 (16)	0.0569 (18)	-0.0030 (12)	0.0096 (13)	-0.0064 (13)
C15	0.0369 (12)	0.0394 (13)	0.0427 (13)	-0.0078 (10)	0.0009 (10)	-0.0020 (10)
C16	0.0323 (12)	0.0529 (15)	0.0464 (14)	-0.0140 (10)	-0.0004 (10)	-0.0055 (12)
C17	0.0341 (11)	0.0405 (12)	0.0360 (12)	-0.0132 (9)	0.0024 (9)	-0.0066 (9)
C18	0.0398 (12)	0.0363 (12)	0.0384 (13)	-0.0117 (9)	0.0022 (10)	-0.0041 (9)
C19	0.0316 (10)	0.0348 (11)	0.0186 (9)	-0.0109 (8)	-0.0072 (7)	0.0149 (8)
C20	0.073 (2)	0.0623 (19)	0.0561 (19)	-0.0200 (16)	-0.0158 (16)	0.0135 (15)
C21	0.102 (3)	0.0588 (19)	0.0415 (16)	-0.0379 (19)	0.0130 (17)	-0.0047 (14)
C22	0.0547 (16)	0.0554 (16)	0.0473 (15)	-0.0309 (13)	-0.0040 (12)	-0.0044 (12)
C23	0.085 (2)	0.065 (2)	0.0466 (17)	-0.0408 (18)	-0.0047 (16)	-0.0017 (15)
C24	0.0588 (17)	0.0537 (16)	0.0467 (16)	-0.0195 (13)	-0.0095 (13)	-0.0098 (13)
C25	0.066 (2)	0.074 (2)	0.065 (2)	-0.0102 (17)	-0.0058 (17)	-0.0131 (18)
C26	0.115 (4)	0.054 (2)	0.091 (3)	-0.002 (2)	-0.018 (3)	-0.032 (2)
C27	0.112 (4)	0.058 (2)	0.110 (4)	-0.036 (2)	-0.027 (3)	-0.014 (2)
C28	0.084 (3)	0.102 (4)	0.106 (4)	-0.057 (3)	-0.009 (3)	-0.012 (3)
C29	0.064 (2)	0.068 (2)	0.081 (3)	-0.0231 (17)	0.0036 (18)	-0.026 (2)

Geometric parameters (Å, °)

S1—O1	1.422 (3)	C24—C25	1.383 (5)
S1—O2	1.418 (3)	C24—C29	1.381 (6)
S1—O3	1.583 (2)	C25—C26	1.387 (7)
S1—C1	1.749 (4)	C26—C27	1.363 (8)

S2	1.678 (3)	C27—C28	1.403 (8)
S2—C21	1.613 (4)	C28—C29	1.371 (7)
O3—C8	1.448 (4)	C2—H2	0.9300
O4—C16	1.235 (4)	С3—Н3	0.9300
N1-C16	1.364 (4)	С5—Н5	0.9300
N1-C17	1.464 (3)	С6—Н6	0.9300
N1-C22	1.468 (4)	С7—Н7А	0.9600
C1—C2	1.387 (5)	С7—Н7В	0.9600
C1—C6	1.383 (5)	С7—Н7С	0.9600
C2—C3	1.376 (7)	C8—H8A	0.9700
C3—C4	1.381 (8)	C8—H8B	0.9700
C4—C5	1.363(7)	С9—Н9	0.9800
C4-C7	1.505(7) 1 524(8)	C11—H11	0.9300
C5-C6	1.363 (6)	C12—H12	0.9300
C8—C9	1.500(0) 1.520(4)	C13—H13	0.9300
C9-C10	1.520(1) 1 508(4)	C14—H14	0.9300
C9-C17	1.500(1) 1.532(3)	C17—H17	0.9800
C10-C11	1.352(5) 1 393(4)	C19—H19	0.9300
C10-C15	1.393(4) 1 387(4)	C20_H20	0.9300
C11 - C12	1.307 (4)	C20—H20	0.9300
C12 - C12	1.375 (6)	C22—H22A	0.9300
C13 - C14	1.375 (0)	C22 H22R C22_H22B	0.9700
C14 - C15	1.300(5) 1 397(4)	C22 H22B	0.9700
C15 C16	1.397 (4) 1.484 (4)	C23 H23R	0.9700
C17 C18	1.404 (4)	C25 H25	0.9700
C18 C19	1.500 (4)	C25—1125 C26 H26	0.9300
C_{10} C_{20}	1.394(3) 1.541(4)	C20—1120 C27 H27	0.9300
C19 - C20	1.341(4) 1.328(6)	$C_2 / - H_2 / C_2 $	0.9300
$C_{20} = C_{21}$	1.520(0) 1.504(5)	C28—H28 C20_H20	0.9300
$C_{22} = C_{23}$	1.504(5)	C29—H29	0.9300
C23—C24	1.318(0)		
01—S1—O2	119.4 (2)	C3—C2—H2	121.00
01—S1—03	108.65 (15)	С2—С3—Н3	119.00
01—S1—C1	109.86 (18)	C4—C3—H3	119.00
O2—S1—O3	104.97 (17)	C4—C5—H5	119.00
O2—S1—C1	109.28 (18)	C6—C5—H5	119.00
O3—S1—C1	103.47 (15)	C1—C6—H6	120.00
C18—S2—C21	94.67 (18)	С5—С6—Н6	120.00
S1—O3—C8	119.2 (2)	C4—C7—H7A	109.00
C16—N1—C17	122.1 (2)	C4—C7—H7B	109.00
C16-N1-C22	119.8 (2)	C4—C7—H7C	109.00
C17 - N1 - C22	116.4 (2)	H7A—C7—H7B	109.00
S1-C1-C2	120.0(3)	H7A—C7—H7C	110.00
S1-C1-C6	120.1(3)	H7B-C7-H7C	109.00
$C_{2}-C_{1}-C_{6}$	119.9 (4)	O3-C8-H8A	110.00
C1 - C2 - C3	118.9 (4)	O3-C8-H8B	110.00
C2-C3-C4	121.4 (5)	C9—C8—H8A	110.00
C3—C4—C5	118.3 (4)	C9—C8—H8B	110.00

C3—C4—C7	120.2 (5)	H8A—C8—H8B	109.00
C5—C4—C7	121.5 (5)	С8—С9—Н9	109.00
C4—C5—C6	122.1 (4)	С10—С9—Н9	109.00
C1—C6—C5	119.4 (4)	С17—С9—Н9	109.00
O3—C8—C9	107.6 (2)	C10—C11—H11	120.00
C8—C9—C10	107.4 (2)	C12—C11—H11	120.00
C8—C9—C17	112.4 (2)	C11—C12—H12	120.00
C10—C9—C17	109.79 (19)	C13—C12—H12	120.00
C9—C10—C11	120.9 (2)	C12—C13—H13	120.00
C9—C10—C15	119.1 (2)	C14—C13—H13	120.00
C11—C10—C15	120.0 (2)	C13—C14—H14	120.00
C10—C11—C12	119.4 (3)	C15—C14—H14	120.00
C11—C12—C13	120.3 (3)	N1—C17—H17	108.00
C12—C13—C14	120.6 (3)	С9—С17—Н17	108.00
C13—C14—C15	120.1 (3)	C18—C17—H17	108.00
C10-C15-C14	119.6 (3)	C18—C19—H19	131.00
C10-C15-C16	1210(2)	C20-C19-H19	131.00
C14-C15-C16	1194(3)	C19 - C20 - H20	122.00
04-C16-N1	122 1 (3)	$C_{21} = C_{20} = H_{20}$	122.00
04-C16-C15	122.1(3) 121.0(3)	S2-C21-H21	122.00
N1-C16-C15	1170(3)	C_{20} C_{21} H_{21}	122.00
N1-C17-C9	110.8 (2)	N1—C22—H22A	109.00
N1-C17-C18	110.7(2)	N1-C22-H22B	109.00
C9-C17-C18	112.6 (2)	C^{23} C^{22} H^{22A}	109.00
S2-C18-C17	123.12 (18)	C_{23} C_{22} H_{22B}	109.00
S2-C18-C19	113.48 (18)	H22A—C22—H22B	108.00
C17—C18—C19	123.4 (2)	C22—C23—H23A	109.00
C18 - C19 - C20	98.8 (2)	C22—C23—H23B	109.00
C19—C20—C21	117.0 (3)	C24—C23—H23A	109.00
S2-C21-C20	116.0 (3)	C24—C23—H23B	109.00
N1-C22-C23	112.6 (3)	H23A—C23—H23B	108.00
C22—C23—C24	111.9 (3)	C24—C25—H25	120.00
C_{23} C_{24} C_{25}	120.5 (3)	C26—C25—H25	120.00
C_{23} C_{24} C_{29}	120.4 (3)	C25—C26—H26	119.00
C_{25} C_{24} C_{29}	119.1 (4)	C27—C26—H26	119.00
C_{24} C_{25} C_{26}	119.6 (4)	С26—С27—Н27	120.00
C_{25} C_{26} C_{27}	121.2 (5)	$C_{28} = C_{27} = H_{27}$	120.00
$C_{26} = C_{27} = C_{28}$	119 3 (5)	C_{27} C_{28} H_{28}	120.00
C_{27} C_{28} C_{29}	119.2 (5)	C29—C28—H28	120.00
C_{24} C_{29} C_{28}	121.5 (4)	C_{24} C_{29} H_{29}	119.00
C1-C2-H2	120.00	$C_{28} = C_{29} = H_{29}$	119.00
	120100		119100
O1—S1—O3—C8	11.0 (3)	C10—C9—C17—N1	50.8 (3)
O2—S1—O3—C8	139.7 (3)	C8—C9—C10—C11	-90.2 (3)
C1—S1—O3—C8	-105.8 (3)	C8—C9—C17—C18	166.7 (2)
01— <u>S1</u> — <u>C1</u> — <u>C2</u>	152.1 (3)	C8—C9—C17—N1	-68.7(3)
02 - 1 - 1 - 2	19.3 (4)	C9—C10—C11—C12	179.1 (3)
03 - 81 - C1 - C2	-92.1 (3)	C15-C10-C11-C12	0.9 (4)

O1—S1—C1—C6	-29.2 (3)	C11-C10-C15-C14	-0.5 (4)
O2—S1—C1—C6	-161.9 (3)	C9-C10-C15-C16	3.3 (4)
O3—S1—C1—C6	86.7 (3)	C11—C10—C15—C16	-178.4 (3)
C21—S2—C18—C19	0.4 (2)	C9—C10—C15—C14	-178.7 (3)
C18—S2—C21—C20	0.0 (3)	C10-C11-C12-C13	-0.9 (5)
C21—S2—C18—C17	-179.7 (2)	C11—C12—C13—C14	0.4 (5)
S1—O3—C8—C9	-176.8 (2)	C12—C13—C14—C15	0.1 (5)
C17—N1—C16—C15	8.5 (4)	C13—C14—C15—C10	-0.1 (5)
C17—N1—C16—O4	-171.1 (3)	C13—C14—C15—C16	178.0 (3)
C22—N1—C16—O4	-6.6 (4)	C10-C15-C16-O4	-168.7 (3)
C16—N1—C17—C18	85.2 (3)	C14—C15—C16—N1	-166.3 (3)
C17—N1—C22—C23	-89.1 (3)	C14—C15—C16—O4	13.4 (4)
C16—N1—C17—C9	-40.4 (3)	C10-C15-C16-N1	11.7 (4)
C22—N1—C16—C15	173.0 (3)	N1-C17-C18-C19	158.4 (2)
C16—N1—C22—C23	105.6 (3)	N1-C17-C18-S2	-21.5 (3)
C22—N1—C17—C18	-79.8 (3)	C9—C17—C18—C19	-77.0 (3)
C22—N1—C17—C9	154.6 (2)	C9—C17—C18—S2	103.1 (2)
C6-C1-C2-C3	1.9 (6)	S2-C18-C19-C20	-0.6 (3)
C2-C1-C6-C5	-0.4 (6)	C17—C18—C19—C20	179.5 (3)
S1—C1—C2—C3	-179.3 (4)	C18—C19—C20—C21	0.6 (4)
S1—C1—C6—C5	-179.2 (3)	C19—C20—C21—S2	-0.4 (5)
C1—C2—C3—C4	-1.8 (8)	N1-C22-C23-C24	178.7 (3)
C2—C3—C4—C5	0.0 (8)	C22—C23—C24—C25	-118.9 (4)
C2—C3—C4—C7	179.4 (5)	C22—C23—C24—C29	62.1 (5)
C7—C4—C5—C6	-177.8 (4)	C23—C24—C25—C26	-177.3 (4)
C3—C4—C5—C6	1.6 (7)	C29—C24—C25—C26	1.8 (6)
C4—C5—C6—C1	-1.4 (6)	C23—C24—C29—C28	-178.9 (4)
O3—C8—C9—C17	-72.4 (3)	C25—C24—C29—C28	2.0 (6)
O3—C8—C9—C10	166.8 (2)	C24—C25—C26—C27	-3.6 (8)
C8—C9—C10—C15	88.0 (3)	C25—C26—C27—C28	1.5 (9)
C10-C9-C17-C18	-73.8 (2)	C26—C27—C28—C29	2.2 (9)
C17—C9—C10—C11	147.2 (2)	C27—C28—C29—C24	-4.0 (8)
C17—C9—C10—C15	-34.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
C9—H9····O4 ⁱ	0.98	2.34	3.285 (3)	161
C12—H12···· <i>Cg</i> 1 ⁱⁱ	0.93	2.65	3.567 (4)	168

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*.