Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Hvdroxy-N'-(2-hydroxybenzylidene)benzohydrazide

San-Jun Peng^a* and Hai-Yun Hou^b

^aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and ^bCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China Correspondence e-mail: sanjunpeng@163.com

Received 13 August 2008; accepted 26 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 15.4.

The title compound, $C_{14}H_{12}N_2O_3$, was synthesized by the condensation of salicylaldehyde with 3-hydroxybenzohydrazide. The dihedral angle between the two benzene rings is 12.4 (2)°. The 2-hydroxy group forms an intramolecular O-H···N hydrogen bond with the imide N atom. Molecules are linked through intermolecular O-H···O and N-H···O hydrogen bonds into a two-dimensional polymeric structure parallel to the *ab* plane.

Related literature

For related literature, see: Ali et al. (2005); Eltayeb et al. (2008); Habibi et al. (2007); Jing et al. (2006); Ling et al. (2008); Peng & You (2007); Peng & Zhou (2007); Peng, Ping & Song (2007); Peng, Yang & Zhou (2006); Peng, Zhou & Yang (2006); Yehye et al. (2008a,b).

Experimental

Crystal data

C14H12N2O3 $M_r = 256.26$ Orthorhombic, Pbca a = 14.405 (2) Å b = 9.661 (1) Åc = 17.905 (2) Å

V = 2491.8 (5) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 298 (2) K
$0.23 \times 0.20 \times 0.20$ mm

Data collection

Bruker SMART 1000 CCD area-13415 measured reflections detector diffractometer 2720 independent reflections Absorption correction: multi-scan 1869 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2001) $R_{\rm int} = 0.039$ $T_{\rm min} = 0.978, T_{\rm max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.03	refinement
2720 reflections	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···N1	0.82	1.88	2.6010 (19)	146
$O3-H3\cdots O2^{i}$	0.82	1.81	2.5946 (16)	159
N2-H2···O3 ⁱⁱ	0.895 (9)	2.119 (10)	3.0062 (18)	171.0 (18)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We acknowledge Changsha University of Science and Technology for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2164).

References

- Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433m434
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m912-m913.
- Habibi, M. H., Montazerozohori, M., Lalegani, A., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, m2933-m2934.
- Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, 04087-04088
- Ling, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, 0948.
- Peng, S.-J., Ping, W.-J. & Song, L.-B. (2007). Z. Kristallogr. New Cryst. Struct. 222, 425-426.
- Peng, S.-J., Yang, T. & Zhou, C.-S. (2006). Acta Cryst. E62, m235-m236.
- Peng, S.-J. & You, Z.-L. (2007). J. Chem. Crystallogr. 37, 415-419.
- Peng, S.-J. & Zhou, C.-S. (2007). Acta Cryst. E63, m3185.
- Peng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1147-m1149.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, 0960.
- Yehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, 01452.

supporting information

Acta Cryst. (2008). E64, o1864 [doi:10.1107/S1600536808027426]

3-Hydroxy-N'-(2-hydroxybenzylidene)benzohydrazide

San-Jun Peng and Hai-Yun Hou

S1. Comment

Schiff bases derived from the condensation of aldehydes with primary amines play an important role in coordination chemistry (Ali *et al.*, 2005; Eltayeb *et al.*, 2008; Habibi *et al.*, 2007). Recently, we have reported synthesis and crystal structure of some Schiff base complexes (Peng, Yang & Zhou, 2006; Peng, Zhou & Yang, 2006; Peng *et al.*, 2007; Peng & You, 2007; Peng & Zhou, 2007). We report herein the crystal structure of the title compound, Fig. 1.

All the bond lengths are comparable to those observed in other similar compounds (Yehye *et al.*, 2008*a,b*; Jing *et al.*, 2006; Ling *et al.*, 2008). The molecule is not planar and the dihedral angle between the two benzene rings is 12.4 (2)°. There is an intramolecular O–H…N hydrogen bond (Table 1) in each molecule of the compound. The molecules are linked through intermolecular O–H…O and N–H…O hydrogen bonds (Table 1), forming layers parallel to the *ab* plane (Fig. 2).

S2. Experimental

3-Hydroxybenzohydrazide (0.1 mmol, 15.2 mg) and salicylaldehyde (0.1 mmol, 12.2 mg) were stirred at 318 K in methanol (10 ml) for 30 min. The filtrate was kept open to slowly evaporate for a few days, depositing colorless block-like crystals of the title compound.

S3. Refinement

The atom H2 attached to N2 was located in a difference Fourier map and refined with N–H distance restrained to 0.90 (1) Å, and with U_{iso} set to 0.08 Å². All H atoms bound to carbon and oxygen were refined using riding models with d(C-H) = 0.93 Å, d(O-H) = 0.82 Å, $U_{iso} = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.

Figure 2

Packing diagram, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

3-Hydroxy-N'-(2-hydroxybenzylidene)benzohydrazide

Crystal data

C₁₄H₁₂N₂O₃ $M_r = 256.26$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 14.405 (2) Å b = 9.661 (1) Å c = 17.905 (2) Å V = 2491.8 (5) Å³ Z = 8 F(000) = 1072 $D_x = 1.366 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3092 reflections $\theta = 2.7-26.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.23 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.978, T_{max} = 0.981$ Refinement	13415 measured reflections 2720 independent reflections 1869 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -15 \rightarrow 18$ $k = -11 \rightarrow 12$ $l = -22 \rightarrow 22$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.03 2720 reflections 177 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.3997P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.16163 (8)	1.20579 (14)	0.04590 (8)	0.0677 (4)	
0.1829	1.1427	0.0713	0.102*	
0.33625 (7)	0.98665 (12)	0.15618 (6)	0.0524 (3)	
0.56381 (7)	0.66767 (12)	0.27314 (7)	0.0548 (3)	
0.5826	0.6036	0.2991	0.082*	
0.15527 (8)	0.98711 (13)	0.13048 (7)	0.0419 (3)	
0.19669 (8)	0.88568 (13)	0.17276 (8)	0.0436 (3)	
0.01929 (10)	1.09152 (16)	0.08195 (8)	0.0409 (4)	
0.06764 (12)	1.19810 (18)	0.04586 (9)	0.0493 (4)	
0.01833 (15)	1.3000 (2)	0.00834 (11)	0.0668 (5)	
0.0501	1.3716	-0.0152	0.080*	
-0.07686 (16)	1.2964 (2)	0.00557 (11)	0.0709 (6)	
-0.1089	1.3653	-0.0200	0.085*	
-0.12534 (13)	1.1922 (2)	0.04022 (11)	0.0663 (6)	
-0.1898	1.1900	0.0380	0.080*	
	x $0.16163 (8)$ 0.1829 $0.33625 (7)$ $0.56381 (7)$ 0.5826 $0.15527 (8)$ $0.19669 (8)$ $0.01929 (10)$ $0.06764 (12)$ $0.01833 (15)$ 0.0501 $-0.07686 (16)$ -0.1089 $-0.12534 (13)$ -0.1898	x y 0.16163 (8)1.20579 (14)0.18291.14270.33625 (7)0.98665 (12)0.56381 (7)0.66767 (12)0.58260.60360.15527 (8)0.98711 (13)0.19669 (8)0.88568 (13)0.01929 (10)1.09152 (16)0.06764 (12)1.19810 (18)0.01833 (15)1.3000 (2)0.05011.3716-0.07686 (16)1.2964 (2)-0.10891.3653-0.12534 (13)1.1922 (2)-0.18981.1900	xyz 0.16163 (8) 1.20579 (14) 0.04590 (8) 0.1829 1.1427 0.0713 0.33625 (7) 0.98665 (12) 0.15618 (6) 0.56381 (7) 0.66767 (12) 0.27314 (7) 0.5826 0.6036 0.2991 0.15527 (8) 0.98711 (13) 0.13048 (7) 0.19669 (8) 0.88568 (13) 0.17276 (8) 0.01929 (10) 1.09152 (16) 0.08195 (8) 0.06764 (12) 1.19810 (18) 0.04586 (9) 0.01833 (15) 1.3000 (2) 0.00834 (11) 0.0501 1.3716 -0.0152 -0.07686 (16) 1.2964 (2) 0.00557 (11) -0.1089 1.3653 -0.0200 -0.12534 (13) 1.1922 (2) 0.04022 (11) -0.1898 1.1900 0.0380	xyz $U_{iso}*/U_{eq}$ 0.16163 (8)1.20579 (14)0.04590 (8)0.0677 (4)0.18291.14270.07130.102*0.33625 (7)0.98665 (12)0.15618 (6)0.0524 (3)0.56381 (7)0.66767 (12)0.27314 (7)0.0548 (3)0.58260.60360.29910.082*0.15527 (8)0.98711 (13)0.13048 (7)0.0419 (3)0.19669 (8)0.88568 (13)0.17276 (8)0.0436 (3)0.01929 (10)1.09152 (16)0.08195 (8)0.0409 (4)0.06764 (12)1.19810 (18)0.04586 (9)0.0493 (4)0.01833 (15)1.3000 (2)0.00834 (11)0.0668 (5)0.05011.3716-0.01520.080*-0.07686 (16)1.2964 (2)0.00557 (11)0.0709 (6)-0.12534 (13)1.1922 (2)0.04022 (11)0.0663 (6)-0.18981.19000.03800.080*

C6	-0.07735 (11)	1.0909 (2)	0.07839 (9)	0.0533 (4)	
H6	-0.1102	1.0207	0.1022	0.064*	
C7	0.06694 (10)	0.98419 (16)	0.12381 (9)	0.0423 (4)	
H7	0.0331	0.9131	0.1458	0.051*	
C8	0.28882 (10)	0.89504 (16)	0.18561 (8)	0.0411 (4)	
С9	0.32990 (9)	0.78911 (16)	0.23665 (9)	0.0396 (4)	
C10	0.42602 (10)	0.77388 (16)	0.23447 (9)	0.0402 (4)	
H10	0.4612	0.8302	0.2033	0.048*	
C11	0.46926 (9)	0.67575 (16)	0.27832 (9)	0.0407 (4)	
C12	0.41777 (11)	0.59119 (18)	0.32492 (9)	0.0474 (4)	
H12	0.4468	0.5240	0.3538	0.057*	
C13	0.32267 (11)	0.6079 (2)	0.32798 (10)	0.0561 (5)	
H13	0.2878	0.5519	0.3596	0.067*	
C14	0.27860 (11)	0.70631 (19)	0.28484 (9)	0.0517 (4)	
H14	0.2146	0.7172	0.2880	0.062*	
H2	0.1622 (12)	0.8175 (16)	0.1921 (11)	0.080*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0516 (7)	0.0702 (10)	0.0815 (10)	-0.0133 (6)	0.0067 (6)	0.0162 (7)
O2	0.0375 (6)	0.0518 (7)	0.0680 (8)	-0.0079 (5)	-0.0066 (5)	0.0050 (6)
O3	0.0286 (5)	0.0524 (7)	0.0835 (9)	0.0054 (5)	-0.0026 (5)	0.0072 (6)
N1	0.0331 (6)	0.0436 (8)	0.0488 (7)	0.0030 (5)	-0.0044(5)	-0.0028 (6)
N2	0.0297 (6)	0.0423 (8)	0.0586 (8)	0.0007 (5)	-0.0060 (6)	0.0025 (6)
C1	0.0378 (8)	0.0462 (9)	0.0387 (8)	0.0039 (7)	-0.0007 (6)	-0.0018 (7)
C2	0.0507 (10)	0.0523 (10)	0.0448 (9)	-0.0009 (8)	0.0011 (7)	-0.0004 (8)
C3	0.0846 (15)	0.0592 (12)	0.0566 (11)	0.0036 (10)	0.0013 (10)	0.0144 (9)
C4	0.0794 (14)	0.0749 (14)	0.0583 (12)	0.0259 (11)	-0.0111 (11)	0.0105 (10)
C5	0.0491 (10)	0.0885 (15)	0.0614 (12)	0.0206 (10)	-0.0073 (9)	0.0031 (11)
C6	0.0401 (9)	0.0672 (12)	0.0525 (10)	0.0064 (8)	-0.0014 (7)	0.0054 (9)
C7	0.0359 (8)	0.0434 (9)	0.0476 (9)	-0.0005 (6)	0.0000 (7)	0.0001 (7)
C8	0.0312 (7)	0.0424 (9)	0.0497 (9)	-0.0003 (7)	-0.0027 (6)	-0.0081 (7)
C9	0.0286 (7)	0.0440 (9)	0.0461 (8)	-0.0005 (6)	-0.0040 (6)	-0.0075 (7)
C10	0.0296 (7)	0.0395 (8)	0.0516 (9)	-0.0022 (6)	0.0002 (6)	-0.0050(7)
C11	0.0275 (7)	0.0417 (8)	0.0529 (9)	0.0026 (6)	-0.0050 (7)	-0.0113 (7)
C12	0.0414 (8)	0.0540 (10)	0.0467 (9)	0.0054 (7)	-0.0046 (7)	0.0004 (8)
C13	0.0394 (9)	0.0740 (13)	0.0548 (10)	-0.0012 (8)	0.0048 (7)	0.0130 (9)
C14	0.0282 (7)	0.0729 (12)	0.0541 (10)	0.0016 (7)	0.0006 (7)	0.0026(9)

Geometric parameters (Å, °)

01	1.356 (2)	C4—H4	0.9300
01—H1	0.8200	C5—C6	1.380 (3)
O2—C8	1.2360 (18)	С5—Н5	0.9300
O3—C11	1.3673 (17)	С6—Н6	0.9300
О3—Н3	0.8200	С7—Н7	0.9300
N1—C7	1.2784 (18)	C8—C9	1.494 (2)

N1—N2 N2—C8 N2—H2 C1—C6 C1—C2 C1—C2 C1—C7 C2—C3 C3—C4	1.3745 (18) 1.3499 (18) 0.895 (9) 1.394 (2) 1.401 (2) 1.452 (2) 1.388 (2) 1.372 (2)	C9—C14 C9—C10 C10—C11 C10—H10 C11—C12 C12—C13 C12—H12 C12—H12	1.389 (2) 1.3928 (19) 1.379 (2) 0.9300 1.383 (2) 1.380 (2) 0.9300 1.280 (2)
C3—H3A	0.9300	C13—H13	0.9300
C4—C5	1.373 (3)	C14—H14	0.9300
C2—O1—H1 C11—O3—H3 C7—N1—N2 C8—N2—N1	109.5 109.5 117.88 (13) 118 21 (13)	N1—C7—C1 N1—C7—H7 C1—C7—H7 O2—C8—N2	120.20 (14) 119.9 119.9 121 25 (14)
C8—N2—H2	122.0 (13)	02	122.15 (13)
N1—N2—H2	119.8 (13)	N2—C8—C9	116.60 (13)
C6—C1—C2	118.60 (15)	C14—C9—C10	119.03 (14)
C6—C1—C7	119.53 (15)	C14—C9—C8	124.29 (13)
C2—C1—C7	121.86 (14)	С10—С9—С8	116.68 (13)
O1—C2—C3	118.19 (16)	С11—С10—С9	120.37 (14)
O1—C2—C1	122.45 (15)	C11—C10—H10	119.8
C3—C2—C1	119.36 (17)	С9—С10—Н10	119.8
C4—C3—C2	120.71 (19)	O3—C11—C10	116.77 (14)
С4—С3—Н3А	119.6	O3—C11—C12	122.77 (14)
С2—С3—НЗА	119.6	C10—C11—C12	120.46 (13)
C3—C4—C5	120.68 (18)	C13—C12—C11	119.15 (15)
C3—C4—H4	119.7	C13—C12—H12	120.4
C5—C4—H4	119.7	C11—C12—H12	120.4
C4—C5—C6	119.29 (18)	C14—C13—C12	120.98 (16)
C4—C5—H5	120.4	C14—C13—H13	119.5
С6—С5—Н5	120.4	C12—C13—H13	119.5
C5—C6—C1	121.34 (18)	C13—C14—C9	119.98 (14)
С5—С6—Н6	119.3	C13—C14—H14	120.0
С1—С6—Н6	119.3	C9—C14—H14	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.88	2.6010 (19)	146
O3—H3···O2 ⁱ	0.82	1.81	2.5946 (16)	159
N2—H2…O3 ⁱⁱ	0.90 (1)	2.12 (1)	3.0062 (18)	171 (2)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*-1/2, *y*, -*z*+1/2.