

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Pentaaqua[5,5'-(*m*-phenylene)ditetrazolato- $\kappa N^2$ ]manganese(II) dihydrate

#### Yuanqi Lü

Department of Chemsitry, Dezhou University, University West Road 566, Dezhou 253023, People's Republic of China Correspondence e-mail: yglu@dzu.edu.cn

Received 14 August 2008; accepted 4 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.095; data-to-parameter ratio = 13.6.

The title compound,  $[Mn(C_8H_4N_8)_2(H_2O)_5]\cdot 2H_2O$ , is the fourth transition metal complex containing the 5,5'-(*m*-phenylene)ditetrazolate ligand to be structurally characterized. The Mn<sup>II</sup> cation has a distorted octahedral coordination geometry. The 5,5'-(*m*-phenylene)ditetrazolate ligand is planar. All H atoms bonded to O atoms participate in hydrogen bonds, which link the molecules into a framework structure.

#### **Related literature**

For similar complexes, see: Jiang et al. (2004); Hill et al. (1996).



#### **Experimental**

#### Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{C_8H_4N_8})_2(\mathrm{H_2O})_{\mathrm{S}}]\cdot\mathrm{2H_2O} \\ & M_r = 393.24 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 6.5932 \ (1) \ \text{\AA} \\ & b = 10.0711 \ (2) \ \text{\AA} \\ & c = 12.9857 \ (3) \ \text{\AA} \\ & \alpha = 68.296 \ (1)^{\circ} \\ & \beta = 77.213 \ (3)^{\circ} \end{split}$$

 $\gamma = 77.280 (5)^{\circ}$   $V = 772.10 (3) \text{ Å}^3$  Z = 2Mo K $\alpha$  radiation  $\mu = 0.91 \text{ mm}^{-1}$  T = 296 (2) K $0.26 \times 0.14 \times 0.08 \text{ mm}$   $R_{\rm int} = 0.022$ 

7710 measured reflections

3704 independent reflections

2846 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.798, T_{\rm max} = 0.931$ 

#### Refinement

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O7-H7B\cdots O6$                    | 0.57 (6) | 2.31 (6)                | 2.852 (3)    | 162 (8)                              |
| $O5-H5A\cdots O5^{i}$                | 0.57 (6) | 2.41 (5)                | 2.910 (6)    | 148 (9)                              |
| $O6-H6B\cdots O7^{ii}$               | 0.61 (5) | 2.21 (5)                | 2.814 (3)    | 171 (6)                              |
| $O4-H4A\cdots O1^{iii}$              | 0.67 (4) | 2.38 (4)                | 3.035 (3)    | 167 (5)                              |
| $O3-H3A\cdots O7^{i}$                | 0.84(4)  | 1.91 (4)                | 2.747 (3)    | 171 (3)                              |
| $O3-H3B\cdots O6^{iv}$               | 0.82(3)  | 1.98 (3)                | 2.794 (3)    | 176 (3)                              |
| $O2-H2B\cdots N1^{v}$                | 0.75 (3) | 2.06 (3)                | 2.800 (3)    | 173 (3)                              |
| $O1 - H1B \cdot \cdot \cdot N6^{vi}$ | 0.85 (4) | 1.89 (4)                | 2.730 (3)    | 176 (3)                              |
| $O5-H5B\cdots N8^{vii}$              | 0.75 (4) | 2.07 (4)                | 2.810 (3)    | 168 (4)                              |
| $O7 - H7A \cdot \cdot \cdot N5^{ii}$ | 0.73 (4) | 2.10(4)                 | 2.828 (3)    | 173 (4)                              |
| $O4-H4B\cdots N3^{iv}$               | 0.88 (4) | 1.80 (4)                | 2.681 (3)    | 175 (3)                              |
| $O6-H6A\cdots N4$                    | 0.82 (3) | 2.07 (4)                | 2.886 (3)    | 176 (3)                              |
| $O1 - H1A \cdots N7^{viii}$          | 0.78 (3) | 1.99 (3)                | 2.771 (3)    | 175 (3)                              |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z; (iv) -x, -y + 1, -z + 1; (v) -x, -y + 2, -z + 1; (vi) x, y, z + 1; (vii) x, y - 1, z + 1; (viii) -x + 1, -y + 2, -z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author is grateful for funding from the National High Advanced Scientific Project of China (No. 2007AA10Z406) and the Scientific Project of Dezhou City (No. 2006067).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2139).

#### References

Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Hill, M., Mahon, M. F., McGinley, J. & Molloy, K. C. (1996). J. Chem. Soc. Dalton Trans. pp. 835–845.

Jiang, C., Yu, Z., Jiao, C., Wang, S., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 4669–4674.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2008). E64, m1255 [doi:10.1107/S1600536808028316]

# Pentaaqua[5,5'-(*m*-phenylene)ditetrazolato- $\kappa N^2$ ]manganese(II) dihydrate

# Yuanqi Lü

## S1. Comment

The 1,3-di(2*H*-tetrazol-5-yl)benzene (DHTB) ligand has hitherto been reported in the twice deprotonated form in the crystal structures of its complexes with zinc, cadmium and tin (Jiang *et al.*, 2004; Hill *et al.*, 1996), where it acts as a bridging ligand. This paper provides the first structural characterization of a DHTB complex with the transition metal Mn(II); the ligand in this complex is also twice deprotonated, but coordinated to the Mn atom as a terminal ligand.

The molecule of  $Mn(DHTB)(H_2O)_5$  occupies a general position in the unit cell; the Mn atom has a non-distorted octahedral coordination as indicated by bond lengths and angles (Fig. 1). The DHTB ligand has an essentially planar conformation, with the maximum deviation from the mean plane being 0.054 (2) Å by atom C7. The geometry of the ligand is similar to that observed in Jiang *et al.* (2004) and Hill *et al.* (1996).

Strong  $\pi$ - $\pi$  interactions between the aromatic rings are indicated by the short distance of 3.324 (3) Å between C1 and C8<sup>i</sup> [Symmetry code: (i) 1-x, 2-y, -z]. All hydrogen atoms that are bonded to oxygen atoms participate in H-bonding (Table 1); the extensive H-bond system and the strong  $\pi$ - $\pi$  interactions link molecules of the complex and non-coordinated water molecules into a three-dimensional infinite network (Fig. 2).

## **S2.** Experimental

The hydrothermal reaction of  $Mn(NO_3)_2$  (0.5 mmol) and 1,3-di(2*H*-tetrazol-5-yl)benzene (0.5 mmol) in 20 ml of distilled water at 180°C for 3 days resulted in light yellow plate crystals of the title compound, in a yield of 42%. The crystals were filtered, washed with cold EtOH and dried in air.

## **S3. Refinement**

All of the H atoms on carbon atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and  $U_{iso}(H) = 1.2$  times  $U_{eq}(C)$ . All of the H atoms on oxygen atoms were located from the difference Fourier map, and refined freely, except for the bond length of O5—H5A being constrained to 0.87 Å.



# Figure 1

Molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-labelling scheme.



# Figure 2

Packing diagram viewed down the c axis,

## Pentaaqua[5,5'-(m-phenylene)ditetrazolato-*kN*<sup>2</sup>]manganese(II) dihydrate

#### Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{C_8H_4N_8})_2(\mathrm{H_2O})_5]\cdot 2\mathrm{H_2O} \\ & M_r = 393.24 \\ & \mathrm{Triclinic}, \ P1 \\ & \mathrm{Hall \ symbol: \ -P1} \\ & \mathrm{Hall \ symbol: \ -P1} \\ & a = 6.5932 \ (1) \ \text{\AA} \\ & b = 10.0711 \ (2) \ \text{\AA} \\ & c = 12.9857 \ (3) \ \text{\AA} \\ & a = 68.296 \ (1)^{\circ} \\ & \beta = 77.213 \ (3)^{\circ} \\ & \gamma = 77.280 \ (5)^{\circ} \\ & V = 772.10 \ (3) \ \text{\AA}^3 \end{split}$$

#### Data collection

| Bruker SMART CCD area-detector           |
|------------------------------------------|
| diffractometer                           |
| Radiation source: fine-focus sealed tube |
| Graphite monochromator                   |
| $\varphi$ and $\omega$ scans             |
| Absorption correction: multi-scan        |
| (SADABS; Sheldrick, 1996)                |
| $T_{\min} = 0.798, \ T_{\max} = 0.931$   |
|                                          |

### Refinement

| 0                                               |                                                            |
|-------------------------------------------------|------------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.095$                               | neighbouring sites                                         |
| S = 1.02                                        | H atoms treated by a mixture of independent                |
| 3704 reflections                                | and constrained refinement                                 |
| 273 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0414P)^2 + 0.3671P]$          |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$      |
|                                                 | $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 406

 $\theta = 2.7 - 27.9^{\circ}$ 

 $\mu = 0.91 \text{ mm}^{-1}$ 

Plate, yellow

 $R_{\rm int} = 0.022$ 

 $h = -8 \rightarrow 6$   $k = -13 \rightarrow 13$  $l = -17 \rightarrow 17$ 

 $0.26 \times 0.14 \times 0.08 \text{ mm}$ 

7710 measured reflections 3704 independent reflections 2846 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\text{max}} = 28.1^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ 

T = 296 K

 $D_{\rm x} = 1.691 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3628 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|--------------|-----------------------------|
| Mn1 | 0.11390 (6) | 0.68638 (4) | 0.58413 (3)  | 0.02732 (12)                |
| O1  | 0.3923 (3)  | 0.7734 (2)  | 0.57901 (16) | 0.0388 (4)                  |
| O2  | -0.1155 (4) | 0.8808 (2)  | 0.58408 (19) | 0.0402 (5)                  |

| O3  | 0.0794 (3)  | 0.6043 (2)   | 0.76359 (15)  | 0.0361 (4)  |
|-----|-------------|--------------|---------------|-------------|
| O4  | -0.1679 (4) | 0.6027 (2)   | 0.59456 (18)  | 0.0411 (5)  |
| O5  | 0.3064 (5)  | 0.4784 (2)   | 0.5795 (2)    | 0.0508 (6)  |
| O6  | 0.2643 (3)  | 0.5392 (2)   | 0.12086 (18)  | 0.0370 (4)  |
| 07  | 0.6605 (4)  | 0.3559 (3)   | 0.11514 (17)  | 0.0367 (4)  |
| N1  | 0.1613 (3)  | 0.90491 (19) | 0.31988 (14)  | 0.0244 (4)  |
| N2  | 0.1633 (3)  | 0.76902 (19) | 0.39242 (14)  | 0.0264 (4)  |
| N3  | 0.1980 (3)  | 0.6792 (2)   | 0.33621 (15)  | 0.0300 (4)  |
| N4  | 0.2200 (3)  | 0.75287 (19) | 0.22651 (15)  | 0.0268 (4)  |
| N5  | 0.3286 (3)  | 0.9471 (2)   | -0.21040 (15) | 0.0276 (4)  |
| N6  | 0.3651 (3)  | 0.9732 (2)   | -0.32077 (16) | 0.0315 (4)  |
| N7  | 0.3610 (3)  | 1.1128 (2)   | -0.37435 (16) | 0.0318 (4)  |
| N8  | 0.3223 (3)  | 1.1812 (2)   | -0.29911 (15) | 0.0275 (4)  |
| C1  | 0.1974 (3)  | 0.8914 (2)   | 0.21865 (17)  | 0.0205 (4)  |
| C2  | 0.2128 (3)  | 1.0130 (2)   | 0.11148 (17)  | 0.0216 (4)  |
| C3  | 0.2001 (4)  | 1.1526 (2)   | 0.11091 (19)  | 0.0306 (5)  |
| H3  | 0.1796      | 1.1699       | 0.1783        | 0.037*      |
| C4  | 0.2177 (4)  | 1.2662 (2)   | 0.0105 (2)    | 0.0380 (6)  |
| H4  | 0.2077      | 1.3597       | 0.0105        | 0.046*      |
| C5  | 0.2501 (4)  | 1.2411 (2)   | -0.09028 (19) | 0.0311 (5)  |
| Н5  | 0.2627      | 1.3178       | -0.1576       | 0.037*      |
| C6  | 0.2640 (3)  | 1.1024 (2)   | -0.09143 (17) | 0.0217 (4)  |
| C7  | 0.2443 (3)  | 0.9883 (2)   | 0.00989 (17)  | 0.0214 (4)  |
| H7  | 0.2523      | 0.8950       | 0.0098        | 0.026*      |
| C8  | 0.3031 (3)  | 1.0766 (2)   | -0.19900 (17) | 0.0224 (4)  |
| H1A | 0.455 (5)   | 0.808 (3)    | 0.519 (3)     | 0.044 (9)*  |
| H6A | 0.254 (5)   | 0.602 (4)    | 0.148 (3)     | 0.053 (9)*  |
| H4B | -0.180 (5)  | 0.511 (4)    | 0.613 (3)     | 0.063 (10)* |
| H7A | 0.659 (5)   | 0.278 (4)    | 0.135 (3)     | 0.060 (12)* |
| H5B | 0.306 (6)   | 0.402 (4)    | 0.620 (3)     | 0.068 (12)* |
| H1B | 0.378 (5)   | 0.838 (4)    | 0.608 (3)     | 0.068 (11)* |
| H2B | -0.124 (5)  | 0.933 (4)    | 0.614 (3)     | 0.052 (10)* |
| H3B | -0.018 (5)  | 0.560 (3)    | 0.800 (3)     | 0.059 (10)* |
| H3A | 0.149 (5)   | 0.615 (4)    | 0.806 (3)     | 0.065 (11)* |
| H4A | -0.261 (6)  | 0.645 (4)    | 0.597 (3)     | 0.076 (16)* |
| H2A | -0.179 (7)  | 0.908 (5)    | 0.539 (4)     | 0.105 (18)* |
| H6B | 0.286 (8)   | 0.554 (5)    | 0.070 (4)     | 0.09 (2)*   |
| H7B | 0.588 (10)  | 0.394 (6)    | 0.126 (5)     | 0.11 (3)*   |
| H5A | 0.396 (10)  | 0.477 (7)    | 0.567 (5)     | 0.10 (3)*   |
|     |             |              |               |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|-------------|--------------|--------------|---------------|---------------|---------------|
| Mn1 | 0.0377 (2)  | 0.02288 (18) | 0.02168 (18) | -0.00688 (14) | -0.00202 (14) | -0.00808 (13) |
| 01  | 0.0537 (12) | 0.0406 (10)  | 0.0275 (9)   | -0.0234 (9)   | 0.0075 (8)    | -0.0164 (8)   |
| O2  | 0.0540 (13) | 0.0266 (9)   | 0.0423 (11)  | 0.0024 (8)    | -0.0102 (10)  | -0.0174 (9)   |
| O3  | 0.0426 (11) | 0.0429 (11)  | 0.0241 (9)   | -0.0157 (9)   | -0.0046 (8)   | -0.0078 (8)   |
| O4  | 0.0460 (13) | 0.0253 (10)  | 0.0564 (13)  | -0.0068 (9)   | -0.0170 (10)  | -0.0128 (9)   |

| 05 | 0.0666 (16) | 0.0254 (11) | 0.0400 (12) | 0.0045 (10)  | 0.0116 (11)  | -0.0056 (9) |
|----|-------------|-------------|-------------|--------------|--------------|-------------|
| O6 | 0.0484 (11) | 0.0342 (10) | 0.0310 (10) | -0.0101 (8)  | -0.0005 (9)  | -0.0150 (8) |
| O7 | 0.0479 (12) | 0.0276 (10) | 0.0350 (10) | -0.0079 (9)  | -0.0089 (8)  | -0.0082 (8) |
| N1 | 0.0311 (10) | 0.0217 (9)  | 0.0191 (8)  | -0.0043 (7)  | -0.0027 (7)  | -0.0059 (7) |
| N2 | 0.0347 (10) | 0.0215 (9)  | 0.0209 (9)  | -0.0044 (8)  | -0.0021 (8)  | -0.0062 (7) |
| N3 | 0.0428 (12) | 0.0239 (9)  | 0.0223 (9)  | -0.0070 (8)  | -0.0005 (8)  | -0.0083 (7) |
| N4 | 0.0356 (11) | 0.0240 (9)  | 0.0203 (9)  | -0.0063 (8)  | -0.0011 (8)  | -0.0077 (7) |
| N5 | 0.0333 (10) | 0.0258 (9)  | 0.0236 (9)  | -0.0052 (8)  | -0.0022 (8)  | -0.0092 (8) |
| N6 | 0.0375 (11) | 0.0343 (11) | 0.0247 (10) | -0.0074 (9)  | -0.0005 (8)  | -0.0135 (8) |
| N7 | 0.0380 (11) | 0.0333 (11) | 0.0219 (9)  | -0.0072 (9)  | 0.0009 (8)   | -0.0088 (8) |
| N8 | 0.0338 (10) | 0.0269 (10) | 0.0193 (9)  | -0.0048 (8)  | 0.0001 (8)   | -0.0072 (7) |
| C1 | 0.0197 (10) | 0.0214 (10) | 0.0202 (10) | -0.0028 (8)  | -0.0008 (8)  | -0.0083 (8) |
| C2 | 0.0207 (10) | 0.0219 (10) | 0.0203 (10) | -0.0010 (8)  | -0.0028 (8)  | -0.0066 (8) |
| C3 | 0.0427 (14) | 0.0259 (11) | 0.0222 (11) | -0.0016 (10) | -0.0027 (10) | -0.0105 (9) |
| C4 | 0.0638 (18) | 0.0197 (11) | 0.0301 (12) | -0.0058 (11) | -0.0040 (12) | -0.0101 (9) |
| C5 | 0.0448 (14) | 0.0199 (10) | 0.0230 (11) | -0.0015 (10) | -0.0051 (10) | -0.0028 (9) |
| C6 | 0.0206 (10) | 0.0238 (10) | 0.0203 (10) | -0.0029 (8)  | -0.0022 (8)  | -0.0076 (8) |
| C7 | 0.0223 (10) | 0.0186 (10) | 0.0228 (10) | -0.0027 (8)  | -0.0022 (8)  | -0.0073 (8) |
| C8 | 0.0206 (10) | 0.0235 (10) | 0.0213 (10) | -0.0039 (8)  | -0.0024 (8)  | -0.0058 (8) |
|    |             |             |             |              |              |             |

# Geometric parameters (Å, °)

| Mn1—O3    | 2.1423 (18) | N1—N2     | 1.343 (2)   |
|-----------|-------------|-----------|-------------|
| Mn1—O4    | 2.162 (2)   | N2—N3     | 1.314 (2)   |
| Mn1—O1    | 2.1797 (19) | N3—N4     | 1.332 (2)   |
| Mn1—O2    | 2.1946 (19) | N4—C1     | 1.338 (3)   |
| Mn1—O5    | 2.212 (2)   | N5—N6     | 1.333 (3)   |
| Mn1—N2    | 2.2857 (17) | N5—C8     | 1.336 (3)   |
| O1—H1A    | 0.78 (3)    | N6—N7     | 1.315 (3)   |
| O1—H1B    | 0.85 (4)    | N7—N8     | 1.343 (3)   |
| O2—H2B    | 0.75 (3)    | N8—C8     | 1.338 (3)   |
| O2—H2A    | 0.73 (5)    | C1—C2     | 1.476 (3)   |
| O3—H3B    | 0.82 (3)    | C2—C3     | 1.387 (3)   |
| O3—H3A    | 0.84 (4)    | C2—C7     | 1.394 (3)   |
| O4—H4B    | 0.88 (4)    | C3—C4     | 1.382 (3)   |
| O4—H4A    | 0.67 (4)    | С3—Н3     | 0.9300      |
| O5—H5B    | 0.75 (4)    | C4—C5     | 1.385 (3)   |
| O5—H5A    | 0.57 (6)    | C4—H4     | 0.9300      |
| O6—H6A    | 0.82 (3)    | C5—C6     | 1.385 (3)   |
| O6—H6B    | 0.61 (5)    | С5—Н5     | 0.9300      |
| O7—H7A    | 0.73 (4)    | C6—C7     | 1.393 (3)   |
| O7—H7B    | 0.57 (6)    | C6—C8     | 1.472 (3)   |
| N1—C1     | 1.335 (3)   | С7—Н7     | 0.9300      |
|           |             |           |             |
| O3—Mn1—O4 | 88.99 (8)   | N3—N2—N1  | 109.26 (16) |
| O3—Mn1—O1 | 89.37 (8)   | N3—N2—Mn1 | 120.96 (13) |
| O4—Mn1—O1 | 177.83 (8)  | N1—N2—Mn1 | 129.79 (13) |
| O3—Mn1—O2 | 92.33 (8)   | N2—N3—N4  | 109.71 (17) |
|           |             |           |             |

| O4—Mn1—O2                   | 81.61 (9)               | N3—N4—C1                                                     | 104.97 (17)              |
|-----------------------------|-------------------------|--------------------------------------------------------------|--------------------------|
| O1—Mn1—O2                   | 97.05 (8)               | N6—N5—C8                                                     | 105.15 (17)              |
| O3—Mn1—O5                   | 89.42 (8)               | N7—N6—N5                                                     | 109.76 (17)              |
| O4—Mn1—O5                   | 90.03 (11)              | N6—N7—N8                                                     | 109.04 (17)              |
| $\Omega_1$ —Mn1— $\Omega_5$ | 91.36 (10)              | C8—N8—N7                                                     | 105.04 (18)              |
| $0^{2}$ Mn1 05              | 171 42 (11)             | N1-C1-N4                                                     | 111 28 (17)              |
| $\Omega_3$ _Mn1_N2          | 177.82(11)              | N1 - C1 - C2                                                 | 124.65(18)               |
| O4 Mn1 N2                   | 177.02(7)               | $N_1 = C_1 = C_2$                                            | 124.03(18)<br>124.07(18) |
| $O_4$ Mini $N_2$            | 92.24(0)                | $\mathbf{N} = \mathbf{C} \mathbf{I} = \mathbf{C} \mathbf{Z}$ | 124.07(10)               |
| O1 - MIII - N2              | 89.44 (7)               | $C_{3} = C_{2} = C_{1}$                                      | 119.41 (19)              |
| 02—Min1—N2                  | 89.63 (8)               |                                                              | 120.24 (19)              |
| O5—Mn1—N2                   | 88.78 (8)               | C/C2C1                                                       | 120.34 (18)              |
| Mn1—O1—H1A                  | 116 (2)                 | C4—C3—C2                                                     | 120.2 (2)                |
| Mn1—O1—H1B                  | 118 (2)                 | С4—С3—Н3                                                     | 119.9                    |
| H1A—O1—H1B                  | 102 (3)                 | С2—С3—Н3                                                     | 119.9                    |
| Mn1—O2—H2B                  | 131 (3)                 | C3—C4—C5                                                     | 120.2 (2)                |
| Mn1—O2—H2A                  | 115 (4)                 | C3—C4—H4                                                     | 119.9                    |
| H2B—O2—H2A                  | 113 (4)                 | C5—C4—H4                                                     | 119.9                    |
| Mn1—O3—H3B                  | 120 (2)                 | C6—C5—C4                                                     | 120.4 (2)                |
| Mn1—O3—H3A                  | 129 (2)                 | С6—С5—Н5                                                     | 119.8                    |
| H3B-03-H3A                  | 110 (3)                 | C4—C5—H5                                                     | 119.8                    |
| Mn1—O4—H4B                  | 127(2)                  | $C_{5}-C_{6}-C_{7}$                                          | 119 31 (19)              |
| Mn1 - O4 - H4A              | 112 (2)                 | $C_{5} - C_{6} - C_{8}$                                      | 119.95 (19)              |
|                             | 113(4)                  | $C_{7}$ $C_{6}$ $C_{8}$                                      | 119.93(19)<br>120.73(18) |
| $M_{\pi} = 05 \text{ HSD}$  | 113(4)                  | $C_{1} = C_{0} = C_{0}$                                      | 120.73(10)               |
| Min1-05-115A                | 132 (3)                 | $C_{0} - C_{1} - C_{2}$                                      | 120.44 (19)              |
| Mn1—O5—H5A                  | 11/(/)                  | C6C/H/                                                       | 119.8                    |
| H5B—O5—H5A                  | 99 (7)                  | С2—С7—Н7                                                     | 119.8                    |
| H6A—O6—H6B                  | 119 (5)                 | N5—C8—N8                                                     | 111.01 (18)              |
| H7A—O7—H7B                  | 120 (6)                 | N5—C8—C6                                                     | 125.20 (18)              |
| C1—N1—N2                    | 104.79 (16)             | N8—C8—C6                                                     | 123.78 (19)              |
|                             |                         |                                                              |                          |
| C1—N1—N2—N3                 | -0.3 (2)                | N4—C1—C2—C3                                                  | -176.0 (2)               |
| C1—N1—N2—Mn1                | -179.63 (15)            | N1-C1-C2-C7                                                  | -177.9 (2)               |
| O4—Mn1—N2—N3                | -62.82 (18)             | N4—C1—C2—C7                                                  | 2.7 (3)                  |
| O1—Mn1—N2—N3                | 118.54 (17)             | C7—C2—C3—C4                                                  | 0.2 (4)                  |
| O2—Mn1—N2—N3                | -144.41 (18)            | C1—C2—C3—C4                                                  | 179.0 (2)                |
| 05—Mn1—N2—N3                | 27.16 (18)              | $C_{2}-C_{3}-C_{4}-C_{5}$                                    | -0.6(4)                  |
| Mn1-N2-N1                   | -1192(19)               | $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$                              | 0.4(4)                   |
| 04 Mp1 N2 N1                | 116 41 (19)             | $C_{4}$ $C_{5}$ $C_{6}$ $C_{7}$                              | 0.1(1)<br>0.2(4)         |
| O1 Mn1 N2 N1                | -62.23(10)              | $C_4 = C_5 = C_6 = C_7$                                      | -1787(2)                 |
| $O_2 = Mn_1 = N_2 = N_1$    | 02.23(19)               | $C_{4} C_{5} C_{6} C_{7} C_{2}$                              | -0.5(2)                  |
| 02                          | 54.82 (19)<br>152 ( (2) | $C_{3} = C_{0} = C_{1} = C_{2}$                              | -0.3(3)                  |
| US-MINI-N2-NI               | -153.6 (2)              | $C_{8} = C_{6} = C_{7} = C_{2}$                              | 1/8.31 (19)              |
| N1—N2—N3—N4                 | 0.2 (2)                 | C3—C2—C7—C6                                                  | 0.3 (3)                  |
| Mn1—N2—N3—N4                | 1/9.52 (14)             | C1—C2—C7—C6                                                  | -17/8.46 (19)            |
| N2—N3—N4—C1                 | 0.1 (2)                 | N6—N5—C8—N8                                                  | 0.2 (2)                  |
| C8—N5—N6—N7                 | -0.3 (2)                | N6—N5—C8—C6                                                  | -178.4 (2)               |
| N5—N6—N7—N8                 | 0.4 (3)                 | N7—N8—C8—N5                                                  | 0.0 (2)                  |
| N6—N7—N8—C8                 | -0.2 (2)                | N7—N8—C8—C6                                                  | 178.67 (19)              |
| N2—N1—C1—N4                 | 0.4 (2)                 | C5-C6-C8-N5                                                  | 176.9 (2)                |
|                             |                         |                                                              |                          |

# supporting information

| N2—N1—C1—C2 | -179.00 (19) | C7—C6—C8—N5 | -1.9 (3)  |
|-------------|--------------|-------------|-----------|
| N3—N4—C1—N1 | -0.3 (2)     | C5—C6—C8—N8 | -1.6 (3)  |
| N3—N4—C1—C2 | 179.09 (19)  | C7—C6—C8—N8 | 179.6 (2) |
| N1—C1—C2—C3 | 3.3 (3)      |             |           |

## Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H      | H···A    | D···A     | D—H···A |
|-------------------------------------|----------|----------|-----------|---------|
| 07—H7 <i>B</i> ···O6                | 0.57 (6) | 2.31 (6) | 2.852 (3) | 162 (8) |
| O5—H5 <i>A</i> ···O5 <sup>i</sup>   | 0.57 (6) | 2.41 (5) | 2.910 (6) | 148 (9) |
| O6—H6 <i>B</i> ···O7 <sup>ii</sup>  | 0.61 (5) | 2.21 (5) | 2.814 (3) | 171 (6) |
| O4—H4A···O1 <sup>iii</sup>          | 0.67 (4) | 2.38 (4) | 3.035 (3) | 167 (5) |
| O3—H3 <i>A</i> ···O7 <sup>i</sup>   | 0.84 (4) | 1.91 (4) | 2.747 (3) | 171 (3) |
| O3—H3 <i>B</i> ···O6 <sup>iv</sup>  | 0.82 (3) | 1.98 (3) | 2.794 (3) | 176 (3) |
| $O2$ — $H2B$ ···· $N1^{v}$          | 0.75 (3) | 2.06 (3) | 2.800 (3) | 173 (3) |
| O1— $H1B$ ···N6 <sup>vi</sup>       | 0.85 (4) | 1.89 (4) | 2.730 (3) | 176 (3) |
| O5—H5 <i>B</i> ···N8 <sup>vii</sup> | 0.75 (4) | 2.07 (4) | 2.810 (3) | 168 (4) |
| O7—H7A···N5 <sup>ii</sup>           | 0.73 (4) | 2.10 (4) | 2.828 (3) | 173 (4) |
| O4—H4 <i>B</i> ···N3 <sup>iv</sup>  | 0.88 (4) | 1.80 (4) | 2.681 (3) | 175 (3) |
| O6—H6A…N4                           | 0.82 (3) | 2.07 (4) | 2.886 (3) | 176 (3) |
| O1—H1A····N7 <sup>viii</sup>        | 0.78 (3) | 1.99 (3) | 2.771 (3) | 175 (3) |
|                                     |          |          |           |         |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*, -*y*+2, -*z*+1; (vi) *x*, *y*, *z*+1; (vii) *x*, *y*-1, *z*+1; (viii) -*x*+1, -*y*+2, -*z*.