

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Redetermination of chlorido(2,2':6',2"terpyridine- $\kappa^3 N, N', N''$)gold(I) dichloride trihydrate at 173 K. Corrigendum

Holger B. Friedrich, Glenn E. M. Maguire,* Bice S. Martincigh, Michael G. McKay and Lauren K. Pietersen

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: maguireg@ukzn.ac.za

Received 29 April 2009; accepted 29 April 2009

The title of the paper by Friedrich, Maguire, Martincigh, McKay & Pietersen [*Acta Cryst.* (2008), E64, m1240] is corrected.

In the title of the paper by Friedrich, Maguire, Martincigh, McKay & Pietersen [*Acta Cryst.* (2008), E**64**, m1240], the oxidation state of the Au atom is given incorrectly. The correct title should be 'Redetermination of chlorido(2,2':6',2''-terpyr-idine- $\kappa^3 N, N', N''$)gold(III) dichloride trihydrate at 173 K'.

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of chlorido(2,2':6',2"terpyridine- $\kappa^3 N, N', N''$)gold(I) dichloride trihydrate at 173 K

Holger B. Friedrich, Glenn E. M. Maguire,* Bice S. Martincigh, Michael G. McKay and Lauren K. Pietersen

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: maguireg@ukzn.ac.za

Received 7 July 2008; accepted 1 September 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.007 Å; R factor = 0.033; wR factor = 0.062; data-to-parameter ratio = 19.4.

The redetermined structure of the title compound, [AuCl- $(C_{15}H_{11}N_3)$]Cl₂·3H₂O, at 173 (2) K is reported. The structure displays O-H···Cl and O-H···O hydrogen bonding. The distance of one of the chloride ions from the gold(I) atom [5.047 (1) Å] differs from that determined previously.

Related literature

For the previous determination of the crystal structure of the title compound, see: Hollis & Lippard (1983).

a = 8.4486 (1) Åb = 6.9766 (1) Åc = 31.1581 (6) Å

Experimental

Crystal data	
$[AuCl(C_{15}H_{11}N_3)]Cl_2 \cdot 3H_2O$	
$M_r = 590.63$	
Monoclinic, $P2_1/c$	

 $\beta = 94.392 (1)^{\circ}$ $V = 1831.14 (5) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: integration [Face-indexed absorption corrections carried out with XPREP

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.061$ S = 1.374386 reflections

(Bruker, 2005)] $T_{min} = 0.128$, $T_{max} = 0.185$ 13022 measured reflections 4386 independent reflections 4157 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$

 $\mu = 8.49 \text{ mm}^{-1}$

T = 173 (2) K

 $0.41 \times 0.31 \times 0.30 \text{ mm}$

226 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=1.32 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-2.23 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1W = H1A \cdots Cl2^{i}$	0.84	2 32	3 140 (4)	167
$O1W - H1B \cdots Cl3$	0.84	2.42	3.229 (4)	161
$O2W - H2A \cdots Cl2$	0.84	2.31	3.141 (4)	172
$O2W - H2B \cdots O3W$	0.84	1.94	2.768 (5)	169
O3W−H3A···Cl3 ⁱⁱ	0.84	2.31	3.133 (4)	167
$O3W-H3B\cdots Cl3^{iii}$	0.84	2.36	3.194 (4)	171

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-NT* (Bruker, 2005); data reduction: *SAINT-NT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition and solution of the crystallographic data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2137).

References

Bruker (2005). APEX2 and SAINT-NT (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1240 [doi:10.1107/S1600536808027943]

Redetermination of chlorido(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)gold(I) dichloride trihydrate at 173 K

Holger B. Friedrich, Glenn E. M. Maguire, Bice S. Martincigh, Michael G. McKay and Lauren K. Pietersen

S1. Comment

The title compound (I, Scheme 1) was synthesized as part of an ongoing study of the DNA binding and intercalation properties of metalloterpyridine complexes.

The asymmetric unit (Fig. 1) consists of the planar terpyridine-AuCl complex with one water molecule and one chloride ion above the plane of the complex, and the remaining two water molecules and a chloride ion below the plane.

A search of the literature revealed that the crystal structure of this compound was previously reported by Hollis & Lippard (1983). The reported structure possesses almost identical crystal parameters to the structure reported here in terms of space group, and unit-cell dimensions and angles. In addition, the coordination sphere parameters appear to closely match those obtained previously. However, the collection of data at 173 K, in comparison to 296 K as reported by Hollis & Lippard, results in some notable conclusions in addition to yielding more accurate data.

The water molecules and chloride ions are involved in extensive intermolecular hydrogen bonding. Fig. 2 illustrates these interactions which extend throughout the crystal structure. The atoms and interaction distances involved in the hydrogen bonding are very similar to those proposed by Hollis & Lippard, and the redetermined hydrogen bonding network confirms the proposed hydrogen bonds.

Additionally, Cl3 is orientated differently here than in the previously determined structure. With reference to the gold centre, Cl3 is found 5.047 (1) Å from the metal atom while the structure reported by Hollis & Lippard shows this distance to be 5.016 Å.

S2. Experimental

A mixture of AuCl₄.3H₂O (0.100 g, 0.29 mmol) and terpyridine (0.072 g, 0.31 mmol) was placed in 10 ml of deionized water in a round-bottom flask. The solution pH was adjusted to 3.0 with 1 *M* NaOH, and the resulting mixture refluxed at 100°C for 24 h. The red mixture was then cooled to room temperature and filtered to remove small amounts of a purple solid. The filtrate obtained was allowed to stand at room temperature to induce precipitation of the crystalline product. The crystals were filtered off and air-dried to yield the title compound. (0.013 g, 7.5%), mp 503 K. ¹H NMR [DMSO, 600 MHz]: δ = 8.07 (t, 2H), 8.13 (t, 1H), 8.47 (d, 2H), 8.66 (t, 2H), 8.67 (d, 2H), 8.71 (d, 2H). IR (KBr, cm⁻¹): 3341, 1604, 1584, 1035. ¹³C NMR [DMSO, 150 MHz]: δ = 151.8, 151.5, 146.8, 141.5, 139.7, 126.0, 122.8, 122.7.

S3. Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.93 Å (CH) in a riding model with $U_{iso}(H) = 1.2U_{eq}(X)$ for X = CH.

Figure 1

The asymmetric unit of I. Displacement ellipsoids are drawn at the 40% probability level. The labelling of atoms is as shown, and is identical to that of Hollis & Lippard. The two chloride counter ions and the three water molecules associated with I are evident, present above and below the plane of the molecule.

Figure 2

Intermolecular hydrogen bonding present in I, shown by the dashed lines. Hanging dashed lines indicate bonding to an adjacent unit cell. Displacement ellipsoids are drawn at the 40% probability level. Protons belonging to individual molecules have been omitted for purposes of clarity. The water and the chloride ions are seen to be found between the individual molecules of I.

Chlorido(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)gold(I) dichloride trihydrate

Crystal data	
$[AuCl(C_{15}H_{11}N_3)]Cl_2 \cdot 3H_2O$	$\beta = 94.392 \ (1)^{\circ}$
$M_r = 590.63$	V = 1831.14 (5) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 1128
a = 8.4486 (1) Å	$D_{\rm x} = 2.142 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.9766 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 31.1581 (6) Å	Cell parameters from 8408 reflections

 $\theta = 3.8 - 28.3^{\circ}$ $\mu = 8.49 \text{ mm}^{-1}$ T = 173 K

Ilecti ,

Data collection	
Bruker APEXII CCD area-detector	13022 measured reflections
diffractometer	4386 independent reflections
Radiation source: fine-focus sealed tube	4157 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\rm max} = 28.0^\circ, \ \theta_{\rm min} = 3.5^\circ$
Absorption correction: integration	$h = -11 \rightarrow 11$
[Face-indexed absorption corrections carried	$k = -9 \longrightarrow 8$
out with XPREP (Bruker, 2005)]	$l = -41 \rightarrow 39$
$T_{\min} = 0.128, \ T_{\max} = 0.185$	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.061$	neighbouring sites
S = 1.37	H-atom parameters constrained
4386 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0093P)^2 + 4.719P]$
226 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.32 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, brown

 $0.41 \times 0.31 \times 0.30 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0770 (6)	0.2047 (7)	0.02507 (15)	0.0253 (10)	
H1	-0.0237	0.2331	0.0001	0.030*	
C2	-0.2269 (6)	0.1252 (7)	0.02079 (17)	0.0298 (11)	
H2	-0.2766	0.0986	-0.0069	0.036*	
C3	-0.3033 (6)	0.0848 (7)	0.05707 (17)	0.0298 (11)	
H3	-0.4064	0.0297	0.0545	0.036*	
C4	-0.2298 (5)	0.1246 (7)	0.09735 (16)	0.0248 (10)	
H4	-0.2823	0.0976	0.1225	0.030*	
C5	-0.0803 (5)	0.2036 (6)	0.10059 (15)	0.0204 (9)	
C6	0.0097 (5)	0.2552 (6)	0.14095 (14)	0.0196 (9)	
C7	-0.0305 (5)	0.2284 (7)	0.18273 (15)	0.0261 (10)	
H7	-0.1293	0.1721	0.1882	0.031*	

C8	0.0750 (6)	0.2845 (8)	0.21643 (16)	0.0290 (11)
H8	0.0478	0.2669	0.2452	0.035*
C9	0.2201 (6)	0.3663 (7)	0.20891 (15)	0.0265 (10)
H9	0.2926	0.4037	0.2322	0.032*
C10	0.2570 (5)	0.3922 (6)	0.16673 (15)	0.0203 (9)
C11	0.4020 (5)	0.4747 (6)	0.15124 (15)	0.0209 (9)
C12	0.5251 (5)	0.5513 (7)	0.17706 (17)	0.0272 (10)
H12	0.5194	0.5570	0.2074	0.033*
C13	0.6570 (5)	0.6197 (7)	0.15853 (18)	0.0305 (11)
H13	0.7427	0.6729	0.1762	0.037*
C14	0.6651 (5)	0.6113 (7)	0.11450 (18)	0.0287 (11)
H14	0.7564	0.6564	0.1016	0.034*
C15	0.5375 (5)	0.5358 (7)	0.08946 (17)	0.0250 (10)
H15	0.5408	0.5313	0.0591	0.030*
Cl1	0.28844 (15)	0.3714 (2)	0.00827 (4)	0.0321 (3)
Cl2	0.06873 (13)	0.75596 (17)	0.08334 (4)	0.0268 (2)
C13	0.56001 (14)	0.06210 (19)	0.19728 (4)	0.0298 (3)
Au1	0.211462 (19)	0.35966 (2)	0.076389 (5)	0.01864 (6)
N1	-0.0062 (4)	0.2421 (5)	0.06372 (12)	0.0206 (8)
N2	0.1517 (4)	0.3343 (5)	0.13536 (11)	0.0162 (7)
N3	0.4098 (4)	0.4693 (5)	0.10746 (12)	0.0200 (8)
O1W	0.3810 (4)	-0.0056 (6)	0.10320 (13)	0.0384 (9)
H1A	0.3000	-0.0750	0.1021	0.058*
H1B	0.4060	0.0050	0.1296	0.058*
O2W	0.0068 (4)	0.7688 (7)	0.18143 (12)	0.0422 (10)
H2A	0.0261	0.7780	0.1555	0.063*
H2B	0.0931	0.7980	0.1949	0.063*
O3W	0.2720 (4)	0.8576 (6)	0.23548 (13)	0.0449 (10)
H3A	0.3421	0.9059	0.2213	0.067*
H3B	0.3221	0.7749	0.2508	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.027 (2)	0.028 (3)	0.021 (2)	-0.0037 (19)	0.0037 (18)	0.002 (2)
C2	0.028 (2)	0.028 (3)	0.033 (3)	-0.006 (2)	-0.003(2)	-0.004 (2)
C3	0.024 (2)	0.026 (3)	0.039 (3)	-0.0032 (19)	0.002 (2)	-0.002 (2)
C4	0.021 (2)	0.021 (2)	0.033 (3)	-0.0039 (18)	0.0076 (18)	-0.001 (2)
C5	0.021 (2)	0.015 (2)	0.025 (2)	0.0008 (16)	0.0039 (17)	0.0019 (18)
C6	0.0170 (19)	0.017 (2)	0.026 (2)	0.0012 (16)	0.0065 (17)	0.0039 (18)
C7	0.024 (2)	0.030 (3)	0.025 (2)	-0.0022 (19)	0.0101 (19)	0.001 (2)
C8	0.033 (3)	0.035 (3)	0.019 (2)	0.001 (2)	0.0074 (19)	0.002 (2)
C9	0.027 (2)	0.031 (3)	0.021 (2)	0.002 (2)	0.0013 (18)	-0.001 (2)
C10	0.021 (2)	0.016 (2)	0.024 (2)	0.0010 (16)	0.0032 (17)	0.0017 (18)
C11	0.020 (2)	0.018 (2)	0.025 (2)	0.0020 (16)	0.0048 (17)	0.0004 (18)
C12	0.023 (2)	0.026 (3)	0.032 (3)	0.0007 (19)	-0.0009 (19)	0.000 (2)
C13	0.018 (2)	0.024 (3)	0.049 (3)	-0.0013 (18)	-0.001 (2)	-0.001 (2)
C14	0.018 (2)	0.020 (3)	0.048 (3)	-0.0018 (17)	0.008 (2)	0.001 (2)

supporting information

C15	0.022 (2)	0.021 (2)	0.033 (3)	-0.0013 (18)	0.0076 (19)	0.001 (2)
Cl1	0.0363 (6)	0.0386 (7)	0.0230 (6)	-0.0093 (5)	0.0120 (5)	-0.0003 (5)
Cl2	0.0285 (5)	0.0258 (6)	0.0260 (6)	0.0037 (4)	0.0015 (4)	0.0004 (5)
C13	0.0263 (5)	0.0290 (6)	0.0344 (6)	-0.0015 (5)	0.0044 (5)	0.0023 (5)
Au1	0.01834 (8)	0.01925 (9)	0.01896 (9)	-0.00206 (7)	0.00558 (6)	0.00098 (7)
N1	0.0188 (17)	0.019 (2)	0.024 (2)	-0.0018 (14)	0.0045 (15)	0.0004 (16)
N2	0.0180 (16)	0.0136 (18)	0.0175 (17)	0.0029 (13)	0.0040 (13)	0.0000 (14)
N3	0.0181 (17)	0.0163 (19)	0.026 (2)	-0.0003 (14)	0.0027 (15)	0.0003 (16)
O1W	0.0303 (19)	0.043 (2)	0.042 (2)	-0.0015 (17)	0.0029 (16)	0.0090 (19)
O2W	0.0289 (18)	0.068 (3)	0.030(2)	-0.0122 (19)	0.0052 (15)	-0.003 (2)
O3W	0.0305 (19)	0.061 (3)	0.042 (2)	-0.0077 (19)	-0.0007 (17)	0.013 (2)

Geometric parameters (Å, °)

C1—N1	1.329 (6)	C11—N3	1.371 (6)
C1—C2	1.380 (6)	C11—C12	1.373 (7)
C1—H1	0.9500	C12—C13	1.379 (7)
C2—C3	1.373 (7)	C12—H12	0.9500
С2—Н2	0.9500	C13—C14	1.380 (8)
C3—C4	1.385 (7)	C13—H13	0.9500
С3—Н3	0.9500	C14—C15	1.386 (7)
C4—C5	1.375 (6)	C14—H14	0.9500
C4—H4	0.9500	C15—N3	1.336 (5)
C5—N1	1.376 (6)	C15—H15	0.9500
С5—С6	1.463 (6)	Cl1—Au1	2.2686 (11)
C6—N2	1.345 (5)	Au1—N2	1.950 (3)
С6—С7	1.383 (6)	Au1—N3	2.021 (4)
С7—С8	1.381 (7)	Au1—N1	2.025 (4)
С7—Н7	0.9500	O1W—H1A	0.8369
С8—С9	1.388 (7)	O1W—H1B	0.8373
С8—Н8	0.9500	O2W—H2A	0.8388
C9—C10	1.386 (6)	O2W—H2B	0.8381
С9—Н9	0.9500	O3W—H3A	0.8361
C10—N2	1.333 (6)	O3W—H3B	0.8423
C10—C11	1.468 (6)		
N1—C1—C2	120.8 (4)	C12—C11—C10	125.0 (4)
N1-C1-H1	119.6	C11—C12—C13	119.3 (5)
C2-C1-H1	119.6	C11—C12—H12	120.3
C3—C2—C1	119.3 (5)	C13—C12—H12	120.3
C3—C2—H2	120.4	C12—C13—C14	120.3 (5)
C1—C2—H2	120.4	C12—C13—H13	119.8
C2—C3—C4	119.9 (5)	C14—C13—H13	119.8
С2—С3—Н3	120.1	C13—C14—C15	118.7 (4)
С4—С3—Н3	120.1	C13—C14—H14	120.7
C5—C4—C3	119.5 (4)	C15—C14—H14	120.7
C5—C4—H4	120.2	N3—C15—C14	120.9 (5)
С3—С4—Н4	120.2	N3—C15—H15	119.5

C4 C5 N1	110 4 (4)	C14 C15 1115	110 5
C4—C5—N1	119.4 (4)		119.5
C4—C5—C6	125.1 (4)	N2—Au1—N3	81.25 (15)
N1C5C6	115.5 (4)	N2—Au1—N1	81.39 (15)
N2—C6—C7	117.6 (4)	N3—Au1—N1	162.64 (15)
N2—C6—C5	113.6 (4)	N2—Au1—Cl1	176.48 (11)
C7—C6—C5	128.9 (4)	N3—Au1—Cl1	98.51 (11)
C8—C7—C6	119.2 (4)	N1—Au1—Cl1	98.82 (11)
С8—С7—Н7	120.4	C1—N1—C5	121.1 (4)
С6—С7—Н7	120.4	C1—N1—Au1	126.5 (3)
C7—C8—C9	121.0 (4)	C5—N1—Au1	112.4 (3)
С7—С8—Н8	119.5	C10—N2—C6	125.6 (4)
C9-C8-H8	119.5	C10 - N2 - Au1	1172(3)
C_{10} C_{9} C_{8}	119.5 118.7(4)	C6 N2 Au1	117.2(3)
$C_{10} = C_{20} = C_{20}$	110.7 (4)	$C_1 = N_2 = A_{u1}$	117.2(3)
$C_{10} C_{20} C_{10} C_{10}$	120.7	C15 = N2 = Ay1	120.7(4)
C8-C9-H9	120.7	CII NO A I	120.7 (3)
N2-C10-C9	118.0 (4)	CII—N3—Aul	112.7 (3)
N2-C10-C11	113.9 (4)	H1A—O1W—H1B	103.6
C9—C10—C11	128.1 (4)	H2A—O2W—H2B	103.8
N3—C11—C12	120.1 (4)	H3A—O3W—H3B	103.3
N3—C11—C10	114.9 (4)		
N1—C1—C2—C3	0.1 (8)	N2—Au1—N1—C1	178.4 (4)
C1—C2—C3—C4	0.2 (8)	N3—Au1—N1—C1	178.2 (4)
C2—C3—C4—C5	-0.3 (7)	Cl1—Au1—N1—C1	-5.1 (4)
C3—C4—C5—N1	0.1 (7)	N2—Au1—N1—C5	-0.9(3)
C3—C4—C5—C6	179.1 (4)	N3—Au1—N1—C5	-1.1(7)
C4-C5-C6-N2	-1785(4)	C_{11} Au1 N_{1} C_{5}	175.6 (3)
N1-C5-C6-N2	0.5 (6)	C9-C10-N2-C6	1,3,(7)
CA = C5 = C6 = C7	3.4(8)	$C_{11} = C_{10} = N_2 = C_0$	-179.6(4)
$C_{4} = C_{5} = C_{6} = C_{7}$	3.4(0)	C11 - C10 - N2 - C0	179.0(4)
NI-C3-C0-C7	-1/7.0(3)	$C_{11} = C_{10} = N_2 = A_{11}$	-1/0.8(3)
N2-C6-C7-C8	0.5 (7)	CII = CI0 = N2 = AuI	2.3 (5)
C5-C6-C7-C8	178.5 (5)	C/C6N2C10	-1.1 (/)
C6—C7—C8—C9	-0.2 (8)	C5—C6—N2—C10	-179.4 (4)
C7—C8—C9—C10	0.5 (8)	C7—C6—N2—Au1	177.0 (3)
C8—C9—C10—N2	-1.0(7)	C5—C6—N2—Au1	-1.3 (5)
C8—C9—C10—C11	-179.9 (5)	N3—Au1—N2—C10	-0.6 (3)
N2-C10-C11-N3	-3.5 (6)	N1—Au1—N2—C10	179.5 (3)
C9—C10—C11—N3	175.5 (4)	N3—Au1—N2—C6	-178.9 (3)
N2-C10-C11-C12	177.3 (4)	N1—Au1—N2—C6	1.2 (3)
C9—C10—C11—C12	-3.7 (8)	C14—C15—N3—C11	0.2 (7)
N3—C11—C12—C13	-0.9(7)	C14—C15—N3—Au1	178.7 (3)
C10-C11-C12-C13	178.2 (4)	C12—C11—N3—C15	0.9 (7)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.0 (7)	C10-C11-N3-C15	-178.4(4)
C_{12} C_{13} C_{14} C_{15}	10(7)	C_{12} C_{11} N_{3} Δ_{11}	$-177 \ 8 \ (4)$
$C_{12} = C_{13} = C_{14} = C_{15} = C_{15}$	-11(7)	C10 $C11$ $N3$ $Ay1$	20(5)
$C_{1} = C_{1} + C_{1} = C_{1}$	1.1(7)	$V_1 = V_1 = V_2 = A_{11}$	2.7 (3)
$C_2 = C_1 = N_1 = C_2$	-0.3(7)	$N_{1} = A_{1} = N_{2} = C_{12}$	-1/9.9(4)
C2—CI—NI—Aul	-1/9.6 (4)	N1 - Au1 - N5 - C15	-1/9./(4)
C4 - C5 - N1 - C1	0.2 (7)	CII—Au1—N3—C15	3.6 (4)

supporting information

C6—C5—N1—C1	-178.9 (4)	N2—Au1—N3—C11	-1.4 (3)
C4—C5—N1—Au1	179.5 (3)	N1—Au1—N3—C11	-1.1 (7)
C6—C5—N1—Au1	0.5 (5)	Cl1—Au1—N3—C11	-177.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H…A
O1 <i>W</i> —H1 <i>A</i> ···Cl2 ⁱ	0.84	2.32	3.140 (4)	167
O1 <i>W</i> —H1 <i>B</i> ···Cl3	0.84	2.42	3.229 (4)	161
O2 <i>W</i> —H2 <i>A</i> ···Cl2	0.84	2.31	3.141 (4)	172
O2 <i>W</i> —H2 <i>B</i> ···O3 <i>W</i>	0.84	1.94	2.768 (5)	169
O3 <i>W</i> —H3 <i>A</i> ···Cl3 ⁱⁱ	0.84	2.31	3.133 (4)	167
O3 <i>W</i> —H3 <i>B</i> ···Cl3 ⁱⁱⁱ	0.84	2.36	3.194 (4)	171

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.