organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(15,25)-2-Carboxy-1-(3-pyridiniomethyl)pyrrolidin-1-ium dichloride hemihydrate

Jing Dai and Xiao-Chun Wen*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 5 September 2008; accepted 11 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.034; wR factor = 0.086; data-to-parameter ratio = 18.3.

In the title molecule, $C_{11}H_{16}N_2O_2^{2+}\cdot 2Cl^-\cdot 0.5H_2O$, all N atoms are protonated. In the crystal structure, the organic cation and Cl^{-} ions are linked by N-H···Cl and O-H···Cl hydrogen bonds, forming a one-dimensional infinite ribbon extending parallel to the (110) plane.

Related literature

For the chemistry of amino acid derivatives, see: Fu et al. (2007); Dai & Fu (2008); Wen (2008).

Experimental

Crystal data

$C_{11}H_{16}N_2O_2^{2+}\cdot 2Cl^-\cdot 0.5H_2O$	c = 15.027 (5) Å
$M_r = 288.17$	$\beta = 97.90 \ (2)^{\circ}$
Monoclinic, C2	V = 1346.5 (7) Å ³
a = 13.070 (5) Å	Z = 4
b = 6.9215 (15) Å	Mo $K\alpha$ radiation

 $\mu = 0.48 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.892, \ T_{\max} = 0.918$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.085$	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
3154 reflections	Absolute structure: Flack (1983),
172 parameters	1420 Friedel pairs
4 restraints	Flack parameter: 0.02 (5)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1 - H1B \cdots Cl2$	0.82	2.22	2.9869 (19)	155
$N1 - H1A \cdots Cl1$	0.86	2.19	2.9980 (19)	157
$N2 - H2 \cdot \cdot \cdot Cl2^{i}$	0.91	2.27	3.1405 (18)	159
$O1W - H1W \cdots Cl2^{ii}$	0.90	2.46	3.342 (15)	166

Symmetry codes: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $-x + \frac{1}{2}, y - \frac{3}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2371).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, 0974.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wen, X.-C. (2008). Acta Cryst. E64, 01460.

$0.24 \times 0.20 \times 0.18 \; \rm mm$

6833 measured reflections

 $R_{\rm int} = 0.020$

3154 independent reflections

2893 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2008). E64, o1960 [doi:10.1107/S160053680802922X]

(1*S*,2*S*)-2-Carboxy-1-(3-pyridiniomethyl)pyrrolidin-1-ium dichloride hemihydrate

Jing Dai and Xiao-Chun Wen

S1. Comment

Amino acid derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Fu *et al.* 2007; Dai & Fu 2008; Wen 2008). We report here the crystal structure of the title compound, 1-((pyridin-3-yl)methyl)-pyrrolidine-2-carboxylic acid-1, 1'-ium-dichloride.

In the title compound (Fig.1), the N1 and N2 atoms of the pyrrolidine and pyridine ring are protonated. The two rings are linked by methylene bridge. Bond lengths and angles lie within normal ranges.

In the crystal structure, the organic cation and Cl⁻ ions are linked to form a one-dimentional infinite ribbon developping parallel to the $(1\ 1\ 0)$ plane through N—H…Cl and O—H…Cl hydrogen bonds (Table 1, Fig.2).

S2. Experimental

1-((pyridin-3-yl)methyl)pyrrolidine-2-carboxylic acid (3 mmol) was dissolved in the solution of ethanol (20 ml) and hydrochloric acid (1 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound for X-ray analysis.

S3. Refinement

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic), 0.97 Å (methylene), N-H = 0.86 Å (N1), 0.91 Å (N2) and O-H = 0.85 Å with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O).

One of the pyrrolidine rings is disordered with the C8 atom statistically distributed over two positions. The solvate water molecule is also disordered around an inversion center. These disorders were treated using the tools (SAME, PART) available in SHELXL-97 (Sheldrick, 2008).

Figure 1

A view of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent water molecule is omitted for clarity. H atoms are represented as small sphere of arbitrary radii.

Figure 2

Part of the crystal packing of the title compound viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

(15,25)-2-Carboxy-1-(3-pyridiniomethyl)pyrrolidin-1-ium dichloride hemihydrate

F(000) = 604

 $\theta = 3.2 - 27.5^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$

Block, colorless

 $0.24 \times 0.20 \times 0.18 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.416 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3101 reflections

Crystal data

 $C_{11}H_{16}N_{2}O_{2}^{2+}\cdot 2CI^{-}\cdot 0.5H_{2}O$ $M_{r} = 288.17$ Monoclinic, C2 Hall symbol: C 2y a = 13.070 (5) Å b = 6.9215 (15) Å c = 15.027 (5) Å $\beta = 97.90$ (2)° V = 1346.5 (7) Å³ Z = 4

Data collection

Rigaku Mercury2	6833 measured reflections
diffractometer	3154 independent reflections
Radiation source: fine-focus sealed tube	2893 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
(CrystalClea; Rigaku, 2005)	$l = -19 \rightarrow 19$
$T_{\min} = 0.892, \ T_{\max} = 0.918$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

	,
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 0.0829P]$
S = 1.07	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3154 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
172 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta ho_{ m min} = -0.21 \ m e \ m A^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1420 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.02 (5)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.49977 (16)	0.5154 (3)	0.12620 (12)	0.0360 (4)	
H1	0.4894	0.6481	0.1286	0.043*	

C2	0.43049 (14)	0.3904 (3)	0.15703 (11)	0.0314 (4)	
C3	0.44775 (16)	0.1940 (3)	0.15117 (15)	0.0438 (5)	
H3	0.4014	0.1066	0.1704	0.053*	
C4	0.5344 (2)	0.1274 (3)	0.11651 (17)	0.0515 (6)	
H4	0.5471	-0.0045	0.1136	0.062*	
C5	0.60084 (15)	0.2572 (4)	0.08674 (13)	0.0421 (5)	
Н5	0.6585	0.2142	0.0626	0.051*	
C6	0.33723 (16)	0.4708 (4)	0.19263 (13)	0.0404 (5)	
H6A	0.3133	0.5847	0.1583	0.049*	
H6B	0.2822	0.3757	0.1849	0.049*	
C7	0.40028 (17)	0.3566 (3)	0.35056 (14)	0.0421 (5)	0.50
H71	0.3900	0.2356	0.3180	0.051*	0.50
H72	0.4736	0.3723	0.3707	0.051*	0.50
C8	0.3426 (3)	0.3553 (7)	0.4284 (3)	0.0439 (10)	0.50
H81	0.3887	0.3327	0.4837	0.053*	0.50
H82	0.2899	0.2556	0.4217	0.053*	0.50
С9	0.29262 (18)	0.5601 (4)	0.42867 (14)	0.0474 (5)	0.50
H91	0.2306	0.5587	0.4574	0.057*	0.50
H92	0.3407	0.6544	0.4582	0.057*	0.50
C7′	0.40028 (17)	0.3566 (3)	0.35056 (14)	0.0421 (5)	0.50
H71′	0.4718	0.3271	0.3455	0.051*	0.50
H72′	0.3586	0.2415	0.3376	0.051*	0.50
C8′	0.3884 (4)	0.4405 (8)	0.4435 (3)	0.0474 (11)	0.50
H81′	0.3816	0.3379	0.4862	0.057*	0.50
H82′	0.4477	0.5194	0.4661	0.057*	0.50
C9′	0.29262 (18)	0.5601 (4)	0.42867 (14)	0.0474 (5)	0.50
H91′	0.3031	0.6808	0.4614	0.057*	0.50
H92′	0.2358	0.4916	0.4498	0.057*	0.50
C10	0.26803 (14)	0.5995 (3)	0.32803 (12)	0.0313 (4)	
H10	0.2075	0.5229	0.3038	0.038*	
C11	0.24701 (14)	0.8082 (3)	0.30450 (12)	0.0346 (4)	
Cl1	0.67434 (4)	0.78893 (6)	0.01140 (3)	0.04105 (13)	
C12	0.06792 (4)	1.25793 (8)	0.32514 (4)	0.04764 (15)	
N1	0.58244 (13)	0.4454 (3)	0.09258 (11)	0.0382 (4)	
H1A	0.6252	0.5256	0.0741	0.046*	
N2	0.36060 (11)	0.5234 (2)	0.29028 (9)	0.0285 (3)	
H2	0.4098	0.6173	0.2959	0.034*	
01	0.16413 (12)	0.8657 (3)	0.33754 (12)	0.0583 (5)	
H1B	0.1530	0.9797	0.3249	0.088*	
O2	0.29780 (12)	0.9077 (2)	0.26191 (11)	0.0534 (4)	
O1W	0.4711 (9)	-0.0105 (7)	0.4873 (10)	0.123 (5)	0.50
H1W	0.4729	-0.0753	0.5396	0.185*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0464 (12)	0.0296 (10)	0.0320 (9)	-0.0014 (8)	0.0055 (8)	-0.0005 (7)
C2	0.0344 (9)	0.0324 (10)	0.0279 (9)	0.0017 (8)	0.0065 (7)	-0.0020 (7)

C3	0.0482 (13)	0.0338 (11)	0.0545 (13)	-0.0074 (9)	0.0249 (10)	-0.0030 (9)
C4	0.0657 (16)	0.0318 (11)	0.0635 (14)	0.0076 (10)	0.0314 (12)	0.0003 (10)
C5	0.0372 (9)	0.0516 (13)	0.0401 (10)	0.0091 (10)	0.0140 (8)	0.0024 (9)
C6	0.0343 (10)	0.0552 (14)	0.0321 (9)	0.0065 (9)	0.0059 (8)	-0.0093 (8)
C7	0.0484 (12)	0.0362 (11)	0.0434 (11)	0.0035 (9)	0.0125 (9)	0.0089 (9)
C8	0.038 (2)	0.050 (3)	0.044 (2)	-0.004(2)	0.0081 (19)	0.010 (2)
C9	0.0525 (13)	0.0551 (15)	0.0377 (11)	0.0030(11)	0.0174 (9)	0.0035 (10)
C7′	0.0484 (12)	0.0362 (11)	0.0434 (11)	0.0035 (9)	0.0125 (9)	0.0089 (9)
C8′	0.057 (3)	0.050 (3)	0.037 (2)	0.002 (2)	0.013 (2)	0.007 (2)
C9′	0.0525 (13)	0.0551 (15)	0.0377 (11)	0.0030 (11)	0.0174 (9)	0.0035 (10)
C10	0.0264 (9)	0.0338 (10)	0.0355 (9)	-0.0026 (7)	0.0110 (7)	-0.0032 (7)
C11	0.0337 (9)	0.0380 (11)	0.0340 (9)	-0.0001 (8)	0.0111 (7)	-0.0036 (8)
C11	0.0415 (2)	0.0343 (3)	0.0504 (3)	-0.0046 (2)	0.01712 (19)	-0.0065 (2)
Cl2	0.0374 (2)	0.0372 (3)	0.0681 (3)	-0.0070(2)	0.0062 (2)	-0.0065 (2)
N1	0.0363 (8)	0.0447 (10)	0.0351 (8)	-0.0105 (7)	0.0098 (7)	0.0028 (7)
N2	0.0252 (7)	0.0299 (8)	0.0315 (7)	-0.0032 (6)	0.0077 (6)	-0.0023 (6)
01	0.0527 (9)	0.0428 (9)	0.0882 (12)	0.0126 (8)	0.0411 (9)	0.0056 (9)
O2	0.0530 (9)	0.0414 (9)	0.0724 (10)	0.0029 (8)	0.0320 (8)	0.0112 (8)
O1W	0.201 (15)	0.071 (3)	0.112 (8)	0.044 (5)	0.077 (9)	0.033 (5)

Geometric parameters (Å, °)

C1—N1	1.344 (3)	C8—C9	1.561 (5)
C1—C2	1.378 (3)	C8—H81	0.9700
C1—H1	0.9300	C8—H82	0.9700
С2—С3	1.383 (3)	C9—C10	1.527 (3)
С2—С6	1.504 (3)	С9—Н91	0.9700
С3—С4	1.389 (3)	С9—Н92	0.9700
С3—Н3	0.9300	C8′—H81′	0.9700
C4—C5	1.366 (3)	C8′—H82′	0.9700
C4—H4	0.9300	C10—N2	1.501 (2)
C5—N1	1.330 (3)	C10—C11	1.503 (3)
С5—Н5	0.9300	C10—H10	0.9800
C6—N2	1.502 (2)	C11—O2	1.201 (2)
С6—Н6А	0.9700	C11—O1	1.314 (2)
C6—H6B	0.9700	N1—H1A	0.8600
С7—С8	1.476 (5)	N2—H2	0.9100
C7—N2	1.514 (3)	O1—H1B	0.8200
С7—Н71	0.9700	O1W—H1W	0.9015
С7—Н72	0.9700		
N1—C1—C2	119.96 (19)	С7—С8—Н82	110.8
N1-C1-H1	120.0	С9—С8—Н82	110.8
C2-C1-H1	120.0	H81—C8—H82	108.9
C1—C2—C3	118.38 (18)	C10—C9—C8	101.0 (2)
C1—C2—C6	119.32 (19)	C10—C9—H91	111.6
C3—C2—C6	122.27 (18)	C8—C9—H91	111.6
C2—C3—C4	119.93 (19)	С10—С9—Н92	111.6

С2—С3—Н3	120.0	С8—С9—Н92	111.6
С4—С3—Н3	120.0	Н91—С9—Н92	109.4
C5—C4—C3	119.5 (2)	H81'—C8'—H82'	108.8
С5—С4—Н4	120.3	N2-C10-C11	112.30 (15)
C3—C4—H4	120.3	N2—C10—C9	103.93 (16)
N1—C5—C4	119.58 (19)	C11—C10—C9	114.30 (16)
N1—C5—H5	120.2	N2—C10—H10	108.7
С4—С5—Н5	120.2	C11—C10—H10	108.7
N2—C6—C2	111.79 (16)	С9—С10—Н10	108.7
N2—C6—H6A	109.3	O2—C11—O1	124.9 (2)
С2—С6—Н6А	109.3	O2—C11—C10	125.44 (18)
N2—C6—H6B	109.3	O1—C11—C10	109.62 (16)
С2—С6—Н6В	109.3	C5—N1—C1	122.67 (18)
H6A—C6—H6B	107.9	C5—N1—H1A	118.7
C8—C7—N2	108.0 (2)	C1—N1—H1A	118.7
C8—C7—H71	110.1	C10—N2—C6	112.84 (14)
N2—C7—H71	110.1	C10—N2—C7	105.62 (14)
С8—С7—Н72	110.1	C6—N2—C7	114.01 (16)
N2—C7—H72	110.1	C10—N2—H2	108.0
H71—C7—H72	108.4	C6—N2—H2	108.0
С7—С8—С9	104.8 (3)	C7—N2—H2	108.0
С7—С8—Н81	110.8	C11—O1—H1B	109.5
С9—С8—Н81	110.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
01—H1 <i>B</i> ···Cl2	0.82	2.22	2.9869 (19)	155
N1—H1A···Cl1	0.86	2.19	2.9980 (19)	157
N2—H2···Cl2 ⁱ	0.91	2.27	3.1405 (18)	159
O1W— $H1W$ ···Cl2 ⁱⁱ	0.90	2.46	3.342 (15)	166

Symmetry codes: (i) *x*+1/2, *y*-1/2, *z*; (ii) -*x*+1/2, *y*-3/2, -*z*+1.