

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-chlorobenzoato- κO)bis(1-vinylimidazole- κN^3)copper(II)

Juan Zhao

College of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China Correspondence e-mail: zhaojuanqd@163.com

Received 14 September 2008; accepted 19 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; R factor = 0.073; wR factor = 0.192; data-to-parameter ratio = 13.7.

In the title compound, $[Cu(C_7H_4ClO_2)_2(C_5H_6N_2)_2]$, each Cu^{II} ion, located on an inversion center, has a slightly distorted square-planar coordination geometry formed by two 1-vinylimidazole molecules [Cu-N = 1.954 (6) Å] and two 2chlorobenzoate anions [Cu-O = 1.958 (6) Å]. Weak intermolecular $C-H \cdots O$ hydrogen bonds contribute to the crystal packing stability.

Related literature

A square-planar coordination environment of Cu^{II} was also observed in bis(3-hydroxybenzoato- κO)bis(1*H*-imidazole- κN^3)copper(II), see: Liu *et al.* (2006).

V = 1225.8 (5) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.10$ mm

2204 measured reflections

2115 independent reflections

1620 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.15 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.039$

49 restraints

 $\Delta \rho_{\rm max} = 0.73 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.89 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 2

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_7H_4ClO_2)_2(C_5H_6N_2)_2 \end{bmatrix}$ $M_r = 562.89$ Monoclinic, $P2_1/c$ a = 7.9360 (16) Å b = 11.236 (2) Å c = 14.190 (3) Å $\beta = 104.36$ (3)°

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) *T*_{min} = 0.803, *T*_{max} = 0.894

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.192$ S = 1.042115 reflections 154 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots O2^{i}$	0.93	2.56	3.484 (10)	174
$C3-H3A\cdots O1^{ii}$	0.93	2.49	2.918 (8)	108
$C5-H5A\cdots O2^{i}$	0.93	2.45	3.342 (9)	160
$C11 - H11A \cdots O2^{iii}$	0.93	2.60	3.460 (9)	155

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y, -z; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (Y2006B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2449).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, J.-W., Zhu, B. & Ng, S. W. (2006). Acta Cryst. E62, m3514-m3515.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1321 [doi:10.1107/S1600536808030237]

Bis(2-chlorobenzoato- κO)bis(1-vinylimidazole- κN^3)copper(II)

Juan Zhao

S1. Comment

In the title compound, (I) (Fig. 1), each Cu ion is coordinated by a pair of 1-vinylimidazole ligands and a pair of monodentate carboxylate groups, affording a square planar N_2O_2 coordination geometry. The CuN₂O₂ core involving the central atoms is almost perfectly square planar. The *trans* angles are all 180° for symmetry requirements and the *cis* ones are 89.52 (19)° and 90.48 (19)° for N—Cu—O, respectively. The Cu—N(imidazole) distance is 1.954 (6)Å and The Cu—O bond distance is 1.958 (4) Å. These bond distances are comparable with the reported data (Liu *et al.*, 2006). The five atoms of CuN₂O₂ are coplanar. Distances and angles in 1-vinylimidazole are normal. The weak intermolecular C—H…O interactions (Table 1) stabilize the structure.

S2. Experimental

Copper(II) acetate hydrate(2.00 g, 10 mmol), 1-vinylimidazole(0.99 g, 10 mmol) and 2-chlorobenzoic acid(1.55 g, 10 mmol) were dissolved in water(40 ml). The pH of the solution was adjusted to 7 with 0.2*M* sodium hydroxide. The solution was filtered; blue single crystals of (I) were isolated after several days.

S3. Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2$ $U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, -z).

Bis(2-chlorobenzoato-κO)bis(1-vinylimidazole-κN³)copper(II)

Crystal data	
$[Cu(C_7H_4ClO_2)_2(C_5H_6N_2)_2]$	F(000) = 574
$M_r = 562.89$	$D_{\rm x} = 1.525 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 7.9360 (16) Å	$\theta = 10 - 14^{\circ}$
b = 11.236 (2) Å	$\mu = 1.15 \text{ mm}^{-1}$
c = 14.190 (3) Å	T = 293 K
$\beta = 104.36 \ (3)^{\circ}$	Block, blue
$V = 1225.8 (5) Å^3$	$0.20 \times 0.10 \times 0.10 \text{ mm}$
Z = 2	
Data collection	
Bruker SMART 1K CCD area-detector	2204 measured reflections
diffractometer	2115 independent reflections
Radiation source: fine-focus sealed tube	1620 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
Thin–slice ω scans	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2004)	$k = 0 \rightarrow 13$
$T_{\min} = 0.803, \ T_{\max} = 0.894$	$l = 0 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.073$	Hydrogen site location: inferred from
$wR(F^2) = 0.192$	neighbouring sites
S = 1.04	H-atom parameters constrained
2115 reflections	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2 + 6P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
49 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.73 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu	0.0000	0.0000	0.0000	0.0439 (4)
Cl	0.3736 (3)	-0.36078 (18)	0.02395 (17)	0.0794 (6)
01	0.0066 (5)	-0.1740 (3)	0.0077 (3)	0.0455 (10)
N1	-0.3796 (8)	0.0695 (5)	0.1425 (4)	0.0550 (14)
C1	-0.6165 (13)	0.1373 (8)	0.2115 (6)	0.088 (3)
H1A	-0.6754	0.0655	0.1961	0.105*
H1B	-0.6638	0.1972	0.2422	0.105*
O2	0.1925 (7)	-0.1406 (4)	0.1509 (3)	0.0647 (14)
N2	-0.1911 (7)	0.0008 (4)	0.0642 (4)	0.0527 (14)
C2	-0.4664 (11)	0.1540 (7)	0.1896 (5)	0.066 (2)
H2A	-0.4120	0.2270	0.2063	0.079*
C3	-0.2436 (8)	0.0933 (6)	0.1068 (5)	0.047
H3A	-0.1907	0.1676	0.1114	0.057*
C4	-0.3049 (9)	-0.0881 (6)	0.0741 (5)	0.0504 (15)
H4A	-0.3010	-0.1654	0.0513	0.060*
C5	-0.4234 (9)	-0.0489 (6)	0.1212 (5)	0.0537 (16)
H5A	-0.5138	-0.0917	0.1360	0.064*
C6	0.1057 (9)	-0.2068 (5)	0.0889 (5)	0.0501 (16)
C7	0.1031 (8)	-0.3403 (5)	0.1088 (4)	0.0433 (13)
C8	0.2177 (9)	-0.4153 (6)	0.0813 (4)	0.0513 (15)
С9	0.2146 (11)	-0.5370 (6)	0.0999 (6)	0.0662 (19)
H9A	0.2926	-0.5882	0.0812	0.079*
C10	0.0945 (11)	-0.5801 (6)	0.1461 (6)	0.0676 (19)
H10A	0.0906	-0.6613	0.1580	0.081*
C11	-0.0196 (11)	-0.5057 (7)	0.1749 (5)	0.0648 (18)

supporting information

H11A	-0.0990	-0.5360	0.2071	0.078*
C12	-0.0162 (10)	-0.3853 (6)	0.1558 (5)	0.0580 (17)
H12A	-0.0943	-0.3344	0.1746	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0696 (7)	0.0204 (5)	0.0350 (5)	0.0026 (5)	0.0001 (5)	0.0014 (4)
Cl	0.1031 (15)	0.0558 (11)	0.0838 (14)	0.0230 (11)	0.0319 (12)	0.0061 (10)
01	0.060 (2)	0.030 (2)	0.043 (2)	0.0052 (19)	0.0066 (19)	0.0033 (18)
N1	0.088 (4)	0.033 (3)	0.035 (3)	0.009 (3)	-0.004 (3)	0.002 (2)
C1	0.115 (7)	0.071 (6)	0.079 (6)	0.004 (5)	0.029 (6)	-0.011 (5)
O2	0.094 (4)	0.029 (2)	0.058 (3)	-0.003 (2)	-0.006 (3)	-0.009 (2)
N2	0.075 (3)	0.024 (2)	0.048 (3)	0.008 (3)	-0.008 (3)	0.001 (2)
C2	0.096 (6)	0.054 (5)	0.042 (4)	0.004 (4)	0.004 (4)	0.007 (3)
C3	0.047	0.047	0.047	0.000	0.012	0.000
C4	0.068 (4)	0.035 (3)	0.043 (3)	0.008 (3)	0.006 (3)	0.003 (3)
C5	0.067 (4)	0.043 (3)	0.045 (4)	-0.001 (3)	0.001 (3)	0.009 (3)
C6	0.074 (4)	0.020 (3)	0.050 (4)	-0.004 (3)	0.004 (3)	0.000 (3)
C7	0.064 (3)	0.028 (3)	0.031 (3)	0.002 (2)	-0.001 (2)	-0.002 (2)
C8	0.072 (4)	0.037 (3)	0.040 (3)	0.011 (3)	0.004 (3)	-0.002 (3)
C9	0.091 (5)	0.039 (3)	0.062 (4)	0.017 (3)	0.008 (4)	-0.001 (3)
C10	0.091 (5)	0.035 (3)	0.063 (4)	-0.005 (3)	-0.007 (3)	0.007 (3)
C11	0.086 (4)	0.053 (4)	0.051 (4)	-0.017 (3)	0.010 (3)	0.013 (3)
C12	0.085 (4)	0.042 (3)	0.047 (3)	-0.002 (3)	0.017 (3)	0.007 (3)

Geometric parameters (Å, °)

Cu—N2 ⁱ	1.954 (6)	С3—НЗА	0.9300
Cu—N2	1.954 (6)	C4—C5	1.356 (9)
Cu—O1 ⁱ	1.958 (4)	C4—H4A	0.9300
Cu—O1	1.958 (4)	C5—H5A	0.9300
Cl—C8	1.751 (7)	C6—C7	1.528 (8)
O1—C6	1.278 (7)	C7—C8	1.366 (8)
N1—C3	1.327 (8)	C7—C12	1.383 (9)
N1—C5	1.389 (9)	C8—C9	1.394 (10)
N1—C2	1.433 (9)	C9—C10	1.372 (11)
C1—C2	1.317 (10)	С9—Н9А	0.9300
C1—H1A	0.9300	C10—C11	1.367 (11)
C1—H1B	0.9300	C10—H10A	0.9300
O2—C6	1.225 (7)	C11—C12	1.381 (9)
N2—C3	1.320 (8)	C11—H11A	0.9300
N2—C4	1.377 (8)	C12—H12A	0.9300
C2—H2A	0.9300		
N2 ⁱ —Cu—N2	180.0 (3)	C4—C5—N1	104.5 (6)
N2 ⁱ —Cu—O1 ⁱ	89.52 (19)	C4—C5—H5A	127.7
N2—Cu—O1 ⁱ	90.48 (19)	N1—C5—H5A	127.7

N2 ⁱ —Cu—O1	90.48 (19)	O2—C6—O1	125.6 (5)
N2—Cu—O1	89.52 (19)	O2—C6—C7	119.7 (6)
O1 ⁱ —Cu—O1	180.0 (4)	O1—C6—C7	114.6 (5)
C6—O1—Cu	109.9 (4)	C8—C7—C12	119.8 (6)
C3—N1—C5	107.1 (6)	C8—C7—C6	120.9 (6)
C3—N1—C2	125.1 (6)	С12—С7—С6	119.4 (6)
C5—N1—C2	127.8 (6)	C7—C8—C9	120.4 (7)
C2—C1—H1A	120.0	C7—C8—C1	120.9 (5)
C2—C1—H1B	120.0	C9—C8—Cl	118.6 (5)
H1A—C1—H1B	120.0	С10—С9—С8	118.9 (7)
C3—N2—C4	103.6 (6)	С10—С9—Н9А	120.5
C3—N2—Cu	125.9 (4)	С8—С9—Н9А	120.5
C4—N2—Cu	130.4 (4)	C11—C10—C9	121.1 (7)
C1—C2—N1	125.6 (8)	C11—C10—H10A	119.4
C1—C2—H2A	117.2	C9—C10—H10A	119.4
N1—C2—H2A	117.2	C10-C11-C12	119.6 (7)
N2—C3—N1	113.2 (6)	C10-C11-H11A	120.2
N2—C3—H3A	123.4	C12—C11—H11A	120.2
N1—C3—H3A	123.4	C11—C12—C7	120.1 (7)
C5—C4—N2	111.6 (6)	C11—C12—H12A	119.9
C5—C4—H4A	124.2	C7—C12—H12A	119.9
N2—C4—H4A	124.2		
N2 ⁱ —Cu—O1—C6	92.5 (4)	Cu—O1—C6—O2	-4.0 (9)
N2—Cu—O1—C6	-87.5 (4)	Cu—O1—C6—C7	172.6 (4)
O1 ⁱ —Cu—N2—C3	-17.5 (5)	O2—C6—C7—C8	-92.3 (8)
O1—Cu—N2—C3	162.5 (5)	O1—C6—C7—C8	90.9 (7)
O1 ⁱ —Cu—N2—C4	160.1 (5)	O2—C6—C7—C12	87.2 (8)
O1—Cu—N2—C4	-19.9 (5)	O1—C6—C7—C12	-89.6 (7)
C3—N1—C2—C1	168.6 (8)	C12—C7—C8—C9	0.4 (10)
C5—N1—C2—C1	-8.3 (11)	C6—C7—C8—C9	179.9 (6)
C4—N2—C3—N1	0.2 (7)	C12—C7—C8—Cl	-178.6 (5)
Cu—N2—C3—N1	178.3 (4)	C6—C7—C8—Cl	0.9 (8)
C5—N1—C3—N2	-0.6 (7)	C7—C8—C9—C10	0.1 (10)
C2—N1—C3—N2	-178.0 (5)	Cl—C8—C9—C10	179.0 (6)
C3—N2—C4—C5	0.3 (7)	C8—C9—C10—C11	-0.8 (11)
Cu—N2—C4—C5	-177.7 (4)	C9—C10—C11—C12	1.1 (11)
N2-C4-C5-N1	-0.7 (7)	C10-C11-C12-C7	-0.7 (11)
C3—N1—C5—C4	0.8 (7)	C8—C7—C12—C11	0.0 (10)
C2—N1—C5—C4	178.0 (6)	C6-C7-C12-C11	-179.6 (6)

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···O2 ⁱⁱ	0.93	2.56	3.484 (10)	174
C3—H3A···O1 ⁱ	0.93	2.49	2.918 (8)	108

			supportin	g information
С5—Н5А…О2 ^{іі}	0.93	2.45	3.342 (9)	160
С11—Н11А…О2 ^{ііі}	0.93	2.60	3.460 (9)	155

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2.