organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Benzyl-2-(2,4-dichlorophenoxy)acetamide

Ming-Jun Chen,^a Yang-Wu Fu,^a Wen-Liang Dong,^b Zhu-Bo Li^{c*} and Hua Zuo^c

^aCollege of Chemical and Environmental Engineering, Chongqing Three Gorges University, Chongqing, 404000, People's Republic of China, ^bShandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China, and ^cCollege of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, People's Republic of China

Correspondence e-mail: lizhubo2007@163.com

Received 17 July 2008; accepted 13 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 17.6.

In the title compound, $C_{15}H_{13}Cl_2NO_2$, the dihedral angle between the aromatic rings is $27.17 (11)^{\circ}$. In the crystal the molecules are linked by $N-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Li et al. (2008a,b).

Experimental

Crystal data

C ₁₅ H ₁₃ Cl ₂ NO ₂	c = 11.3962 (15) Å
$M_r = 310.16$	$\beta = 90.402 (2)^{\circ}$
Monoclinic, $P2_1/c$	V = 1450.2 (3) Å ³
a = 4.7447 (6) Å	Z = 4
b = 26.821 (3) Å	Mo $K\alpha$ radiation

```
\mu = 0.45 \text{ mm}^{-1}
T = 298 (2) K
```

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min}=0.877,\;T_{\rm max}=0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ H atoms treated by a mixture of $wR(F^2) = 0.103$ independent and constrained S = 1.03refinement $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 3254 reflections $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 185 parameters

 $0.30 \times 0.10 \times 0.05 \text{ mm}$

8418 measured reflections

 $R_{\rm int} = 0.027$

3254 independent reflections

2233 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N-H0A\cdots O2^{i}$	0.83 (2)	2.06 (2)	2.883 (2)	169 (2)
	4			

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported by the Science and Technology Key Project of Chongqing Science and Technology Commission, China (grant No. CSTC, 2008 A A1001)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2090).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2005). SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Li, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008a). Acta Cryst. E64, 01610.
- Li, Z.-B., Zuo, H., Dong, W.-L., He, X.-Y. & Chen, Z.-B. (2008b). Acta Cryst. E64, o1609.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1968 [doi:10.1107/S1600536808029371]

N-Benzyl-2-(2,4-dichlorophenoxy)acetamide

Ming-Jun Chen, Yang-Wu Fu, Wen-Liang Dong, Zhu-Bo Li and Hua Zuo

S1. Comment

The structure determination was performed as a part of a project on the interactions of small molecules with proteins. The single-crystal characterization should be valuable to understand such interactions. In our previous papers we reported single crystal structures of *N*-benzyl-2-(2-chloro-4-methylphenoxy)acetamide (Li *et al.*, 2008a) and *N*-benzyl-2-(2,6-di-chlorophenoxy)acetamide (Li *et al.*, 2008b). In the title compound, $C_{15}H_{13}Cl_2NO_2$, all bond lengths and angles are normal. The dihedral angle between the two aryl rings is 27.17 (11)°. The molecules are connected via N-H…O hydrogen bonding into chains.

S2. Experimental

The solution of 2,4-dichlorophenol (1.0 mmol), *N*-benzyl-2-chloroacetamide (1.1 mmol), K₂CO₃ (1.1 mmol) and CH₃CN (20 ml) was refluxed for 3 h. After completion of the reaction, the solution was cooled; solvent was evaporated under reduced pressure. The residue was poured into water and adjusted the pH to 6–7 with dilute hydrochloric acid (10%) and extracted with ethyl acetate, washed with brine and dried over anhydrous MgSO₄ to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using ethyl acetate as eluent (yield 87%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid dissolved in ethyl acetate/hexane at room temperatures for 4 days.

S3. Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH₂ groups) and 0.96 Å (for CH₃ groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH₃ groups) the equivalent displacement parameter of their parent atoms, except the N-H one which was freely refined.

Figure 1

The molecular structure of the title compound showing displacement ellipsoids drawn at 50% probability level.

N-benzyl-2-(2,4-dichlorophenoxy)acetamide

Crystal data	
$C_{15}H_{13}Cl_2NO_2$	F(000) = 640
$M_r = 310.16$	$D_{\rm x} = 1.421 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2023 reflections
a = 4.7447 (6) Å	$\theta = 2.4 - 24.3^{\circ}$
b = 26.821 (3) Å	$\mu=0.45~\mathrm{mm^{-1}}$
c = 11.3962 (15) Å	T = 298 K
$\beta = 90.402 \ (2)^{\circ}$	Prism, colourless
V = 1450.2 (3) Å ³	$0.30 \times 0.10 \times 0.05 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART CCD area-detector	8418 measured reflections
diffractometer	3254 independent reflections
Radiation source: fine-focus sealed tube	2233 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
phi and ω scans	$\theta_{\rm max} = 27.5^\circ, \theta_{\rm min} = 1.5^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(PROGRAM? REFERENCE?)	$k = -26 \rightarrow 34$
$T_{\min} = 0.878, \ T_{\max} = 0.978$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3254 reflections	and constrained refinement
185 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.2337P]$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0422P)^{2} + 0.2337P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant

0 restraints

direct methods

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N	-0.5859 (3)	0.13972 (6)	1.13239 (14)	0.0432 (4)	
H0A	-0.757 (4)	0.1456 (7)	1.1390 (16)	0.045 (6)*	
Cl1	-0.01187 (15)	0.32457 (2)	1.38966 (5)	0.0718 (2)	
C12	0.22803 (14)	0.39046 (2)	0.95534 (5)	0.0711 (2)	
01	-0.3722 (3)	0.25520 (5)	1.27258 (11)	0.0467 (3)	
O2	-0.1562 (3)	0.17031 (5)	1.18000 (13)	0.0533 (4)	
C1	-0.0568 (4)	0.32072 (6)	1.23900 (15)	0.0419 (4)	
C2	0.0880 (4)	0.35291 (7)	1.16733 (16)	0.0470 (5)	
H2A	0.2087	0.3767	1.1991	0.056*	
C3	0.0511 (4)	0.34928 (7)	1.04765 (16)	0.0462 (5)	
C4	-0.1215 (4)	0.31367 (7)	0.99970 (17)	0.0496 (5)	
H4A	-0.1415	0.3112	0.9187	0.059*	
C5	-0.2659 (4)	0.28142 (7)	1.07243 (16)	0.0468 (5)	
H5A	-0.3834	0.2573	1.0398	0.056*	
C6	-0.2379 (4)	0.28461 (6)	1.19306 (15)	0.0386 (4)	
C7	-0.5631 (4)	0.21854 (7)	1.23010 (18)	0.0468 (5)	
H7A	-0.6842	0.2334	1.1707	0.056*	
H7B	-0.6816	0.2075	1.2941	0.056*	
C8	-0.4137 (4)	0.17379 (6)	1.17797 (15)	0.0370 (4)	
C9	-0.4894 (4)	0.09348 (7)	1.08006 (17)	0.0507 (5)	
H9A	-0.2910	0.0966	1.0615	0.061*	
H9B	-0.5912	0.0880	1.0071	0.061*	
C10	-0.5293 (4)	0.04881 (7)	1.15846 (17)	0.0459 (5)	
C11	-0.7149 (5)	0.01174 (9)	1.1278 (2)	0.0726 (7)	
H11A	-0.8146	0.0140	1.0574	0.087*	
C12	-0.7554 (7)	-0.02898 (10)	1.2005 (3)	0.0908 (9)	
H12A	-0.8836	-0.0536	1.1788	0.109*	
C13	-0.6107 (7)	-0.03343 (10)	1.3027 (3)	0.0872 (9)	
H13A	-0.6395	-0.0608	1.3514	0.105*	
C14	-0.4209 (6)	0.00298 (11)	1.3337 (2)	0.0822 (8)	
H14A	-0.3190	0.0001	1.4034	0.099*	
C15	-0.3801 (5)	0.04402 (9)	1.2619 (2)	0.0640 (6)	
H15A	-0.2512	0.0685	1.2838	0.077*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N	0.0327 (9)	0.0426 (9)	0.0543 (10)	0.0032 (7)	0.0025 (7)	-0.0059 (7)
Cl1	0.1088 (5)	0.0673 (4)	0.0393 (3)	-0.0261 (3)	-0.0006 (3)	-0.0106 (2)
Cl2	0.0869 (5)	0.0663 (4)	0.0604 (3)	-0.0168 (3)	0.0117 (3)	0.0131 (3)
O1	0.0517 (8)	0.0405 (7)	0.0479 (7)	-0.0087 (6)	0.0045 (6)	-0.0019 (6)
O2	0.0307 (7)	0.0527 (8)	0.0764 (10)	0.0030 (6)	0.0010 (6)	-0.0051 (7)
C1	0.0511 (11)	0.0370 (10)	0.0376 (9)	-0.0001 (8)	0.0002 (8)	-0.0071 (8)
C2	0.0539 (12)	0.0377 (10)	0.0492 (11)	-0.0072 (9)	0.0011 (9)	-0.0065 (8)
C3	0.0506 (11)	0.0407 (10)	0.0475 (11)	0.0004 (9)	0.0053 (9)	0.0029 (9)

C4	0.0584 (13)	0.0515 (12)	0.0388 (10)	0.0030 (10)	-0.0048 (9)	0.0002 (9)
C5	0.0488 (11)	0.0439 (11)	0.0478 (11)	-0.0042 (9)	-0.0083 (9)	-0.0046 (9)
C6	0.0394 (10)	0.0320 (9)	0.0445 (10)	0.0029 (8)	0.0014 (8)	-0.0020 (8)
C7	0.0377 (10)	0.0403 (10)	0.0626 (12)	-0.0041 (8)	0.0075 (9)	-0.0021 (9)
C8	0.0329 (10)	0.0354 (9)	0.0428 (10)	0.0010 (7)	0.0025 (7)	0.0057 (7)
C9	0.0542 (13)	0.0478 (12)	0.0501 (11)	0.0018 (9)	0.0049 (9)	-0.0093 (9)
C10	0.0456 (11)	0.0404 (10)	0.0519 (11)	0.0043 (9)	0.0101 (9)	-0.0087 (9)
C11	0.0747 (17)	0.0613 (15)	0.0816 (17)	-0.0152 (13)	-0.0013 (13)	-0.0055 (13)
C12	0.098 (2)	0.0560 (16)	0.119 (3)	-0.0247 (15)	0.020 (2)	-0.0025 (16)
C13	0.103 (2)	0.0540 (16)	0.105 (2)	0.0148 (16)	0.0368 (19)	0.0151 (15)
C14	0.096 (2)	0.0809 (19)	0.0693 (17)	0.0239 (17)	0.0031 (14)	0.0134 (15)
C15	0.0697 (15)	0.0590 (14)	0.0632 (14)	0.0012 (11)	-0.0021 (12)	-0.0024 (11)

Geometric parameters (Å, °)

N—C8	1.329 (2)	C7—C8	1.517 (2)
N—C9	1.451 (2)	C7—H7A	0.9700
N—H0A	0.83 (2)	С7—Н7В	0.9700
Cl1—C1	1.7318 (18)	C9—C10	1.507 (3)
Cl2—C3	1.7448 (19)	С9—Н9А	0.9700
O1—C6	1.363 (2)	С9—Н9В	0.9700
O1—C7	1.420 (2)	C10—C11	1.372 (3)
O2—C8	1.225 (2)	C10—C15	1.377 (3)
C1—C2	1.376 (3)	C11—C12	1.385 (4)
C1—C6	1.394 (2)	C11—H11A	0.9300
C2—C3	1.377 (3)	C12—C13	1.353 (4)
C2—H2A	0.9300	C12—H12A	0.9300
C3—C4	1.369 (3)	C13—C14	1.373 (4)
C4—C5	1.383 (3)	C13—H13A	0.9300
C4—H4A	0.9300	C14—C15	1.386 (3)
C5—C6	1.383 (2)	C14—H14A	0.9300
С5—Н5А	0.9300	C15—H15A	0.9300
C8—N—C9	123.59 (16)	O2—C8—N	124.41 (16)
C8—N—H0A	115.6 (14)	O2—C8—C7	121.43 (16)
C9—N—H0A	120.7 (14)	NC7	114.16 (15)
C6C7	118.32 (14)	N—C9—C10	113.22 (16)
C2-C1-C6	121.47 (17)	NC9H9A	108.9
C2-C1-Cl1	119.52 (14)	С10—С9—Н9А	108.9
C6-C1-Cl1	119.00 (14)	NC9H9B	108.9
C1—C2—C3	118.88 (17)	С10—С9—Н9В	108.9
C1—C2—H2A	120.6	H9A—C9—H9B	107.7
С3—С2—Н2А	120.6	C11—C10—C15	118.4 (2)
C4—C3—C2	121.07 (18)	C11—C10—C9	120.5 (2)
C4—C3—Cl2	119.33 (15)	C15—C10—C9	121.05 (19)
C2—C3—Cl2	119.60 (15)	C10-C11-C12	120.7 (3)
C3—C4—C5	119.63 (18)	C10-C11-H11A	119.7
С3—С4—Н4А	120.2	C12—C11—H11A	119.7

C5—C4—H4A	120.2	C13—C12—C11	120.9 (3)
C6—C5—C4	120.84 (18)	C13—C12—H12A	119.6
С6—С5—Н5А	119.6	C11—C12—H12A	119.6
С4—С5—Н5А	119.6	C12—C13—C14	119.1 (3)
O1—C6—C5	125.67 (16)	С12—С13—Н13А	120.5
O1—C6—C1	116.25 (15)	C14—C13—H13A	120.5
C5—C6—C1	118.09 (17)	C13—C14—C15	120.5 (3)
O1—C7—C8	112.50 (14)	C13—C14—H14A	119.8
O1—C7—H7A	109.1	C15—C14—H14A	119.8
С8—С7—Н7А	109.1	C10-C15-C14	120.4 (2)
O1—C7—H7B	109.1	C10—C15—H15A	119.8
С8—С7—Н7В	109.1	C14—C15—H15A	119.8
H7A—C7—H7B	107.8		
C6—C1—C2—C3	0.3 (3)	C9—N—C8—O2	0.7 (3)
Cl1—C1—C2—C3	179.74 (15)	C9—N—C8—C7	-178.70 (16)
C1—C2—C3—C4	-1.4 (3)	O1—C7—C8—O2	3.5 (3)
C1—C2—C3—Cl2	178.90 (14)	O1—C7—C8—N	-177.05 (15)
C2—C3—C4—C5	1.3 (3)	C8—N—C9—C10	103.3 (2)
Cl2—C3—C4—C5	-178.97 (15)	N-C9-C10-C11	113.8 (2)
C3—C4—C5—C6	-0.1 (3)	N-C9-C10-C15	-66.5 (3)
C7—O1—C6—C5	-1.4 (2)	C15-C10-C11-C12	1.4 (3)
C7—O1—C6—C1	178.78 (15)	C9—C10—C11—C12	-179.0 (2)
C4—C5—C6—O1	179.23 (17)	C10-C11-C12-C13	-0.8 (4)
C4—C5—C6—C1	-1.0 (3)	C11—C12—C13—C14	-0.3 (4)
C2-C1-C6-O1	-179.29 (16)	C12—C13—C14—C15	0.7 (4)
Cl1—C1—C6—O1	1.3 (2)	C11—C10—C15—C14	-0.9 (3)
C2-C1-C6-C5	0.9 (3)	C9-C10-C15-C14	179.4 (2)
Cl1—C1—C6—C5	-178.57 (14)	C13—C14—C15—C10	-0.1 (4)
C6—O1—C7—C8	75.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N—H0A····O2 ⁱ	0.83 (2)	2.06 (2)	2.883 (2)	169 (2)

Symmetry code: (i) x-1, y, z.