organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-(4-chlorophenyl)-3-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-nitro-2,3,10,10a-tetrahydro-1H,5Hpyrrolo[1,2-b]isoquinoline-10acarboxylate

S. Sundaresan,^a P. Ramesh,^b N. Arumugam,^c R. Raghunathan^c and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600005, India, and CDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 17 September 2008; accepted 25 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.135; data-to-parameter ratio = 13.1.

In the title compound, $C_{37}H_{34}ClN_3O_6$, the pyrrolidine and piperidine rings adopt envelope and boat conformations, respectively. The β -lactam ring is planar and forms dihedral angles of 21.3 (2) and 73.9 (2) $^{\circ}$, respectively, with the attached methoxyphenyl and phenyl rings. Intramolecular $C-H\cdots O$ and C-H···N hydrogen bonds are observed. Centrosymmetrically related molecules are linked together by weak C- $H \cdot \cdot \cdot O$ hydrogen bonds to form dimers.

Related literature

For the biological properties of β -lactam derivatives, see: Borthwick et al. (1998); Brakhage (1998); Burnett (1994); Han et al. (1995); Vaccaro & Davis (1998); Vaccaro et al. (1998). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

C ₃₇ H ₃₄ ClN ₃ O ₆	$V = 3212.35 (13) \text{ Å}^3$
$M_r = 652.12$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.1723 (2) Å	$\mu = 0.17 \text{ mm}^{-1}$
b = 18.0452 (4) Å	T = 293 (2) K
c = 19.7475 (5) Å	$0.22 \times 0.20 \times 0.17 \text{ mm}$
$\beta = 100.638 \ (1)^{\circ}$	

Data collection

Bruker kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.963, T_{\max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	426 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
5582 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

30325 measured reflections

 $R_{\rm int} = 0.034$

5582 independent reflections

3760 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots N27$	0.97	2.53	3.196 (3)	126
C24-H24···O3	0.98	2.58	3.186 (3)	121
$C25-H25\cdots O6^{i}$	0.98	2.60	3.479 (3)	150
C35-H35···O5	0.93	2.60	3.157 (3)	119
$C40-H40A\cdots O4^{i}$	0.96	2.49	3.232 (4)	134

Symmetry code: (i) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

SS thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2676).

References

- Borthwick, A. D., Weingarte, G., Haley, T. M., Tomaszewski, M., Wang, W., Hu, Z., Bedard, J., Jin, H., Yuen, L. & Mansour, T. S. (1998). Bioorg. Med. Chem. Lett. 8. 365-370.
- Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.
- Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, D. A. (1994). Tetrahedron Lett. 35, 7339-7342.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Han, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). Bioorg. Med. Chem. Lett. 3, 1123-1143.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vaccaro, W. D. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 313-318. Vaccaro, W. D., Sher, R. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 35 - 40

supporting information

Acta Cryst. (2008). E64, o2042 [doi:10.1107/S1600536808030961]

Ethyl 1-(4-chlorophenyl)-3-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-nitro-2,3,10,10a-tetrahydro-1*H*,5*H*-pyrrolo[1,2-*b*]isoquinoline-10a-carboxylate

S. Sundaresan, P. Ramesh, N. Arumugam, R. Raghunathan and M. N. Ponnuswamy

S1. Comment

 β -Lactams have been shown to exhibit high antibacterial activity. 1,3,4-Trisubstituted β -lactams are potent cholesterol absorption inhibitors (Vaccaro & Davis, 1998; Vaccaro *et al.*, 1998; Burnett, 1994), human cylomegalonims and protease inhibitors (Borthwick *et al.*, 1998) and thrombin inhibitors (Han *et al.*, 1995). The most commonly used β -lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporins (Brakhage, 1998). In view of these importance, the crystal structure determination of the title compound was carried out.

The pyrrolidine and piperidine rings in the molecule adopt envelope and boat conformations, respectively. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameter (Nardelli, 1983) for the pyrrolidine ring are $q_2 = 0.292$ (3) Å, $\pi = 99.6$ (5)° and $\Delta_s(C12) = 4.4$ (3)°, and for the piperidine ring $q_2 = 0.630$ (3) Å, $q_3 = 0.004$ (3) Å, $\pi = 61.2$ (2)° and $\Delta_s(C2) = \Delta_s(C9) = 1.2$ (2)°. The ethylcarboxylate group adopts an extended conformation. The sum of angles at atom N27 of the β -lactam ring system [356.9°] is in accordance with sp^2 hybridization. The β -lactam ring is planar and the keto O5 atom deviates from this plane by -0.005 (2) Å. The methoxyphenyl (C34—C39) and (C28—C33) phenyl rings form dihedral angles of 21.3 (2) and 73.9 (2)°, respectively, with the β -lactam ring. C—H…O and C—H…N types of intramolecular hydrogen bonds are observed.

In the crystal structure, atoms C25 and C40 of the molecule at (x, y, z) donate one proton each to atoms O6 and O4 of the molecule at (-x, 1 - y, -z), forming a cyclic centrosymmetric dimer.

S2. Experimental

To a stirred solution of 5-[1'-*N*-(*p*-methoxyphenyl-azetidine-2'-one]-4-nitro-3-(*p*-chloro)-phenyl-2-ethoxycarbonyl-2benzyl-pyrrlolidine (1 mmol) in dry chloroform (20 ml) *para* formaldehyde (1 mmol) and then trifluroacetic acid (0.1 mmol) were added at room temperature. After completion of the reaction, the mixture was washed with water and dried over. The solvent was removed under the reduced pressure and the crude product was subjected to column chromatography with hexane-ethyl acetate (9:1) to obtain pure cyclized product. The compound was recrystallized from ethyl acetate

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Large thermal vibrations of atoms C15 and C16 resulted in the shortening of C15—C16 length.

Figure 1

The molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atom-numbering scheme.

Ethyl 1-(4-chlorophenyl)-3-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-nitro-2,3,10,10atetrahydro-1H,5H- pyrrolo[1,2-b]isoquinoline-10a-carboxylate

Crystal data

C37H34ClN3O6 $M_r = 652.12$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn *a* = 9.1723 (2) Å b = 18.0452 (4) Å *c* = 19.7475 (5) Å $\beta = 100.638 (1)^{\circ}$ $V = 3212.35 (13) Å^3$ Z = 4

Data collection

Bruker kappa APEXII area-detector 30325 measured reflections diffractometer 5582 independent reflections Radiation source: fine-focus sealed tube 3760 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.034$ ω and φ scans $\theta_{\rm max} = 24.9^\circ, \, \theta_{\rm min} = 1.5^\circ$ Absorption correction: multi-scan $h = -10 \rightarrow 10$ (SADABS; Sheldrick, 2001) $k = -20 \rightarrow 21$ $T_{\rm min} = 0.963, T_{\rm max} = 0.971$ $l = -23 \rightarrow 23$

F(000) = 1368 $D_{\rm x} = 1.348 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5002 reflections $\theta = 1.5 - 24.9^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.22 \times 0.20 \times 0.17 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.03	H-atom parameters constrained
5582 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 1.5127P]$
426 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.26960 (11)	0.43479 (5)	0.60642 (4)	0.0979 (3)
01	-0.1144 (2)	0.31964 (12)	0.15686 (11)	0.0870 (6)
O2	-0.2380 (2)	0.31467 (12)	0.24445 (12)	0.0914 (7)
O3	-0.2459 (3)	0.47487 (16)	0.18822 (18)	0.1215 (11)
O4	-0.2416 (4)	0.58070 (18)	0.23474 (14)	0.1523 (14)
O5	0.3329 (2)	0.63293 (11)	0.11354 (11)	0.0839 (6)
O6	0.2021 (2)	0.31726 (12)	-0.07279 (10)	0.0823 (6)
N1	0.08498 (19)	0.41518 (10)	0.21858 (10)	0.0468 (5)
C2	0.2354 (3)	0.38685 (14)	0.21800 (13)	0.0556 (6)
H2A	0.2891	0.4229	0.1957	0.067*
H2B	0.2280	0.3416	0.1911	0.067*
C3	0.3207 (3)	0.37143 (13)	0.28843 (13)	0.0537 (6)
C4	0.4641 (3)	0.39488 (18)	0.31274 (17)	0.0771 (8)
H4	0.5137	0.4230	0.2847	0.093*
C5	0.5336 (3)	0.3767 (2)	0.3782 (2)	0.0940 (10)
Н5	0.6295	0.3934	0.3947	0.113*
C6	0.4625 (4)	0.33415 (19)	0.41941 (17)	0.0836 (9)
H6	0.5113	0.3209	0.4633	0.100*
C7	0.3198 (3)	0.31095 (14)	0.39631 (14)	0.0644 (7)
H7	0.2714	0.2824	0.4246	0.077*
C8	0.2481 (3)	0.33003 (12)	0.33104 (13)	0.0499 (6)
C9	0.0928 (3)	0.30842 (12)	0.30105 (13)	0.0547 (6)
H9A	0.0441	0.2909	0.3377	0.066*
H9B	0.0945	0.2678	0.2690	0.066*
C10	0.0017 (2)	0.37342 (12)	0.26295 (12)	0.0487 (6)

~				
C11	-0.0500(3)	0.43205 (12)	0.31170 (13)	0.0513 (6)
H11	-0.1545	0.4222	0.3132	0.062*
C12	-0.0423 (3)	0.50536 (13)	0.27378 (13)	0.0551 (6)
H12	-0.0162	0.5457	0.3070	0.066*
C13	0.0807 (3)	0.49450 (12)	0.23229 (12)	0.0479 (5)
H13	0.1747	0.5079	0.2621	0.058*
C14	-0.1333 (3)	0.33509 (15)	0.22050 (16)	0.0654 (7)
C15	-0.2295 (5)	0.2774 (2)	0.1122 (2)	0.1293 (16)
H15A	-0.1831	0.2395	0.0886	0.155*
H15B	-0.2911	0.2528	0.1403	0.155*
C16	-0.3162(5)	0.3200 (3)	0.0650(2)	0.163 (2)
H16A	-0.3704	0.3544	0.0880	0.245*
H16B	-0.3846	0.2891	0.0348	0.245*
H16C	-0.2554	0.3467	0.0387	0.245*
C17	0.0339 (3)	0.43451 (12)	0.38492 (13)	0.0522 (6)
C18	-0.0165(3)	0.39231(14)	0.43459(14)	0.0622(3)
H18	-0.1011	0.3634	0.4220	0.075*
C19	0.0560 (3)	0.39233 (16)	0.4220 0.50219(15)	0.075 0.0717(8)
H19	0.0207	0.3635	0.5348	0.0717 (0)
C20	0.1801 (3)	0.3033	0.5348 0.52118 (14)	0.0607 (8)
C20	0.1801(3)	0.43493(10) 0.47828(15)	0.32110(14) 0.47366(15)	0.0077(8)
U21	0.2310 (3)	0.47828 (13)	0.47500 (15)	0.0090 (7)
П21 С22	0.3133 0.1596 (2)	0.3077	0.4009	0.083°
U22	0.1380 (3)	0.47789 (14)	0.40012 (15)	0.0010(7)
H22	0.1938	0.50/4	0.3/40	$0.0/3^{*}$
N23	-0.1895 (3)	0.52072 (17)	0.22867 (14)	0.0772 (8)
C24	0.0636 (3)	0.54308 (12)	0.16801 (12)	0.0512 (6)
H24	-0.0372	0.5412	0.1409	0.061*
C25	0.1223 (3)	0.62490 (13)	0.18009 (13)	0.0559 (6)
H25	0.0496	0.6593	0.1546	0.067*
C26	0.2339 (3)	0.60255 (14)	0.13526 (13)	0.0611 (7)
N27	0.1771 (2)	0.53255 (11)	0.12491 (10)	0.0555 (5)
C28	0.1739 (3)	0.65324 (12)	0.25172 (13)	0.0547 (6)
C29	0.3113 (3)	0.63541 (14)	0.28979 (16)	0.0678 (7)
H29	0.3770	0.6073	0.2698	0.081*
C30	0.3525 (4)	0.65882 (17)	0.35720 (18)	0.0828 (9)
H30	0.4448	0.6456	0.3823	0.099*
C31	0.2596 (4)	0.70088 (18)	0.38705 (18)	0.0861 (9)
H31	0.2877	0.7163	0.4325	0.103*
C32	0.1253 (4)	0.72025 (16)	0.35001 (18)	0.0813 (9)
H32	0.0616	0.7494	0.3703	0.098*
C33	0.0822 (3)	0.69735 (14)	0.28273 (16)	0.0665 (7)
H33	-0.0097	0.7118	0.2579	0.080*
C34	0.1861 (3)	0.47852 (13)	0.07403 (12)	0.0533 (6)
C35	0.3076 (3)	0.47553 (16)	0.04257 (15)	0.0700 (8)
H35	0.3843	0.5094	0.0547	0.084*
C36	0.3168 (3)	0.42258 (16)	-0.00697(15)	0.0725 (8)
H36	0.3991	0.4213	-0.0283	0.087*
C37	0 2053 (3)	0.37216 (15)	-0.02476(13)	0.0596 (6)
0.57	0.2000 (0)	0.57210 (15)	0.027/0(15)	0.0370 (0)

C38	0.0838 (3)	0.37514 (15)	0.00705 (13)	0.0612 (7)
H38	0.0073	0.3411	-0.0050	0.073*
C39	0.0741 (3)	0.42744 (14)	0.05597 (13)	0.0573 (6)
H39	-0.0084	0.4286	0.0772	0.069*
C40	0.3268 (3)	0.30843 (19)	-0.10496 (16)	0.0824 (9)
H40A	0.3477	0.3545	-0.1256	0.124*
H40B	0.3062	0.2710	-0.1399	0.124*
H40C	0.4112	0.2939	-0.0712	0.124*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1261 (7)	0.1070 (6)	0.0593 (5)	0.0466 (5)	0.0135 (5)	-0.0010 (4)
01	0.0823 (14)	0.1021 (16)	0.0680 (14)	-0.0362 (12)	-0.0090 (11)	0.0012 (11)
O2	0.0641 (13)	0.0896 (15)	0.1228 (19)	-0.0263 (11)	0.0235 (12)	0.0104 (13)
O3	0.0639 (15)	0.0989 (19)	0.183 (3)	-0.0030 (13)	-0.0253 (17)	0.0309 (19)
O4	0.183 (3)	0.162 (3)	0.107 (2)	0.128 (2)	0.0138 (19)	0.0210 (18)
05	0.0955 (15)	0.0691 (12)	0.0985 (16)	-0.0293 (11)	0.0479 (13)	-0.0002 (11)
O6	0.0805 (13)	0.0942 (15)	0.0781 (14)	-0.0059 (11)	0.0301 (11)	-0.0264 (11)
N1	0.0446 (11)	0.0440 (10)	0.0542 (12)	0.0015 (8)	0.0153 (9)	0.0028 (8)
C2	0.0516 (14)	0.0588 (14)	0.0607 (16)	0.0085 (11)	0.0215 (12)	-0.0004 (12)
C3	0.0449 (14)	0.0546 (14)	0.0628 (16)	0.0097 (11)	0.0132 (12)	-0.0047 (12)
C4	0.0477 (16)	0.090 (2)	0.096 (2)	0.0049 (14)	0.0180 (16)	0.0048 (17)
C5	0.0507 (18)	0.113 (3)	0.109 (3)	0.0087 (18)	-0.0078 (19)	-0.001 (2)
C6	0.075 (2)	0.094 (2)	0.073 (2)	0.0268 (18)	-0.0099 (17)	-0.0029 (18)
C7	0.0673 (18)	0.0575 (15)	0.0676 (18)	0.0192 (13)	0.0107 (14)	0.0045 (13)
C8	0.0523 (14)	0.0401 (12)	0.0574 (15)	0.0105 (10)	0.0102 (12)	-0.0025 (11)
C9	0.0590 (15)	0.0438 (13)	0.0624 (16)	0.0010 (11)	0.0135 (12)	0.0045 (11)
C10	0.0460 (13)	0.0449 (12)	0.0570 (15)	-0.0022 (10)	0.0147 (11)	0.0061 (10)
C11	0.0448 (13)	0.0510 (13)	0.0624 (16)	0.0063 (10)	0.0210 (12)	0.0128 (11)
C12	0.0566 (15)	0.0506 (13)	0.0628 (16)	0.0099 (11)	0.0235 (12)	0.0121 (11)
C13	0.0506 (13)	0.0434 (12)	0.0524 (14)	0.0012 (10)	0.0165 (11)	0.0047 (10)
C14	0.0532 (16)	0.0605 (16)	0.080 (2)	-0.0077 (12)	0.0061 (14)	0.0148 (14)
C15	0.116 (3)	0.118 (3)	0.126 (3)	-0.056 (3)	-0.049 (3)	0.015 (3)
C16	0.147 (4)	0.197 (5)	0.117 (4)	-0.089 (4)	-0.054 (3)	0.056 (4)
C17	0.0563 (15)	0.0456 (13)	0.0607 (16)	0.0136 (11)	0.0268 (12)	0.0062 (11)
C18	0.0636 (16)	0.0617 (16)	0.0685 (18)	0.0128 (12)	0.0291 (14)	0.0159 (13)
C19	0.085 (2)	0.0726 (18)	0.0664 (19)	0.0274 (16)	0.0365 (17)	0.0206 (15)
C20	0.084 (2)	0.0662 (17)	0.0564 (17)	0.0298 (16)	0.0217 (15)	0.0001 (14)
C21	0.081 (2)	0.0640 (17)	0.0662 (19)	0.0074 (14)	0.0208 (16)	-0.0104 (14)
C22	0.0775 (18)	0.0541 (15)	0.0570 (17)	0.0032 (13)	0.0275 (14)	-0.0006 (12)
N23	0.0689 (17)	0.0873 (19)	0.0842 (19)	0.0343 (15)	0.0372 (15)	0.0408 (15)
C24	0.0510 (14)	0.0512 (13)	0.0535 (14)	-0.0018 (10)	0.0155 (11)	0.0061 (11)
C25	0.0631 (16)	0.0464 (13)	0.0597 (16)	-0.0005 (11)	0.0150 (13)	0.0100 (11)
C26	0.0712 (17)	0.0539 (15)	0.0612 (16)	-0.0088 (13)	0.0204 (14)	0.0096 (12)
N27	0.0630 (13)	0.0520 (12)	0.0564 (13)	-0.0118 (9)	0.0240 (10)	0.0015 (9)
C28	0.0599 (16)	0.0421 (13)	0.0632 (16)	-0.0049 (11)	0.0139 (13)	0.0076 (11)
C29	0.0655 (18)	0.0538 (15)	0.084 (2)	-0.0015 (13)	0.0131 (16)	0.0007 (14)

C30	0.078 (2)	0.0727 (19)	0.089 (2)	-0.0049 (16)	-0.0078 (18)	-0.0006 (17)
C31	0.103 (3)	0.075 (2)	0.077 (2)	-0.0136 (19)	0.006 (2)	-0.0069 (17)
C32	0.098 (2)	0.0653 (18)	0.089 (2)	-0.0054 (17)	0.037 (2)	-0.0132 (16)
C33	0.0673 (17)	0.0526 (15)	0.082 (2)	0.0022 (13)	0.0190 (15)	0.0036 (14)
C34	0.0600 (15)	0.0546 (14)	0.0485 (14)	-0.0056 (11)	0.0181 (12)	0.0076 (11)
C35	0.0649 (17)	0.0724 (18)	0.079 (2)	-0.0210 (14)	0.0286 (15)	-0.0059 (15)
C36	0.0656 (18)	0.082 (2)	0.079 (2)	-0.0086 (15)	0.0366 (15)	-0.0050 (16)
C37	0.0623 (16)	0.0672 (16)	0.0516 (15)	-0.0007 (13)	0.0166 (13)	-0.0013 (12)
C38	0.0623 (16)	0.0690 (16)	0.0545 (15)	-0.0145 (13)	0.0163 (13)	-0.0038 (13)
C39	0.0551 (15)	0.0685 (16)	0.0522 (15)	-0.0111 (12)	0.0203 (12)	0.0007 (12)
C40	0.079 (2)	0.099 (2)	0.0722 (19)	0.0267 (17)	0.0224 (16)	-0.0084 (17)

Geometric parameters (Å, °)

Cl1—C20	1.731 (3)	C16—H16C	0.96
O1—C14	1.329 (3)	C17—C22	1.385 (4)
O1—C15	1.460 (4)	C17—C18	1.387 (3)
O2—C14	1.204 (3)	C18—C19	1.377 (4)
O3—N23	1.199 (4)	C18—H18	0.93
O4—N23	1.198 (3)	C19—C20	1.368 (4)
O5—C26	1.205 (3)	C19—H19	0.93
O6—C37	1.368 (3)	C20—C21	1.371 (4)
O6—C40	1.416 (3)	C21—C22	1.378 (4)
N1-C13	1.459 (3)	C21—H21	0.93
N1-C10	1.472 (3)	C22—H22	0.93
N1-C2	1.473 (3)	C24—N27	1.474 (3)
C2—C3	1.491 (3)	C24—C25	1.575 (3)
C2—H2A	0.97	C24—H24	0.98
C2—H2B	0.97	C25—C28	1.496 (3)
C3—C4	1.381 (4)	C25—C26	1.526 (4)
C3—C8	1.384 (3)	C25—H25	0.98
C4—C5	1.372 (4)	C26—N27	1.367 (3)
C4—H4	0.93	N27—C34	1.413 (3)
C5—C6	1.368 (5)	C28—C33	1.381 (4)
С5—Н5	0.93	C28—C29	1.381 (4)
С6—С7	1.370 (4)	C29—C30	1.381 (4)
С6—Н6	0.93	С29—Н29	0.93
С7—С8	1.378 (3)	C30—C31	1.354 (5)
С7—Н7	0.93	C30—H30	0.93
C8—C9	1.490 (3)	C31—C32	1.357 (4)
C9—C10	1.552 (3)	C31—H31	0.93
С9—Н9А	0.97	C32—C33	1.378 (4)
С9—Н9В	0.97	C32—H32	0.93
C10—C14	1.527 (4)	С33—Н33	0.93
C10—C11	1.562 (3)	C34—C35	1.374 (3)
C11—C17	1.508 (3)	C34—C39	1.377 (3)
C11—C12	1.528 (3)	C35—C36	1.381 (4)
C11—H11	0.98	С35—Н35	0.93

C12—N23	1.500 (4)	C36—C37	1.365 (4)
C12—C13	1.524 (3)	С36—Н36	0.93
C12—H12	0.98	C37—C38	1.378 (3)
C13—C24	1.527 (3)	C38—C39	1.365 (3)
С13—Н13	0.98	С38—Н38	0.93
C15—C16	1.347 (5)	С39—Н39	0.93
C15—H15A	0.97	C40—H40A	0.96
C15—H15B	0.97	C40—H40B	0.96
C16—H16A	0.96	C40—H40C	0.96
С16—Н16В	0.96		
C14—O1—C15	118.3 (3)	C19—C18—H18	119.3
C37—O6—C40	118.5 (2)	C17—C18—H18	119.3
C13—N1—C10	110.93 (17)	C20—C19—C18	119.6 (3)
C13—N1—C2	113.53 (18)	С20—С19—Н19	120.2
C10—N1—C2	114.62 (17)	C18—C19—H19	120.2
N1—C2—C3	112.88 (19)	C19—C20—C21	120.5 (3)
N1—C2—H2A	109.0	C19—C20—C11	119.1 (2)
C3—C2—H2A	109.0	C21—C20—C11	120.3 (3)
N1—C2—H2B	109.0	C20—C21—C22	119.5 (3)
C3—C2—H2B	109.0	C20—C21—H21	120.3
H2A—C2—H2B	107.8	C22—C21—H21	120.3
C4—C3—C8	119.2 (3)	C21—C22—C17	121.5 (2)
C4—C3—C2	124.7 (2)	C21—C22—H22	119.3
C8—C3—C2	116.0 (2)	C17—C22—H22	119.3
C5—C4—C3	120.1 (3)	04—N23—O3	124.0 (3)
C5—C4—H4	120.0	O4—N23—C12	116.1 (3)
C3—C4—H4	120.0	O3—N23—C12	119.9 (2)
C6—C5—C4	120.3 (3)	N27—C24—C13	115.53 (19)
C6—C5—H5	119.8	N27—C24—C25	87.13 (16)
C4—C5—H5	119.8	C_{13} C_{24} C_{25}	115.6 (2)
C5—C6—C7	120.3 (3)	N27—C24—H24	112.1
С5—С6—Н6	119.8	C13—C24—H24	112.1
C7—C6—H6	119.8	C25—C24—H24	112.1
C6-C7-C8	119.8 (3)	$C_{28} = C_{25} = C_{26}$	120.7(2)
C6—C7—H7	120.1	$C_{28} = C_{25} = C_{24}$	120.22(19)
C8—C7—H7	120.1	$C_{26} - C_{25} - C_{24}$	84.93 (18)
C7—C8—C3	120.2 (2)	$C_{28} = C_{25} = H_{25}$	109.6
C7—C8—C9	123.2(2) 124.2(2)	$C_{26} = C_{25} = H_{25}$	109.6
$C_3 - C_8 - C_9$	115.6 (2)	C_{24} C_{25} H_{25}	109.6
C8-C9-C10	112.61 (18)	05-C26-N27	131 2 (3)
C8—C9—H9A	109.1	05-C26-C25	135.7(2)
C10—C9—H9A	109.1	N27-C26-C25	93.04 (19)
C8—C9—H9B	109.1	$C_{26} = N_{27} = C_{34}$	132.3 (2)
C10—C9—H9B	109.1	$C_{26} = N_{27} = C_{24}$	94.87 (18)
H9A-C9-H9B	107.8	$C_{34} N_{27} C_{24}$	129 76 (19)
N1-C10-C14	111 3 (2)	C_{33} C_{28} C_{29}	1176(3)
N1-C10-C9	112 56 (18)	C_{33} C_{28} C_{25}	120 3 (2)
	112.30 (10)	033 -020-023	120.3 (2)

C14 $C10$ $C0$	102 48 (18)	C20 C28 C25	1222(2)
$V_{14} = C_{10} = C_{3}$	105.46(10) 105.68(17)	$C_{29} = C_{28} = C_{25}$	122.2(2) 120.8(3)
NI = CI0 = CI1	103.08(17) 100.7(2)	$C_{20} = C_{29} = C_{28}$	120.8 (5)
	109.7 (2)	C30—C29—H29	119.0
	114.24 (19)	C28—C29—H29	119.6
	112.5 (2)	C31—C30—C29	120.6 (3)
C17—C11—C10	116.85 (18)	C31—C30—H30	119.7
C12—C11—C10	103.73 (18)	С29—С30—Н30	119.7
C17—C11—H11	107.8	C30—C31—C32	119.4 (3)
C12—C11—H11	107.8	С30—С31—Н31	120.3
C10-C11-H11	107.8	С32—С31—Н31	120.3
N23—C12—C13	112.3 (2)	C31—C32—C33	120.9 (3)
N23—C12—C11	109.4 (2)	С31—С32—Н32	119.6
C13—C12—C11	104.96 (18)	С33—С32—Н32	119.6
N23—C12—H12	110.0	C32—C33—C28	120.7 (3)
C13—C12—H12	110.0	С32—С33—Н33	119.7
C11—C12—H12	110.0	C28—C33—H33	119.7
N1-C13-C12	105 89 (17)	C_{35} C_{34} C_{39}	119.0(2)
N1_C13_C24	114.29(19)	$C_{35} = C_{34} = N_{27}$	119.0(2) 120.5(2)
$C_{12} C_{13} C_{24}$	114.29(19) 112.61(18)	$C_{33} = C_{34} = N_{27}$	120.5(2)
$C_{12} - C_{13} - C_{24}$	107.6	$C_{3} = C_{3} = C_{3} = C_{2}$	120.5(2)
$N1 - C13 - \Pi13$	107.0	$C_{24} = C_{25} = C_{26}$	120.3 (2)
C12—C13—H13	107.6	C34—C35—H35	119.7
C24—C13—H13	107.6	С36—С35—Н35	119.7
O2—C14—O1	124.0 (3)	C37—C36—C35	120.2 (2)
O2—C14—C10	123.2 (3)	С37—С36—Н36	119.9
O1—C14—C10	112.3 (2)	С35—С36—Н36	119.9
C16—C15—O1	112.9 (3)	C36—C37—O6	125.5 (2)
C16—C15—H15A	109.0	C36—C37—C38	119.1 (2)
O1—C15—H15A	109.0	O6—C37—C38	115.4 (2)
C16—C15—H15B	109.0	C39—C38—C37	120.9 (2)
O1-C15-H15B	109.0	С39—С38—Н38	119.6
H15A—C15—H15B	107.8	С37—С38—Н38	119.6
C15—C16—H16A	109.5	C38—C39—C34	120.2 (2)
C15—C16—H16B	109.5	С38—С39—Н39	119.9
H16A—C16—H16B	109.5	C34-C39-H39	119.9
C15-C16-H16C	109.5	06-C40-H40A	109.5
	109.5	O6 C40 H40B	109.5
H16A C16 H16C	109.5		109.5
$\begin{array}{c} \text{HI0B} \\ $	109.5	n40A - C40 - n40B	109.5
$C_{22} = C_{17} = C_{18}$	117.5 (2)		109.5
C22—C17—C11	123.6 (2)	H40A—C40—H40C	109.5
C18—C17—C11	119.0 (2)	H40B—C40—H40C	109.5
C19—C18—C17	121.4 (3)		
C13—N1—C2—C3	82.0 (2)	C18—C19—C20—C21	0.9 (4)
C10-N1-C2-C3	-46.9 (3)	C18—C19—C20—Cl1	179.67 (19)
N1—C2—C3—C4	-131.6 (3)	C19—C20—C21—C22	-0.9 (4)
N1—C2—C3—C8	48.9 (3)	Cl1—C20—C21—C22	-179.73 (19)
C8—C3—C4—C5	0.5 (4)	C20-C21-C22-C17	-0.1 (4)
$C_{2}-C_{3}-C_{4}-C_{5}$	-1790(3)	C_{18} C_{17} C_{22} C_{21}	11(3)
02 03 04 03	177.0 (3)	010 - 017 - 022 - 021	1.1 (5)

C3—C4—C5—C6	1.2 (5)	C11—C17—C22—C21	-180.0 (2)
C4—C5—C6—C7	-1.8 (5)	C13—C12—N23—O4	-115.0 (3)
C5—C6—C7—C8	0.6 (4)	C11—C12—N23—O4	128.8 (3)
C6—C7—C8—C3	1.1 (4)	C13—C12—N23—O3	63.0 (3)
C6—C7—C8—C9	-179.4 (2)	C11—C12—N23—O3	-53.2 (3)
C4—C3—C8—C7	-1.6 (3)	N1—C13—C24—N27	-56.2 (3)
C2—C3—C8—C7	177.9 (2)	C12-C13-C24-N27	-177.9 (2)
C4—C3—C8—C9	178.8 (2)	N1-C13-C24-C25	-155.91 (19)
C2—C3—C8—C9	-1.6 (3)	C12—C13—C24—C25	82.4 (3)
C7—C8—C9—C10	135.8 (2)	N27—C24—C25—C28	-123.9 (2)
C3—C8—C9—C10	-44.7 (3)	C13—C24—C25—C28	-6.9 (3)
C13—N1—C10—C14	115.2 (2)	N27—C24—C25—C26	-1.17 (17)
C2-N1-C10-C14	-114.6 (2)	C13—C24—C25—C26	115.9 (2)
C13—N1—C10—C9	-129.2 (2)	C28—C25—C26—O5	-58.7 (4)
C2—N1—C10—C9	1.0 (3)	C24—C25—C26—O5	179.0 (3)
C13—N1—C10—C11	-3.9 (2)	C28—C25—C26—N27	123.6 (2)
C2—N1—C10—C11	126.3 (2)	C24—C25—C26—N27	1.27 (19)
C8—C9—C10—N1	44.5 (3)	O5-C26-N27-C34	-18.2 (5)
C8—C9—C10—C14	164.7 (2)	C25—C26—N27—C34	159.6 (3)
C8—C9—C10—C11	-76.0 (2)	O5—C26—N27—C24	-179.2 (3)
N1-C10-C11-C17	-103.8 (2)	C25—C26—N27—C24	-1.4 (2)
C14—C10—C11—C17	136.2 (2)	C13—C24—N27—C26	-115.8 (2)
C9—C10—C11—C17	20.5 (3)	C25—C24—N27—C26	1.31 (19)
N1-C10-C11-C12	20.6 (2)	C13—C24—N27—C34	82.5 (3)
C14—C10—C11—C12	-99.4 (2)	C25—C24—N27—C34	-160.4 (2)
C9-C10-C11-C12	144.93 (19)	C26—C25—C28—C33	156.5 (2)
C17—C11—C12—N23	-141.4 (2)	C24—C25—C28—C33	-100.4 (3)
C10-C11-C12-N23	91.4 (2)	C26—C25—C28—C29	-25.0 (3)
C17—C11—C12—C13	97.9 (2)	C24—C25—C28—C29	78.0 (3)
C10-C11-C12-C13	-29.3 (2)	C33—C28—C29—C30	2.3 (4)
C10—N1—C13—C12	-14.7 (2)	C25—C28—C29—C30	-176.2 (2)
C2—N1—C13—C12	-145.46 (19)	C28—C29—C30—C31	-1.1 (5)
C10—N1—C13—C24	-140.51 (19)	C29—C30—C31—C32	-0.3 (5)
C2-N1-C13-C24	88.7 (2)	C30—C31—C32—C33	0.4 (5)
N23—C12—C13—N1	-91.3 (2)	C31—C32—C33—C28	0.9 (4)
C11—C12—C13—N1	27.5 (2)	C29—C28—C33—C32	-2.2 (4)
N23—C12—C13—C24	35.0 (3)	C25—C28—C33—C32	176.3 (2)
C11—C12—C13—C24	153.8 (2)	C26—N27—C34—C35	29.3 (4)
C15—O1—C14—O2	2.1 (4)	C24—N27—C34—C35	-175.7 (2)
C15—O1—C14—C10	175.0 (3)	C26—N27—C34—C39	-151.7 (3)
N1-C10-C14-O2	-159.7 (2)	C24—N27—C34—C39	3.3 (4)
C9—C10—C14—O2	79.2 (3)	C39—C34—C35—C36	0.7 (4)
C11—C10—C14—O2	-43.1 (3)	N27—C34—C35—C36	179.7 (3)
N1-C10-C14-O1	27.3 (3)	C34—C35—C36—C37	-0.6 (5)
C9-C10-C14-O1	-93.8 (2)	C35—C36—C37—O6	-179.9 (3)
C11—C10—C14—O1	143.9 (2)	C35—C36—C37—C38	0.3 (4)
C14—O1—C15—C16	103.2 (5)	C40—O6—C37—C36	3.4 (4)
C12-C11-C17-C22	-30.5 (3)	C40—O6—C37—C38	-176.7 (2)

supporting information

C10-C11-C17-C22	89.3 (3)	C36—C37—C38—C39	-0.2 (4)
C12—C11—C17—C18	148.4 (2)	O6—C37—C38—C39	179.9 (2)
C10-C11-C17-C18	-91.8 (2)	C37—C38—C39—C34	0.4 (4)
C22-C17-C18-C19	-1.2 (3)	C35—C34—C39—C38	-0.6 (4)
C11—C17—C18—C19	179.8 (2)	N27—C34—C39—C38	-179.6 (2)
C17—C18—C19—C20	0.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H…A
C2—H2A···N27	0.97	2.53	3.196 (3)	126
C24—H24····O3	0.98	2.58	3.186 (3)	121
C25—H25…O6 ⁱ	0.98	2.60	3.479 (3)	150
С35—Н35…О5	0.93	2.60	3.157 (3)	119
C40—H40 A ····O4 ⁱ	0.96	2.49	3.232 (4)	134

Symmetry code: (i) -x, -y+1, -z.