Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1-Chloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one

## T. Kavitha,<sup>a</sup> S. Ponnuswamy,<sup>b</sup> M. Jamesh,<sup>b</sup> J. Umamaheshwari<sup>b</sup> and M. N. Ponnuswamy<sup>a</sup>\*

<sup>a</sup>Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>b</sup>Department of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 17 September 2008; accepted 25 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.154; data-to-parameter ratio = 20.7.

In the molecule of the title compound,  $C_{21}H_{22}CINO_2$ , the piperidine ring adopts a distorted boat conformation. The two phenyl rings are nearly orthogonal to each other with a dihedral angle of  $87.1 (1)^{\circ}$ . In the crystal structure, the molecules are linked into a three-dimensional network by  $C-H\cdots O$  and  $C-H\cdots \pi$  interactions.

## **Related literature**

For general background, see: Dimmock et al. (2001); Perumal et al. (2001). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).



## **Experimental**

Crystal data C21H22CINO2  $M_r = 355.85$ Monoclinic,  $P2_1/n$ a = 13.7005 (3) Å b = 9.8735 (2) Å c = 14.8960 (3) Å  $\beta = 112.762 \ (1)^{\circ}$ 

V = 1858.08 (7) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.22 \text{ mm}^{-1}$ T = 293 (2) K  $0.32\,\times\,0.26\,\times\,0.20$  mm 22063 measured reflections

 $R_{\rm int} = 0.025$ 

4674 independent reflections

3424 reflections with  $I > 2\sigma(I)$ 

#### Data collection

```
Bruker Kappa APEXII area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2001)
  T_{\min} = 0.854, T_{\max} = 0.958
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | 226 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.154$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4674 reflections                | $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C17-C22 ring.

| $D - H \cdots A$             | D-H                       | $H \cdot \cdot \cdot A$           | $D \cdots A$                             | $D - H \cdots A$                       |
|------------------------------|---------------------------|-----------------------------------|------------------------------------------|----------------------------------------|
| $C6-H6\cdots O2^{i}$         | 0.98                      | 2.46                              | 3.426 (2)                                | 168                                    |
| $C8-H8B\cdots O2^{i}$        | 0.97                      | 2.53                              | 3.495 (3)                                | 172                                    |
| C21−H21···O1 <sup>ii</sup>   | 0.93                      | 2.53                              | 3.248 (3)                                | 134                                    |
| $C11 - H11 \cdots Cg1^{iii}$ | 0.93                      | 2.73                              | 3.568 (2)                                | 150                                    |
| Symmetry codes:              | (i) $-x + \frac{1}{2}, y$ | $-\frac{1}{2}, -z + \frac{1}{2};$ | (ii) $x - \frac{1}{2}, -y + \frac{1}{2}$ | $-\frac{1}{2}, z - \frac{1}{2};$ (iii) |

-x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks UGC, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2675).

#### References

- Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

# supporting information

Acta Cryst. (2008). E64, o2041 [doi:10.1107/S1600536808030985]

# 1-Chloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one

## T. Kavitha, S. Ponnuswamy, M. Jamesh, J. Umamaheshwari and M. N. Ponnuswamy

## S1. Comment

Piperidones are the important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic properties (Dimmock *et al.*, 2001). They were also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal *et al.*, 2001).

The sum of bond angles around N1 atom (359.4°) indicates  $sp^2$  hybridization. The N1—C7 [1.360 (2) Å] and C7—O2 [1.220 (2) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, confirmed by puckering parameters  $q_2 = 0.612$  (2) Å,  $q_3 = -0.122$  (2) Å and  $\varphi_2 = 258.0$  (2)° (Cremer & Pople, 1975) and the asymmetry parameter  $\Delta_s(C2) = \Delta_s(C5) = 19.2$  (2)° (Nardelli, 1983). The two phenyl rings are nearly orthogonal to each other with a dihedral angle of 87.1 (1)°. The methyl substituents are oriented equatorially [N1—C2—C3—C16 = 175.3 (2)°] and axially [N1—C2—C3—C15 = 55.1 (2)°] at C3 position.

The crystal structure is stabilized by C—H···O and C—H··· $\pi$  intermolecular interactions. The glide-related molecules are linked into a chain along the *b* axis by C6—H6···O2<sup>i</sup> and C8—H8B···O2<sup>i</sup> hydrogen bonds, and the chains are cross-linked *via* C21—H21···O1<sup>ii</sup> hydrogen bonds; symmetry codes are given in Table 1. In addition, C—H··· $\pi$  interactions involving the C17–C22 ring (centroid *Cg*1) are observed.

## S2. Experimental

A mixture of 3,3-dimethyl-*cis*-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), chloro acetylchloride (0.8 ml, 5 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous  $Na_2SO_4$  and concentrated to obtain a pasty mass. It was purified by crystallization from benzene–petroleum ether (95:5, 60–80°C).

## **S3. Refinement**

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and  $1.2U_{eq}(C)$  for other H atoms.



# Figure 1

The molecular structure of the title compound, showing 20% probability displacement ellipsoids.



## Figure 2

The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonding have been omitted.

# 1-Chloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one

| Crystal data                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{21}H_{22}CINO_2$ $M_r = 355.85$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn<br>a = 13.7005 (3) Å<br>b = 9.8735 (2) Å<br>c = 14.8960 (3) Å<br>$\beta = 112.762$ (1)°<br>V = 1858.08 (7) Å <sup>3</sup><br>Z = 4 | F(000) = 752<br>$D_x = 1.272 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 4674 reflections<br>$\theta = 2.5-28.5^{\circ}$<br>$\mu = 0.22 \text{ mm}^{-1}$<br>T = 293  K<br>Block, colourless<br>$0.32 \times 0.26 \times 0.20 \text{ mm}$ |
| Data collection                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |
| Bruker Kappa APEXII area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans                                                       | Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2001)<br>$T_{min} = 0.854$ , $T_{max} = 0.958$<br>22063 measured reflections<br>4674 independent reflections                                                                                                            |

| 3424 reflections with $I > 2\sigma(I)$                             | $h = -18 \rightarrow 18$                                   |
|--------------------------------------------------------------------|------------------------------------------------------------|
| $R_{\rm int} = 0.025$                                              | $k = -11 \rightarrow 13$                                   |
| $\theta_{\rm max} = 28.5^{\circ},  \theta_{\rm min} = 2.5^{\circ}$ | $l = -18 \rightarrow 19$                                   |
| Refinement                                                         |                                                            |
| Refinement on $F^2$                                                | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                                         | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                                    | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.154$                                                  | neighbouring sites                                         |
| <i>S</i> = 1.01                                                    | H-atom parameters constrained                              |
| 4674 reflections                                                   | $w = 1/[\sigma^2(F_o^2) + (0.0741P)^2 + 0.7704P]$          |
| 226 parameters                                                     | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                                       | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant                    | $\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                                     | $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$ |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|--------------|--------------|-----------------------------|
| C2  | 0.20338 (13)  | 0.74492 (17) | 0.41291 (11) | 0.0364 (3)                  |
| H2  | 0.2263        | 0.8253       | 0.3878       | 0.044*                      |
| C3  | 0.30126 (14)  | 0.6958 (2)   | 0.50015 (13) | 0.0457 (4)                  |
| C4  | 0.27691 (14)  | 0.56295 (19) | 0.53752 (13) | 0.0460 (4)                  |
| C5  | 0.19260 (15)  | 0.47683 (18) | 0.46543 (13) | 0.0450 (4)                  |
| H5A | 0.1275        | 0.4912       | 0.4755       | 0.054*                      |
| H5B | 0.2125        | 0.3828       | 0.4808       | 0.054*                      |
| C6  | 0.16822 (13)  | 0.49786 (17) | 0.35689 (12) | 0.0374 (3)                  |
| H6  | 0.2216        | 0.4486       | 0.3411       | 0.045*                      |
| C7  | 0.16925 (13)  | 0.68513 (18) | 0.24518 (12) | 0.0392 (4)                  |
| C8  | 0.15274 (18)  | 0.5752 (2)   | 0.16986 (14) | 0.0536 (5)                  |
| H8A | 0.0834        | 0.5350       | 0.1537       | 0.064*                      |
| H8B | 0.2053        | 0.5048       | 0.1972       | 0.064*                      |
| C9  | 0.10539 (13)  | 0.78759 (16) | 0.43001 (11) | 0.0372 (3)                  |
| C10 | 0.08432 (16)  | 0.75494 (19) | 0.51136 (13) | 0.0462 (4)                  |
| H10 | 0.1339        | 0.7062       | 0.5620       | 0.055*                      |
| C11 | -0.00972 (18) | 0.7942 (2)   | 0.51791 (15) | 0.0547 (5)                  |
| H11 | -0.0225       | 0.7717       | 0.5730       | 0.066*                      |
| C12 | -0.08371 (17) | 0.8654 (2)   | 0.44463 (16) | 0.0569 (5)                  |
| H12 | -0.1470       | 0.8906       | 0.4493       | 0.068*                      |
| C13 | -0.06398 (16) | 0.8999 (2)   | 0.36330 (15) | 0.0558 (5)                  |
| H13 | -0.1139       | 0.9490       | 0.3132       | 0.067*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C14  | 0.02930 (15)  | 0.86157 (19) | 0.35629 (13) | 0.0451 (4) |
|------|---------------|--------------|--------------|------------|
| H14  | 0.0418        | 0.8855       | 0.3013       | 0.054*     |
| C15  | 0.39135 (16)  | 0.6647 (3)   | 0.46568 (19) | 0.0695 (7) |
| H15A | 0.4103        | 0.7459       | 0.4409       | 0.104*     |
| H15B | 0.3681        | 0.5975       | 0.4152       | 0.104*     |
| H15C | 0.4517        | 0.6313       | 0.5194       | 0.104*     |
| C16  | 0.33953 (19)  | 0.8035 (2)   | 0.58046 (15) | 0.0635 (6) |
| H16A | 0.3542        | 0.8862       | 0.5541       | 0.095*     |
| H16B | 0.4028        | 0.7724       | 0.6321       | 0.095*     |
| H16C | 0.2856        | 0.8194       | 0.6054       | 0.095*     |
| C17  | 0.06144 (13)  | 0.43346 (18) | 0.30018 (12) | 0.0402 (4) |
| C18  | -0.03188 (15) | 0.4922 (2)   | 0.29576 (15) | 0.0514 (5) |
| H18  | -0.0308       | 0.5772       | 0.3230       | 0.062*     |
| C19  | -0.12687 (16) | 0.4244 (3)   | 0.25075 (18) | 0.0653 (6) |
| H19  | -0.1896       | 0.4643       | 0.2477       | 0.078*     |
| C20  | -0.12916 (18) | 0.2988 (3)   | 0.21055 (17) | 0.0672 (6) |
| H20  | -0.1932       | 0.2534       | 0.1810       | 0.081*     |
| C21  | -0.0373 (2)   | 0.2404 (2)   | 0.21401 (17) | 0.0645 (6) |
| H21  | -0.0389       | 0.1556       | 0.1862       | 0.077*     |
| C22  | 0.05803 (17)  | 0.3072 (2)   | 0.25877 (14) | 0.0517 (5) |
| H22  | 0.1203        | 0.2669       | 0.2611       | 0.062*     |
| C11  | 0.16240 (6)   | 0.63835 (7)  | 0.06314 (4)  | 0.0778 (2) |
| N1   | 0.17457 (10)  | 0.64277 (14) | 0.33383 (9)  | 0.0350 (3) |
| 01   | 0.32116 (13)  | 0.52655 (16) | 0.62105 (10) | 0.0706 (5) |
| O2   | 0.17704 (12)  | 0.80385 (14) | 0.22634 (10) | 0.0518 (3) |
|      |               |              |              |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | <i>U</i> <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|-------------|------------------------|
| C2  | 0.0408 (8)  | 0.0334 (8)  | 0.0325 (8)  | -0.0040 (6)  | 0.0113 (6)  | 0.0006 (6)             |
| C3  | 0.0407 (8)  | 0.0456 (10) | 0.0409 (9)  | -0.0039 (7)  | 0.0049 (7)  | 0.0007 (7)             |
| C4  | 0.0477 (9)  | 0.0416 (10) | 0.0396 (9)  | 0.0071 (8)   | 0.0070 (7)  | 0.0041 (7)             |
| C5  | 0.0533 (10) | 0.0358 (9)  | 0.0399 (9)  | -0.0014 (7)  | 0.0114 (8)  | 0.0063 (7)             |
| C6  | 0.0398 (8)  | 0.0331 (8)  | 0.0384 (8)  | -0.0020 (6)  | 0.0143 (7)  | 0.0000 (6)             |
| C7  | 0.0394 (8)  | 0.0433 (10) | 0.0375 (8)  | -0.0005 (7)  | 0.0177 (7)  | 0.0022 (7)             |
| C8  | 0.0761 (13) | 0.0507 (11) | 0.0404 (9)  | 0.0006 (10)  | 0.0295 (9)  | 0.0007 (8)             |
| C9  | 0.0452 (8)  | 0.0321 (8)  | 0.0328 (8)  | -0.0034 (7)  | 0.0136 (6)  | -0.0017 (6)            |
| C10 | 0.0599 (10) | 0.0423 (10) | 0.0382 (9)  | -0.0002 (8)  | 0.0210 (8)  | 0.0036 (7)             |
| C11 | 0.0692 (12) | 0.0547 (12) | 0.0506 (11) | -0.0083 (10) | 0.0346 (10) | -0.0026 (9)            |
| C12 | 0.0509 (10) | 0.0616 (13) | 0.0633 (13) | -0.0042 (9)  | 0.0278 (10) | -0.0119 (10)           |
| C13 | 0.0501 (10) | 0.0628 (13) | 0.0487 (11) | 0.0097 (9)   | 0.0127 (8)  | -0.0009 (9)            |
| C14 | 0.0521 (10) | 0.0471 (10) | 0.0356 (8)  | 0.0046 (8)   | 0.0164 (7)  | 0.0025 (7)             |
| C15 | 0.0394 (10) | 0.0911 (18) | 0.0705 (15) | 0.0000 (10)  | 0.0129 (10) | 0.0047 (13)            |
| C16 | 0.0668 (13) | 0.0553 (12) | 0.0468 (11) | -0.0150 (10) | -0.0016 (9) | -0.0027 (9)            |
| C17 | 0.0453 (9)  | 0.0390 (9)  | 0.0351 (8)  | -0.0074 (7)  | 0.0144 (7)  | 0.0031 (7)             |
| C18 | 0.0458 (9)  | 0.0456 (10) | 0.0566 (11) | -0.0039 (8)  | 0.0129 (8)  | 0.0041 (9)             |
| C19 | 0.0424 (10) | 0.0691 (15) | 0.0728 (15) | -0.0048 (10) | 0.0096 (10) | 0.0161 (12)            |
| C20 | 0.0586 (12) | 0.0710 (15) | 0.0568 (12) | -0.0287 (11) | 0.0057 (10) | 0.0037 (11)            |

# supporting information

| C21 | 0.0760 (15) | 0.0581 (13) | 0.0567 (12) | -0.0258 (11) | 0.0225 (11) | -0.0140 (10) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C22 | 0.0605 (11) | 0.0497 (11) | 0.0489 (10) | -0.0143 (9)  | 0.0256 (9)  | -0.0101 (8)  |
| C11 | 0.1234 (6)  | 0.0747 (4)  | 0.0530 (3)  | -0.0077 (4)  | 0.0534 (4)  | -0.0031 (3)  |
| N1  | 0.0387 (7)  | 0.0337 (7)  | 0.0327 (7)  | -0.0025 (5)  | 0.0139 (5)  | 0.0002 (5)   |
| 01  | 0.0861 (11) | 0.0565 (9)  | 0.0427 (8)  | 0.0064 (8)   | -0.0041 (7) | 0.0112 (7)   |
| O2  | 0.0714 (9)  | 0.0441 (7)  | 0.0471 (7)  | -0.0043 (6)  | 0.0308 (7)  | 0.0057 (6)   |

Geometric parameters (Å, °)

| C2—N1      | 1.483 (2)   | C11—C12       | 1.363 (3)   |
|------------|-------------|---------------|-------------|
| C2—C9      | 1.520 (2)   | C11—H11       | 0.93        |
| C2—C3      | 1.541 (2)   | C12—C13       | 1.382 (3)   |
| С2—Н2      | 0.98        | C12—H12       | 0.93        |
| C3—C4      | 1.512 (3)   | C13—C14       | 1.375 (3)   |
| C3—C16     | 1.534 (3)   | С13—Н13       | 0.93        |
| C3—C15     | 1.540 (3)   | C14—H14       | 0.93        |
| C4—O1      | 1.209 (2)   | C15—H15A      | 0.96        |
| C4—C5      | 1.500 (3)   | C15—H15B      | 0.96        |
| C5—C6      | 1.533 (2)   | C15—H15C      | 0.96        |
| C5—H5A     | 0.97        | C16—H16A      | 0.96        |
| С5—Н5В     | 0.97        | C16—H16B      | 0.96        |
| C6—N1      | 1.482 (2)   | C16—H16C      | 0.96        |
| C6—C17     | 1.517 (2)   | C17—C18       | 1.382 (3)   |
| С6—Н6      | 0.98        | C17—C22       | 1.384 (3)   |
| C7—O2      | 1.220 (2)   | C18—C19       | 1.384 (3)   |
| C7—N1      | 1.360 (2)   | C18—H18       | 0.93        |
| C7—C8      | 1.514 (3)   | C19—C20       | 1.372 (4)   |
| C8—C11     | 1.7595 (19) | С19—Н19       | 0.93        |
| C8—H8A     | 0.97        | C20—C21       | 1.367 (4)   |
| C8—H8B     | 0.97        | C20—H20       | 0.93        |
| C9—C10     | 1.388 (2)   | C21—C22       | 1.382 (3)   |
| C9—C14     | 1.393 (2)   | C21—H21       | 0.93        |
| C10—C11    | 1.385 (3)   | C22—H22       | 0.93        |
| C10—H10    | 0.93        |               |             |
|            |             |               |             |
| N1—C2—C9   | 109.92 (12) | C10—C11—H11   | 119.6       |
| N1—C2—C3   | 109.45 (14) | C11—C12—C13   | 119.48 (19) |
| C9—C2—C3   | 118.87 (14) | C11—C12—H12   | 120.3       |
| N1—C2—H2   | 105.9       | C13—C12—H12   | 120.3       |
| С9—С2—Н2   | 105.9       | C14—C13—C12   | 120.11 (19) |
| С3—С2—Н2   | 105.9       | C14—C13—H13   | 119.9       |
| C4—C3—C16  | 111.85 (16) | C12—C13—H13   | 119.9       |
| C4—C3—C15  | 105.63 (18) | C13—C14—C9    | 121.22 (18) |
| C16—C3—C15 | 108.79 (18) | C13—C14—H14   | 119.4       |
| C4—C3—C2   | 109.86 (14) | C9—C14—H14    | 119.4       |
| C16—C3—C2  | 111.27 (16) | C3—C15—H15A   | 109.5       |
| C15—C3—C2  | 109.26 (16) | C3—C15—H15B   | 109.5       |
| O1—C4—C5   | 120.59 (18) | H15A—C15—H15B | 109.5       |

| O1—C4—C3     | 122.87 (17)  | C3—C15—H15C     | 109.5        |
|--------------|--------------|-----------------|--------------|
| C5—C4—C3     | 116.54 (15)  | H15A—C15—H15C   | 109.5        |
| C4—C5—C6     | 118.12 (15)  | H15B—C15—H15C   | 109.5        |
| С4—С5—Н5А    | 107.8        | С3—С16—Н16А     | 109.5        |
| С6—С5—Н5А    | 107.8        | C3—C16—H16B     | 109.5        |
| C4—C5—H5B    | 107.8        | H16A—C16—H16B   | 109.5        |
| C6—C5—H5B    | 107.8        | C3—C16—H16C     | 109.5        |
| H5A—C5—H5B   | 107.1        | H16A—C16—H16C   | 109.5        |
| N1—C6—C17    | 113.96 (13)  | H16B—C16—H16C   | 109.5        |
| N1—C6—C5     | 111.52 (14)  | C18—C17—C22     | 119.07 (17)  |
| C17—C6—C5    | 107.46 (13)  | C18—C17—C6      | 121.70 (16)  |
| N1—C6—H6     | 107.9        | C22—C17—C6      | 119.00 (16)  |
| С17—С6—Н6    | 107.9        | C17—C18—C19     | 119.9 (2)    |
| С5—С6—Н6     | 107.9        | C17—C18—H18     | 120.0        |
| O2—C7—N1     | 122.85 (16)  | C19—C18—H18     | 120.0        |
| O2—C7—C8     | 121.32 (16)  | C20—C19—C18     | 120.4 (2)    |
| N1—C7—C8     | 115.83 (15)  | С20—С19—Н19     | 119.8        |
| C7—C8—C11    | 111.96 (14)  | С18—С19—Н19     | 119.8        |
| С7—С8—Н8А    | 109.2        | C21—C20—C19     | 120.0 (2)    |
| Cl1—C8—H8A   | 109.2        | C21—C20—H20     | 120.0        |
| С7—С8—Н8В    | 109.2        | С19—С20—Н20     | 120.0        |
| Cl1—C8—H8B   | 109.2        | C20—C21—C22     | 120.1 (2)    |
| H8A—C8—H8B   | 107.9        | C20—C21—H21     | 120.0        |
| C10—C9—C14   | 117.72 (16)  | C22—C21—H21     | 120.0        |
| С10—С9—С2    | 125.29 (15)  | C21—C22—C17     | 120.5 (2)    |
| C14—C9—C2    | 116.96 (15)  | C21—C22—H22     | 119.8        |
| C11—C10—C9   | 120.67 (18)  | С17—С22—Н22     | 119.8        |
| C11—C10—H10  | 119.7        | C7—N1—C6        | 122.42 (14)  |
| С9—С10—Н10   | 119.7        | C7—N1—C2        | 117.37 (13)  |
| C12—C11—C10  | 120.80 (18)  | C6—N1—C2        | 119.59 (13)  |
| C12—C11—H11  | 119.6        |                 | ~ /          |
|              |              |                 |              |
| N1—C2—C3—C4  | -60.29 (18)  | C12—C13—C14—C9  | 0.2 (3)      |
| C9—C2—C3—C4  | 67.1 (2)     | C10-C9-C14-C13  | -0.6 (3)     |
| N1-C2-C3-C16 | 175.29 (15)  | C2-C9-C14-C13   | 177.27 (17)  |
| C9—C2—C3—C16 | -57.3 (2)    | N1—C6—C17—C18   | -50.6 (2)    |
| N1—C2—C3—C15 | 55.1 (2)     | C5-C6-C17-C18   | 73.5 (2)     |
| C9—C2—C3—C15 | -177.45 (17) | N1—C6—C17—C22   | 134.95 (16)  |
| C16—C3—C4—O1 | -28.9 (3)    | C5—C6—C17—C22   | -100.95 (19) |
| C15—C3—C4—O1 | 89.3 (2)     | C22-C17-C18-C19 | 0.3 (3)      |
| C2-C3-C4-O1  | -153.0 (2)   | C6-C17-C18-C19  | -174.15 (18) |
| C16—C3—C4—C5 | 150.31 (18)  | C17—C18—C19—C20 | 0.2 (3)      |
| C15—C3—C4—C5 | -91.50 (19)  | C18—C19—C20—C21 | -0.6 (4)     |
| C2—C3—C4—C5  | 26.2 (2)     | C19—C20—C21—C22 | 0.6 (4)      |
| O1—C4—C5—C6  | -157.96 (19) | C20—C21—C22—C17 | -0.2 (3)     |
| C3—C4—C5—C6  | 22.8 (2)     | C18—C17—C22—C21 | -0.3 (3)     |
| C4—C5—C6—N1  | -37.4 (2)    | C6—C17—C22—C21  | 174.29 (18)  |
| C4—C5—C6—C17 | -162.92 (16) | O2—C7—N1—C6     | -178.13 (16) |

| O2—C7—C8—Cl1    | 7.0 (2)      | C8—C7—N1—C6  | 1.9 (2)      |  |
|-----------------|--------------|--------------|--------------|--|
| N1—C7—C8—C11    | -173.12 (13) | O2—C7—N1—C2  | -7.2 (2)     |  |
| N1—C2—C9—C10    | 109.58 (18)  | C8—C7—N1—C2  | 172.90 (15)  |  |
| C3—C2—C9—C10    | -17.6 (2)    | C17—C6—N1—C7 | -66.5 (2)    |  |
| N1—C2—C9—C14    | -68.14 (18)  | C5—C6—N1—C7  | 171.59 (15)  |  |
| C3—C2—C9—C14    | 164.68 (16)  | C17—C6—N1—C2 | 122.72 (15)  |  |
| C14—C9—C10—C11  | 0.5 (3)      | C5-C6-N1-C2  | 0.8 (2)      |  |
| C2-C9-C10-C11   | -177.24 (17) | C9—C2—N1—C7  | 104.00 (16)  |  |
| C9—C10—C11—C12  | 0.2 (3)      | C3—C2—N1—C7  | -123.72 (15) |  |
| C10-C11-C12-C13 | -0.6 (3)     | C9—C2—N1—C6  | -84.78 (17)  |  |
| C11—C12—C13—C14 | 0.5 (3)      | C3—C2—N1—C6  | 47.50 (18)   |  |
|                 |              |              |              |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H  | H···A | $D \cdots A$ | D—H···A |
|------------------------------|------|-------|--------------|---------|
| C6—H6…O2 <sup>i</sup>        | 0.98 | 2.46  | 3.426 (2)    | 168     |
| C8— $H8B$ ···O2 <sup>i</sup> | 0.97 | 2.53  | 3.495 (3)    | 172     |
| C21—H21…O1 <sup>ii</sup>     | 0.93 | 2.53  | 3.248 (3)    | 134     |
| C11—H11···· $Cg1^{iii}$      | 0.93 | 2.73  | 3.568 (2)    | 150     |

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) *x*-1/2, -*y*+1/2, *z*-1/2; (iii) -*x*, -*y*+1, -*z*+1.