Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Aminopyridinium 4-nitrobenzoate 4nitrobenzoic acid

Ching Kheng Quah, Samuel Robinson Jebas‡ and Hoong-Kun Fun*

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 29 August 2008; accepted 29 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; *R* factor = 0.044; w*R* factor = 0.133; data-to-parameter ratio = 23.4.

The asymmetric unit of the title compound, $C_5H_7N_2^+$.- $C_7H_4NO_4^-$. $C_7H_5NO_4$, consists of an aminopyridinium cation, a 4-nitrobenzoate anion and a neutral 4-nitrobenzoic acid molecule. The pyridine ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the benzene rings of 4nitrobenzoic acid and 4-nitrobenzoate. In the crystal structure, the cations, anions and the neutral 4-nitrobenzoic acid molecules are linked by O-H···O and N-H···O hydrogen bonds, forming a two-dimensional network parallel to (001). Adjacent networks are cross-linked *via* C-H···O hydrogen bonds and π - π stacking interactions [centroid–centroid distances 3.6339 (6) and 3.6566 (6) Å].

Related literature

For the biological activity of 4-aminopyridine, see: Judge *et al.* (2006); Schwid *et al.* (1997); Strupp *et al.* (2004). For related structures, see: Chao & Schempp (1977); Anderson *et al.* (2005); Andrau & White, (2003); Bhattacharya *et al.* (1994); Karle *et al.* (2003).

Crystal data

 $C_{5}H_{7}N_{2}^{+} \cdot C_{7}H_{4}NO_{4}^{-} \cdot C_{7}H_{5}NO_{4}$ $M_{r} = 428.36$ Triclinic, $P\overline{1}$ a = 6.4561 (1) Å b = 6.8598 (1) Å c = 20.9055 (3) Å $\alpha = 85.826 (1)^{\circ}$ $\beta = 87.975 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.952, T_{\rm max} = 0.965$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.132$ S = 1.056647 reflections 284 parameters 1 restraint

H atoms treated by a m	ixture of
independent and con	strained

 $\gamma = 86.188 \ (1)^{\circ}$

Z = 2

V = 920.92 (2) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.36 \times 0.29 \text{ mm}$

24945 measured reflections 6647 independent reflections

5169 reflections with $I > 2\sigma(I)$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 100.0 (1) K

 $R_{\rm int} = 0.031$

 $\begin{array}{l} \text{independent and constraint}\\ \text{refinement}\\ \Delta\rho_{\text{max}}=0.43 \text{ e } \text{ } \text{\AA}^{-3}\\ \Delta\rho_{\text{min}}=-0.39 \text{ e } \text{ } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3A - H1O3 \cdots O3B^{i}$	0.82	1.63	2.4457 (11)	170
$N3-H3A\cdots O3B^{ii}$	0.86	2.14	2.9977 (12)	172
$N3-H3B\cdots O4B^{i}$	0.86	2.07	2.8758 (12)	155
$N2-H1N2\cdots O4A^{iii}$	0.85(1)	1.99 (1)	2.7726 (12)	153 (1)
$C2B - H2BA \cdots O1B^{iv}$	0.93	2.52	3.2187 (13)	133
$C8 - H8A \cdots O3A^{v}$	0.93	2.56	3.4565 (13)	161
$C12-H12A\cdots O1A^{vi}$	0.93	2.55	3.4427 (13)	162
Symmetry codes: (i)	-x + 1, -y + 2	z, -z + 1; (ii)	-x+2, -y+2	, -z + 1; (iii)
x + 1, y - 1, z; (iv)	-x + 3, -y	+1, -z + 2;	(v) x, y -	-1, z; (vi)

x + 1, y - 1, z; (iv) -x + 2, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. CKQ thanks Universiti Sains Malaysia for a student assistanceship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2664).

References

- Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
- Andrau, L. & White, J. (2003). Acta Cryst. E59, 077-079.

[‡] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531–537.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.
- Judge, S. & Bever, C. (2006). *Pharmacol. Ther.* **111**, 224–259. Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.
- Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13. Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.

supporting information

Acta Cryst. (2008). E64, o1878-o1879 [doi:10.1107/S1600536808027761]

4-Aminopyridinium 4-nitrobenzoate 4-nitrobenzoic acid

Ching Kheng Quah, Samuel Robinson Jebas and Hoong-Kun Fun

S1. Comment

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels, it prolongs the action potentials thereby increasing transmitter release at the neuromuscular junction (Judge *et al.*, 2006; Schwid *et al.*, 1997; Strupp *et al.*, 2004). The crystal structure of 4-aminopyridine has been reported (Chao & Schempp, 1977; Anderson *et al.*, 2005). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with aromatic carboxylic acids, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one 4-aminopyridinium cation, one 4-nitrobenzoate anion and one 4-nitrobenzoic acid molecule. A proton transfer from the carboxyl group of 4-nitrobenzoic acid to atom N2 of 4-aminopyridine resulted in the formation of ions. This lead to the widening of C8—N2—C12 angle of the pyridine ring to 120.86 (9)°, compared to 115.25 (13)° in the unprotonated 4-aminopyridine (Anderson *et al.*, 2005). This type of protonation is observed in various 4-aminopyridine acid complexes (Bhattacharya *et al.*, 1994; Karle *et al.*, 2003). The bond lengths and angles of the 4-aminopyridine are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson *et al.*, 2005). The bond lengths and angles of the 4-nitrobenzoic acid is found to be normal(Andrau & White, 2003).

The dihedral angle between the benzene rings of 4-nitrobenzoic acid (C1A-C6A) and 4-nitrobenzoate (C1B-C6B) units is 6.62 (5)°. The pyridine (N2/C8—C12) ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the C1A-C6A and C1B-C6B rings.

In the crystal structure, the cations, anions and the neutral 4-nitrobenzoic acid molecules are linked to form a twodimensional network (Fig. 2) parallel to the (0 0 1) by O—H···O and N—H···O hydrogen bonds (Table 1). The adjacent networks are cross-linked via C—H···O hydrogen bonds. The crystal packing is further consolidated by π – π stacking interactions between symmetry-related C1A-C6A (centroid *Cg*1) and C1B-C6B (centroid *Cg*2) rings, with *Cg*1···*Cg*1ⁱ and *Cg*2···*Cg*2^{vii} distances of 3.6566 (6) Å and 3.6339 (6) Å, respectively [symmetry codes: (i) 1-x, 2-y, 1-z; (vii) 2-x, 2-y, 2z].

S2. Experimental

4-Aminopyridine and 4-nitrobenzoic acid were mixed in equimolar ratio in methanol and warmed in a water bath for 2 h. Colourless single crystals were obtained after a week on slow evaporation.

S3. Refinement

Atom H1N2 was located from a difference map and was refined with the N-H distance restrained to 0.85 (1) Å. The remaining H atoms were positioned geometrically with C-H = 0.93 Å, N-H = 0.86 Å and O-H = 0.82Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(O)$.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

(I)

Crystal data	
$C_5H_7N_2^+$ · $C_7H_4NO_4^-$ · $C_7H_5NO_4$	$\gamma = 86.188 (1)^{\circ}$
$M_r = 428.36$	$V = 920.92 (2) A^{3}$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 444
a = 6.4561 (1) Å	$D_{\rm x} = 1.545 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.8598(1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 20.9055 (3) Å	Cell parameters from 6200 reflections
$\alpha = 85.826 \ (1)^{\circ}$	$\theta = 2.2 - 29.2^{\circ}$
$\beta = 87.975 \ (1)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$

T = 100 KBlock, colourless

Data collection

Bruker SMART APEXII CCD area-detector	24945 measured reflections
diffractometer	6647 independent reflections
Radiation source: fine-focus sealed tube	5169 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
φ and ω scans	$\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 1.0^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.952, \ T_{\max} = 0.965$	$l = -31 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location:
Logat aquaras matrix; full	mon

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
6647 reflections	and constrained refinement
284 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0736P)^2 + 0.1221P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.43$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

 $0.40 \times 0.36 \times 0.29 \text{ mm}$

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.61416 (13)	0.64153 (13)	0.61139 (4)	0.02534 (18)	
O1B	1.43798 (12)	0.64460 (14)	1.07244 (4)	0.02613 (19)	
O2A	0.89023 (12)	0.63198 (13)	0.54960 (4)	0.02492 (18)	
O2B	1.15700 (13)	0.66730 (15)	1.13139 (4)	0.02794 (19)	
O3A	0.31404 (11)	0.97209 (12)	0.29069 (4)	0.02024 (16)	
H1O3	0.2342	1.0163	0.2628	0.030*	
O3B	0.89111 (11)	0.90736 (11)	0.80183 (4)	0.01831 (15)	
O4A	0.02402 (11)	0.98398 (11)	0.35318 (4)	0.01950 (16)	
O4B	0.59084 (12)	0.90329 (13)	0.85892 (4)	0.02425 (18)	
N1A	0.70215 (13)	0.66162 (13)	0.55851 (4)	0.01667 (17)	
N1B	1.24848 (13)	0.67136 (13)	1.07904 (4)	0.01646 (17)	
N2	0.80980 (14)	0.30341 (13)	0.29153 (4)	0.01904 (18)	

N3	0.73597 (13)	0.85350 (13)	0.20200 (5)	0.02020 (18)
H3A	0.8354	0.9309	0.2022	0.024*
H3B	0.6223	0.8922	0.1834	0.024*
C1A	0.24956 (15)	0.84572 (14)	0.46101 (5)	0.01507 (18)
H1AA	0.1084	0.8790	0.4667	0.018*
C1B	1.11431 (15)	0.75402 (14)	0.90711 (5)	0.01505 (18)
H1BA	1.1788	0.7482	0.8667	0.018*
C2A	0.36551 (15)	0.77640 (14)	0.51351 (5)	0.01593 (18)
H2AA	0.3048	0.7633	0.5545	0.019*
C2B	1.22778 (15)	0.70459 (14)	0.96180 (5)	0.01522 (18)
H2BA	1.3685	0.6664	0.9587	0.018*
C3B	1.12614 (14)	0.71350 (14)	1.02109 (5)	0.01397 (17)
C3A	0.57532 (15)	0.72731 (14)	0.50276 (5)	0.01424 (17)
C4A	0.67164 (15)	0.74110 (15)	0.44250 (5)	0.01592 (18)
H4AA	0.8119	0.7038	0.4369	0.019*
C4B	0.91589 (15)	0.76542 (14)	1.02843 (5)	0.01527 (18)
H4BA	0.8513	0.7667	1.0689	0.018*
C5A	0.55303 (15)	0.81214 (15)	0.39071 (5)	0.01621 (18)
H5AA	0.6142	0.8239	0.3498	0.019*
C5B	0.80500 (15)	0.81538 (14)	0.97324 (5)	0.01517 (18)
H5BA	0.6638	0.8512	0.9766	0.018*
C6A	0.34218 (14)	0.86598 (14)	0.39989 (5)	0.01412 (17)
C6B	0.90370 (14)	0.81237 (14)	0.91270 (5)	0.01388 (17)
C7A	0.21250 (15)	0.94696 (14)	0.34447 (5)	0.01498 (18)
C7B	0.78049 (15)	0.87820 (14)	0.85437 (5)	0.01578 (18)
C8	0.62995 (16)	0.35854 (16)	0.26207 (5)	0.0195 (2)
H8A	0.5260	0.2709	0.2623	0.023*
C9	0.59889 (15)	0.54066 (15)	0.23204 (5)	0.01760 (19)
H9A	0.4736	0.5775	0.2126	0.021*
C10	0.75805 (15)	0.67391 (15)	0.23052 (5)	0.01566 (18)
C11	0.94501 (15)	0.60896 (15)	0.26128 (5)	0.01670 (19)
H11A	1.0538	0.6914	0.2611	0.020*
C12	0.96496 (16)	0.42621 (16)	0.29097 (5)	0.0186 (2)
H12A	1.0877	0.3849	0.3113	0.022*
H1N2	0.839 (2)	0.1892 (15)	0.3080 (7)	0.029 (4)*

Atomic displacement parameters $(Å^2)$

	T T 1	* 7))	x x??	x 110	x x 12	* * * *
	U^{μ}	U^{22}	U^{ss}	U^{12}	U^{15}	U^{23}
O1A	0.0250 (4)	0.0384 (5)	0.0118 (4)	-0.0024 (3)	-0.0008 (3)	0.0048 (3)
O1B	0.0158 (3)	0.0428 (5)	0.0191 (4)	0.0041 (3)	-0.0028 (3)	-0.0013 (3)
O2A	0.0172 (3)	0.0361 (5)	0.0207 (4)	0.0016 (3)	-0.0036 (3)	0.0012 (3)
O2B	0.0228 (4)	0.0485 (5)	0.0115 (4)	0.0012 (3)	0.0006 (3)	0.0003 (3)
O3A	0.0183 (3)	0.0303 (4)	0.0116 (3)	-0.0013 (3)	-0.0025 (3)	0.0027 (3)
O3B	0.0174 (3)	0.0258 (4)	0.0114 (3)	-0.0009 (3)	-0.0003 (3)	0.0006 (3)
O4A	0.0158 (3)	0.0236 (4)	0.0182 (4)	0.0011 (3)	-0.0016 (3)	0.0026 (3)
O4B	0.0145 (3)	0.0368 (5)	0.0198 (4)	0.0011 (3)	-0.0020 (3)	0.0071 (3)
N1A	0.0179 (4)	0.0178 (4)	0.0145 (4)	-0.0016 (3)	-0.0034 (3)	-0.0001 (3)

N1B	0.0167 (4)	0.0194 (4)	0.0131 (4)	0.0003 (3)	-0.0014 (3)	-0.0010 (3)
N2	0.0213 (4)	0.0188 (4)	0.0161 (4)	0.0014 (3)	0.0009 (3)	0.0017 (3)
N3	0.0160 (4)	0.0212 (4)	0.0224 (5)	0.0005 (3)	-0.0014 (3)	0.0045 (3)
C1A	0.0146 (4)	0.0166 (4)	0.0140 (4)	-0.0011 (3)	-0.0003 (3)	-0.0006 (3)
C1B	0.0156 (4)	0.0177 (4)	0.0114 (4)	0.0009 (3)	0.0001 (3)	-0.0004 (3)
C2A	0.0172 (4)	0.0180 (4)	0.0127 (4)	-0.0030 (3)	0.0005 (3)	-0.0001 (3)
C2B	0.0139 (4)	0.0175 (4)	0.0140 (4)	0.0009 (3)	-0.0001 (3)	-0.0010 (3)
C3B	0.0151 (4)	0.0154 (4)	0.0114 (4)	-0.0001 (3)	-0.0023 (3)	-0.0003 (3)
C3A	0.0168 (4)	0.0143 (4)	0.0118 (4)	-0.0017 (3)	-0.0030 (3)	0.0002 (3)
C4A	0.0141 (4)	0.0193 (4)	0.0143 (4)	-0.0007 (3)	-0.0005 (3)	-0.0013 (3)
C4B	0.0158 (4)	0.0175 (4)	0.0125 (4)	-0.0018 (3)	0.0009 (3)	-0.0007 (3)
C5A	0.0163 (4)	0.0206 (4)	0.0117 (4)	-0.0015 (3)	0.0000 (3)	-0.0013 (3)
C5B	0.0131 (4)	0.0180 (4)	0.0142 (4)	-0.0005 (3)	-0.0002 (3)	0.0001 (3)
C6A	0.0154 (4)	0.0147 (4)	0.0125 (4)	-0.0018 (3)	-0.0021 (3)	-0.0006 (3)
C6B	0.0143 (4)	0.0151 (4)	0.0122 (4)	-0.0013 (3)	-0.0014 (3)	0.0005 (3)
C7A	0.0173 (4)	0.0153 (4)	0.0125 (4)	-0.0026 (3)	-0.0018 (3)	0.0002 (3)
C7B	0.0157 (4)	0.0167 (4)	0.0149 (4)	-0.0007 (3)	-0.0022 (3)	-0.0001 (3)
C8	0.0175 (4)	0.0233 (5)	0.0178 (5)	-0.0023 (4)	0.0008 (4)	-0.0016 (4)
C9	0.0138 (4)	0.0231 (5)	0.0156 (5)	-0.0006 (3)	-0.0012 (3)	-0.0001 (4)
C10	0.0144 (4)	0.0199 (4)	0.0123 (4)	0.0012 (3)	0.0005 (3)	-0.0009 (3)
C11	0.0151 (4)	0.0203 (4)	0.0148 (4)	-0.0004 (3)	-0.0020 (3)	-0.0015 (4)
C12	0.0178 (4)	0.0232 (5)	0.0143 (5)	0.0029 (3)	-0.0023 (3)	-0.0010 (4)

Geometric parameters (Å, °)

O1A—N1A	1.2278 (12)	C2A—H2AA	0.93
O1B—N1B	1.2294 (11)	C2B—C3B	1.3851 (14)
O2A—N1A	1.2276 (11)	C2B—H2BA	0.93
O2B—N1B	1.2244 (12)	C3B—C4B	1.3863 (13)
O3A—C7A	1.2877 (12)	C3A—C4A	1.3848 (14)
O3A—H1O3	0.8200	C4A—C5A	1.3888 (14)
O3B—C7B	1.2993 (12)	C4A—H4AA	0.93
O4A—C7A	1.2362 (12)	C4B—C5B	1.3890 (14)
O4B—C7B	1.2263 (12)	C4B—H4BA	0.93
N1A—C3A	1.4743 (12)	C5A—C6A	1.3969 (13)
N1B—C3B	1.4702 (13)	C5A—H5AA	0.93
N2-C12	1.3502 (14)	C5B—C6B	1.3977 (14)
N2—C8	1.3523 (14)	C5B—H5BA	0.93
N2—H1N2	0.844 (9)	C6A—C7A	1.5049 (13)
N3—C10	1.3301 (13)	C6B—C7B	1.5047 (13)
N3—H3A	0.86	C8—C9	1.3626 (15)
N3—H3B	0.86	C8—H8A	0.93
C1A—C2A	1.3877 (14)	C9—C10	1.4180 (14)
C1A—C6A	1.3930 (14)	С9—Н9А	0.93
C1A—H1AA	0.93	C10—C11	1.4180 (13)
C1B—C2B	1.3888 (13)	C11—C12	1.3580 (15)
C1B—C6B	1.3949 (13)	C11—H11A	0.93
C1B—H1BA	0.93	C12—H12A	0.93

C2A—C3A	1.3884 (13)		
C7A—O3A—H1O3	109.5	C3B—C4B—H4BA	121.2
O2A—N1A—O1A	123.62 (9)	C5B—C4B—H4BA	121.2
O2A—N1A—C3A	118.18 (9)	C4A—C5A—C6A	120.21 (9)
O1A—N1A—C3A	118.20 (8)	С4А—С5А—Н5АА	119.9
O2B—N1B—O1B	123.36 (9)	С6А—С5А—Н5АА	119.9
O2B—N1B—C3B	118.43 (8)	C4B—C5B—C6B	120.61 (9)
O1B—N1B—C3B	118.20 (9)	C4B—C5B—H5BA	119.7
C12—N2—C8	120.86 (9)	C6B—C5B—H5BA	119.7
C12—N2—H1N2	115.2 (11)	C1A—C6A—C5A	119.99 (9)
C8—N2—H1N2	123.7 (11)	C1A—C6A—C7A	119.15 (8)
C10—N3—H3A	120.0	C5A—C6A—C7A	120.86 (9)
C10—N3—H3B	120.0	C1B—C6B—C5B	120.08 (9)
H3A—N3—H3B	120.0	C1B—C6B—C7B	121.02 (9)
C2A—C1A—C6A	120.74 (9)	C5B—C6B—C7B	118.88 (8)
C2A—C1A—H1AA	119.6	O4A—C7A—O3A	125.63 (9)
C6A—C1A—H1AA	119.6	O4A—C7A—C6A	119.65 (9)
C2B—C1B—C6B	120.04 (9)	O3A—C7A—C6A	114.72 (8)
C2B—C1B—H1BA	120.0	O4B—C7B—O3B	125.05 (9)
C6B—C1B—H1BA	120.0	O4B—C7B—C6B	120.18 (9)
C1A—C2A—C3A	117.70 (9)	O3B—C7B—C6B	114.75 (8)
C1A—C2A—H2AA	121.2	N2—C8—C9	120.94 (10)
СЗА—С2А—Н2АА	121.2	N2—C8—H8A	119.5
C3B—C2B—C1B	118.35 (9)	C9—C8—H8A	119.5
C3B—C2B—H2BA	120.8	C8—C9—C10	119.85 (9)
C1B—C2B—H2BA	120.8	С8—С9—Н9А	120.1
C2B—C3B—C4B	123.20 (9)	С10—С9—Н9А	120.1
C2B—C3B—N1B	118.36 (8)	N3-C10-C11	120.35 (9)
C4B—C3B—N1B	118.42 (9)	N3—C10—C9	122.38 (9)
C4A—C3A—C2A	123.18 (9)	C11—C10—C9	117.27 (9)
C4A—C3A—N1A	118.57 (8)	C12-C11-C10	119.88 (9)
C2A—C3A—N1A	118.23 (9)	C12—C11—H11A	120.1
C3A—C4A—C5A	118.16 (9)	C10-C11-H11A	120.1
СЗА—С4А—Н4АА	120.9	N2—C12—C11	121.19 (9)
C5A—C4A—H4AA	120.9	N2—C12—H12A	119.4
C3B—C4B—C5B	117.67 (9)	C11—C12—H12A	119.4
C6A—C1A—C2A—C3A	-0.39 (14)	C4A—C5A—C6A—C1A	-0.97 (14)
C6B—C1B—C2B—C3B	0.50 (14)	C4A—C5A—C6A—C7A	178.78 (9)
C1B—C2B—C3B—C4B	1.38 (15)	C2B—C1B—C6B—C5B	-1.98 (14)
C1B—C2B—C3B—N1B	-176.79 (9)	C2B—C1B—C6B—C7B	176.30 (9)
O2B—N1B—C3B—C2B	-175.56 (9)	C4B—C5B—C6B—C1B	1.65 (14)
O1B—N1B—C3B—C2B	5.40 (14)	C4B—C5B—C6B—C7B	-176.66 (9)
O2B—N1B—C3B—C4B	6.18 (14)	C1A—C6A—C7A—O4A	-4.01 (14)
O1B—N1B—C3B—C4B	-172.86 (9)	C5A—C6A—C7A—O4A	176.24 (9)
C1A—C2A—C3A—C4A	-1.18 (15)	C1A—C6A—C7A—O3A	175.76 (8)
C1A—C2A—C3A—N1A	177.40 (8)	C5A—C6A—C7A—O3A	-3.99 (13)

O2A—N1A—C3A—C4A	3.87 (13)	C1B—C6B—C7B—O4B	170.01 (9)
O1A—N1A—C3A—C4A	-176.87 (9)	C5B—C6B—C7B—O4B	-11.69 (14)
O2A—N1A—C3A—C2A	-174.77 (9)	C1B—C6B—C7B—O3B	-11.13 (13)
O1A—N1A—C3A—C2A	4.48 (13)	C5B—C6B—C7B—O3B	167.17 (9)
C2A—C3A—C4A—C5A	1.64 (15)	C12—N2—C8—C9	-1.21 (16)
N1A—C3A—C4A—C5A	-176.93 (8)	N2-C8-C9-C10	1.08 (16)
C2B—C3B—C4B—C5B	-1.70 (15)	C8—C9—C10—N3	-179.88 (10)
N1B—C3B—C4B—C5B	176.47 (9)	C8—C9—C10—C11	-0.23 (15)
C3A—C4A—C5A—C6A	-0.53 (14)	N3-C10-C11-C12	179.16 (10)
C3B—C4B—C5B—C6B	0.15 (14)	C9-C10-C11-C12	-0.50 (15)
C2A—C1A—C6A—C5A	1.44 (14)	C8—N2—C12—C11	0.45 (16)
C2A—C1A—C6A—C7A	-178.30 (9)	C10—C11—C12—N2	0.41 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
03 <i>A</i> —H1 <i>O</i> 3···O3 <i>B</i> ⁱ	0.82	1.63	2.4457 (11)	170
N3—H3 <i>A</i> ···O3 <i>B</i> ⁱⁱ	0.86	2.14	2.9977 (12)	172
N3—H3 B ···O4 B^{i}	0.86	2.07	2.8758 (12)	155
N2—H1 $N2$ ···O4 A^{iii}	0.85 (1)	1.99 (1)	2.7726 (12)	153 (1)
$C2B$ — $H2BA$ ···O1 B^{iv}	0.93	2.52	3.2187 (13)	133
C8—H8A···O3A ^v	0.93	2.56	3.4565 (13)	161
C12—H12 A ···O1 A ^{vi}	0.93	2.55	3.4427 (13)	162

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) *x*+1, *y*-1, *z*; (iv) -*x*+3, -*y*+1, -*z*+2; (v) *x*, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.