organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Chloro-2-nitrophenyl)methanesulfonamide

Muhammad Zia-ur-Rehman,^a* Jamil Anwar Choudary,^b Nosheen Akbar,^c Islam Ullah Khan^d and Muhammad Nadeem Arshad^d

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^cCentre for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan, and ^dDepartment of Chemistry, Government College University, Lahore 54000, Pakistan

Correspondence e-mail: noshinakbar@vahoo.com

Received 18 September 2008; accepted 25 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.147; data-to-parameter ratio = 18.3.

The title compound, C7H7ClN2O4S, is of interest as a precursor to biologically active substituted quinolines. Its structure resembles those of the previously reported N-phenylmethane sulfonamide and its 4-nitro, 4-fluoro and 4-bromo derivatives, with slightly different geometric parameters. An intramolecular N-H···O hydrogen bond gives rise to a six-membered ring. Intermolecular C-H···O contacts stabilize the crystal packing.

Related literature

For related literature, see: Ahn et al. (1997); Allen et al. (1987); Ozbek et al. (2007); Siddiqui et al. (2007); Gennarti et al. (1994); Gowda et al. (2007a,b,c); Hanson et al. (1999); Moree et al. (1991); Oppolzer et al. (1991); Rough et al. (1998); Zia-ur-Rehman et al. (2005, 2006, 2007, 2008).

b = 4.9798 (13) Å c = 17.988 (5) Å

 $\beta = 107.334 \ (8)^{\circ}$ V = 1002.8 (5) Å³

Experimental

Crystal data C7H7CIN2O4S

0/11/On 12040
$M_r = 250.67$
Monoclinic, $P2_1/n$
a = 11.728 (3) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.58 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 10700 measured reflections	2590 independent reflections 1199 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.081$
Refinement	

T = 296 (2) K $0.22 \times 0.14 \times 0.07 \text{ mm}$

5	
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.147$	independent and constrained
S = 0.97	refinement
2556 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
140 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O3	0.80 (4)	2.03 (4)	2.631 (4)	131 (3)
$C3-H3 \cdot \cdot \cdot O3^{i}$	0.93	2.59	3.417 (4)	148
$C5-H5\cdots O2^{ii}$	0.93	2.47	3.325 (5)	152
$C6-H6\cdots O2$	0.93	2.27	2.951 (5)	130
$C7-H8\cdots O3^{iii}$	0.96	2.53	3.394 (5)	150
Symmetry codes:	(i) $-x + \frac{3}{2}, y + \frac{3}{2}$	$-\frac{1}{2}, -z + \frac{3}{2};$ (ii)	-x+1, -y+1	1, -z + 2; (iii)
-x + 2, -y, -z + 2.				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors are grateful to the PCSIR Laboratories Complex, Lahore, Pakistan, for provision of the necessary chemicals, and to the Higher Education Commission of Pakistan for the grant to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2794).

References

- Ahn, K. H., Ham, C., Kim, S.-K. & Cho, C.-W. (1997). J. Org. Chem. 62, 7047-7048.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.
- Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
- Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
- Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
- Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4763.
- Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.
- Oppolzer, W., Kingma, A. J. & Pillai, S.-K. (1991). Tetrahedron Lett. 32, 4893-4895
- Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.

- Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). *Bioorg. Med. Chem. Lett.* **17**, 255–259. Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13.
- Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.
- Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). *Eur. J. Med. Chem.* In the press. doi: 10.1016/ j.ejmech.2008.08.002.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). *Acta Cryst.* E**63**, o4215–o4216.

supporting information

Acta Cryst. (2008). E64, o2034–o2035 [doi:10.1107/S1600536808031048]

N-(4-Chloro-2-nitrophenyl)methanesulfonamide

Muhammad Zia-ur-Rehman, Jamil Anwar Choudary, Nosheen Akbar, Islam Ullah Khan and Muhammad Nadeem Arshad

S1. Comment

Sulfonamides are familiar for their enormous potential as biologically active molecules (Hanson *et al.*, 1999; Moree *et al.*, 1991; Rough *et al.*, 1998). They are being used as anti-microbial (Ozbek *et al.*, 2007), anti-convulsant (Siddiqui *et al.*, 2007), and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti *et al.*, 1994). Besides, these are known as compounds being used as agricultural agents and chiral auxiliaries (Ahn *et al.*, 1997; Oppolzer *et al.*, 1991). Among these, alkyl sulfonanilides are of special interest due to their stereochemistry with amide hydrogen on one side of the plane of benzene ring making it a good receptor site for biological reactions. In the present paper, the structure of *N*-(4-chloro-2-nitrophenyl)methanesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman *et al.*, 2005, 2006, 2007, 2008). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda *et al.*, 2007*a*,*b*,*c*) and are within normal ranges (Allen *et al.*, 1987). Intramolecular interaction [N1—H1···O3] is observed in the title molecule giving rise to six-membered hydrogen bonded ring. Each molecule is centrosymmetrically linked to its adjacent one through intermolecular [N1—H1···O1] hydrogen bonds on one side, and *via* [C5—H5···O2] hydrogen bonds on the other side, giving rise to a zigzag chain along *a* axis. Each molecule of a chain is further linked to the member of adjacent chain *via* [C3—H3···O3] hydrogen bonds along *c* giving rise to a three dimensional network.

S2. Experimental

A mixture of 4-chloro-2-nitroaniline (3.452 g; 20.0 mmoles) and mesyl chloride (2.52 g; 22.0 mmoles) and toluene (25.0 ml) was heated to reflux for half an hour. Solvent was then distilled off under reduced pressure and the resultant solids were washed with cold methanol. Crystals suitable for analysis were obtained by slow evaporation of methanolic solution over a period of two days.

S3. Refinement

H atoms bound to C were placed in calculated positions (C—H distance = 0.95 Å) using a riding model. H atoms on N and O were freely refined.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Perspective view of the crystal packing showing hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

N-(4-Chloro-2-nitrophenyl)methanesulfonamide

Crystal data	
$C_7H_7CIN_2O_4S$	F(000) = 512
$M_r = 250.67$	$D_{\rm x} = 1.660 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 388 K
Hall symbol: -P 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.728 (3) Å	Cell parameters from 1283 reflections
b = 4.9798 (13) Å	$\theta = 2.4 - 20.9^{\circ}$
c = 17.988 (5) Å	$\mu=0.58~\mathrm{mm^{-1}}$
$\beta = 107.334 \ (8)^{\circ}$	T = 296 K
$V = 1002.8 (5) Å^3$	Needle, light yellow
Z = 4	$0.22 \times 0.14 \times 0.07 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector	2590 independent reflections
diffractometer	1199 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.081$
Graphite monochromator	$\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Detector resolution: 7.5 pixels mm ⁻¹	$h = -15 \rightarrow 15$
φ and ω scans	$k = -6 \rightarrow 6$
10700 measured reflections	$l = -23 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.148$	neighbouring sites
S = 0.97	H atoms treated by a mixture of independent
2556 reflections	and constrained refinement
140 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F* with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.36565 (9)	-0.3010 (2)	0.78879 (7)	0.0757 (4)	
S1	0.82089 (9)	0.53780 (17)	1.02558 (6)	0.0499 (3)	
01	0.9148 (3)	0.7102 (5)	1.01960 (19)	0.0756 (9)	
O2	0.7141 (2)	0.6562 (5)	1.03188 (16)	0.0647 (8)	
O3	0.8855 (2)	0.1004 (5)	0.85222 (14)	0.0554 (7)	
O4	0.8088 (2)	-0.2740 (5)	0.80406 (15)	0.0613 (7)	
H1	0.852 (3)	0.324 (7)	0.938 (2)	0.047 (11)*	
N1	0.7906 (3)	0.3571 (6)	0.94717 (19)	0.0509 (8)	
N2	0.8034 (3)	-0.0641 (6)	0.83722 (16)	0.0441 (7)	
C1	0.6920 (3)	0.1941 (6)	0.91264 (19)	0.0416 (8)	
C2	0.6953 (3)	-0.0052 (6)	0.85865 (19)	0.0397 (8)	
C3	0.5963 (3)	-0.1573 (7)	0.8216 (2)	0.0473 (9)	
Н3	0.6013	-0.2884	0.7859	0.057*	
C4	0.4913 (3)	-0.1147 (7)	0.8376 (2)	0.0507 (9)	
C5	0.4847 (3)	0.0733 (7)	0.8916 (2)	0.0559 (10)	
Н5	0.4136	0.0974	0.9037	0.067*	
C6	0.5830 (4)	0.2266 (7)	0.9282 (2)	0.0556 (10)	
H6	0.5767	0.3554	0.9642	0.067*	
C7	0.8741 (4)	0.3148 (8)	1.1025 (3)	0.0756 (13)	
H8	0.9413	0.2183	1.0959	0.113*	
Н9	0.8121	0.1903	1.1036	0.113*	
H7	0.8984	0.4127	1.1507	0.113*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0495 (6)	0.0871 (8)	0.0875 (9)	-0.0078 (5)	0.0156 (6)	-0.0033 (6)
S1	0.0594 (6)	0.0414 (5)	0.0527 (6)	0.0081 (4)	0.0224 (5)	-0.0082 (4)
01	0.083 (2)	0.0540 (15)	0.100 (2)	-0.0184 (14)	0.0431 (19)	-0.0276 (15)
02	0.0700 (18)	0.0622 (16)	0.0661 (19)	0.0267 (13)	0.0267 (14)	-0.0096 (13)
03	0.0468 (15)	0.0678 (16)	0.0571 (18)	-0.0027 (13)	0.0238 (13)	-0.0109 (13)
04	0.0608 (17)	0.0650 (16)	0.0627 (19)	0.0092 (12)	0.0255 (14)	-0.0258 (13)
N1	0.050 (2)	0.0539 (18)	0.058 (2)	0.0022 (16)	0.0296 (17)	-0.0131 (14)
N2	0.0457 (18)	0.0526 (17)	0.0364 (17)	0.0107 (15)	0.0157 (13)	-0.0016 (13)
C1	0.048 (2)	0.0412 (18)	0.040 (2)	0.0068 (16)	0.0205 (17)	0.0032 (15)
C2	0.042 (2)	0.0445 (18)	0.0361 (19)	0.0112 (15)	0.0167 (16)	0.0071 (14)
C3	0.050 (2)	0.053 (2)	0.040 (2)	0.0066 (17)	0.0149 (17)	-0.0007 (16)
C4	0.042 (2)	0.058 (2)	0.053 (2)	0.0034 (17)	0.0137 (18)	0.0078 (18)
C5	0.044 (2)	0.061 (2)	0.071 (3)	0.0128 (19)	0.029 (2)	0.006 (2)
C6	0.060 (3)	0.053 (2)	0.063 (3)	0.0093 (19)	0.032 (2)	-0.0051 (18)
C7	0.086(3)	0.075 (3)	0.058(3)	0.021 (2)	0.010(2)	0.003(2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C4	1.741 (4)	C1—C6	1.397 (5)
S1—O2	1.419 (3)	C2—C3	1.380 (5)
S101	1.426 (3)	C3—C4	1.363 (4)
S1—N1	1.621 (3)	С3—Н3	0.9300
S1—C7	1.739 (4)	C4—C5	1.368 (5)
O3—N2	1.231 (3)	C5—C6	1.375 (5)
O4—N2	1.215 (3)	С5—Н5	0.9300
N1—C1	1.397 (4)	С6—Н6	0.9300
N1—H1	0.80 (3)	С7—Н8	0.9600
N2—C2	1.461 (4)	С7—Н9	0.9600
C1—C2	1.397 (4)	С7—Н7	0.9600
02—S1—O1	118.43 (17)	C4—C3—C2	119.7 (3)
O2—S1—N1	109.28 (17)	С4—С3—Н3	120.1
01—S1—N1	104.05 (17)	С2—С3—Н3	120.1
O2—S1—C7	108.5 (2)	C3—C4—C5	120.2 (3)
01—S1—C7	110.0 (2)	C3—C4—Cl1	119.5 (3)
N1—S1—C7	105.77 (19)	C5—C4—Cl1	120.3 (3)
C1—N1—S1	130.3 (3)	C4—C5—C6	120.2 (3)
C1—N1—H1	118 (3)	C4—C5—H5	119.9
S1—N1—H1	108 (3)	С6—С5—Н5	119.9
O4—N2—O3	121.9 (3)	C5—C6—C1	121.8 (3)
O4—N2—C2	118.6 (3)	С5—С6—Н6	119.1
O3—N2—C2	119.5 (3)	C1—C6—H6	119.1
C2—C1—C6	116.0 (3)	S1—C7—H8	109.5
C2-C1-N1	122.1 (3)	S1—C7—H9	109.5
C6—C1—N1	121.9 (3)	Н8—С7—Н9	109.5

C3—C2—C1	122.1 (3)	S1—C7—H7	109.5
C3—C2—N2	115.7 (3)	Н8—С7—Н7	109.5
C1—C2—N2	122.2 (3)	Н9—С7—Н7	109.5
02—S1—N1—C1	-37.6 (4)	04—N2—C2—C1	163.9 (3)
O1—S1—N1—C1	-165.0 (3)	O3—N2—C2—C1	-17.0 (4)
C7—S1—N1—C1	79.0 (4)	C1—C2—C3—C4	-0.1 (5)
\$1—N1—C1—C2	-161.2 (3)	N2—C2—C3—C4	-179.5 (3)
\$1—N1—C1—C6	21.0 (5)	C2—C3—C4—C5	-1.7 (5)
C6—C1—C2—C3	1.3 (5)	C2—C3—C4—Cl1	178.3 (3)
N1—C1—C2—C3	-176.7 (3)	C3—C4—C5—C6	2.2 (6)
C6—C1—C2—N2	-179.3 (3)	Cl1—C4—C5—C6	-177.8 (3)
N1-C1-C2-N2	2.7 (5)	C4—C5—C6—C1	-1.0 (6)
O4—N2—C2—C3	-16.6 (4)	C2—C1—C6—C5	-0.7 (5)
O3—N2—C2—C3	162.5 (3)	N1—C1—C6—C5	177.2 (3)

Hydrogen-bond geometry (Å, °)

О—Н	H···A	$D \cdots A$	D—H···A
0.80 (4)	2.03 (4)	2.631 (4)	131 (3)
).93	2.59	3.417 (4)	148
).93	2.47	3.325 (5)	152
).93	2.27	2.951 (5)	130
).96	2.53	3.394 (5)	150
)))))	D—H .80 (4) .93 .93 .93 .93 .96	H H···A .80 (4) 2.03 (4) .93 2.59 .93 2.47 .93 2.27 .96 2.53	D—HH···A D ···A.80 (4)2.03 (4)2.631 (4).932.59 $3.417 (4)$.932.47 $3.325 (5)$.932.272.951 (5).962.53 $3.394 (5)$

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+3/2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) -*x*+2, -*y*, -*z*+2.