metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ -1,3-bis(4,5-dihydroimidazol-2-yl)benzene- $\kappa^2 N, N'$]bis[dichloridozinc(II)] N:N'-dimethylformamide disolvate

Lin Cheng,^a* Ya-Wen Zhang,^a Yan-Yan Sun^a and Gong Zhang^b

^aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China

Correspondence e-mail: cep02chl@yahoo.com.cn

Received 28 August 2008; accepted 29 August 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.088; data-to-parameter ratio = 16.9.

The title compound, $[Zn_2Cl_4(C_{12}H_{14}N_4)_2]\cdot 2C_3H_7NO$, is located on a centre of inversion with one half of a complex molecule and one dimethylformamide solvent molecule in the asymmetric unit. The Zn^{II} ion is tetrahedrally coordinated by two organic ligands and two chloride ions. Each organic ligand acts as a bidentate ligand, connecting two Zn^{II} ions, resulting in a dimeric [2:2] metallamacrocyclic structure. Adjacent molecules are further linked by N-H···Cl hydrogen bonds and the solvent is linked to the complex by N-H···O hydrogen bonds.

Related literature

For related structures, see: Ren et al. (2004, 2007).

Experimental

Crystal data

 $\begin{bmatrix} Zn_2Cl_4(C_{12}H_{14}N_4)_2 \end{bmatrix} \cdot 2C_3H_7NO & V = 1881.8 \text{ (4) } \text{Å}^3 \\ M_r = 847.28 & Z = 2 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \text{ radiation} \\ a = 8.1774 \text{ (11) } \text{\AA} & \mu = 1.60 \text{ mm}^{-1} \\ b = 8.5032 \text{ (12) } \text{\AA} & T = 123 \text{ (2) K} \\ c = 27.097 \text{ (4) } \text{\AA} & 0.43 \times 0.27 \times 0.20 \text{ mm} \\ \beta = 92.890 \text{ (2)}^{\circ} \\ \end{bmatrix}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{min} = 0.546, T_{max} = 0.740$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	217 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
3659 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

13375 measured reflections

 $R_{\rm int} = 0.043$

3659 independent reflections

3215 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - H \cdots A$
$N1 - H1C \cdots Cl2^{i}$ $N3 - H3A \cdots O1$	0.88 0.88	2.74 2.12	3.241 (2) 2.870 (3)	117 143
Summatry and a (i) x y	1 -			

Symmetry code: (i) x, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2778).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). *Inorg. Chim. Acta*, **360**, 3741–3747.
- Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). *CrystEngComm*, 6, 200–206.

Sheldrick, G. M. (2000). SADABS. University of Göttingen.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1236 [doi:10.1107/S1600536808027773]

Bis[μ -1,3-bis(4,5-dihydroimidazol-2-yl)benzene- $\kappa^2 N$:N']bis[dichloridozinc(II)] N,N'-dimethylformamide disolvate

Lin Cheng, Ya-Wen Zhang, Yan-Yan Sun and Gong Zhang

S1. Comment

Recently, the photophysical properties of coordination compounds of d_{10} monovalent ions of the coinage metals have been of great interests. And metallomacrocyclic compounds are a rapidly growing field concerning due to their rich luminescent properties (Ren *et al.* 2004). Here, we present the syntheses and structural characterization of a dimeric [2:2] metallomacrocyclic compound [Zn₂(bib)₂Cl₂].2DMF (bib = 1,3-bis(4,5-Dihydro-1*H*-imidazol-2-yl)benzene).

The asymmetric unit of the title compound, $[Zn_2(bib)_2Cl_2].2DMF$, contains one Zn(II) cation, one bib ligand, two chloride ions and one DMF molecule. In the compound, the Zn(II) ion displays a tetrahedral geometry, being surrounded by two bib ligands and two chloride ions. Each bib acts as a bidentate ligand and every two bib ligands ligate a pair of Zn(II) ions resulting in a dimeric [2:2] metallomacrocyclic structure. Adjacent molecules are further linked by the N-H…Cl hyrogen bonds and the solvent is linked to the complex by N-H…O hydrogen bonds.

S2. Experimental

To a solution of ZnCl₂.2H₂O (0.172 g, 1 mmol) in CH₃OH (5 ml), an aqueous solution (5 ml) of bib (0.214 g, 1 mmol) was added. After the mixture was stirred for half an hour, white precipitate was filtrated, dried and collected. Then the white solids were completely dissolved into 2 ml DMF by heating. The DMF solution are placed into a glass test tube, and ether vapors were slowly diffused into the solution. After four weeks, colorless block crystals were obtained [yield 10% (8.5 mg) based on Zn(II)].

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 and 0.99 Å with $U_{iso}(H) = 1.2 U_{iso}(C)$, and N —H = 0.88 Å with $U_{iso}(H) = 1.2 U_{iso}(N)$.

Figure 1

The title compound with 30% thermal ellipsoids. Symmetry code: a: 1 - x, 1 - y, -z.

Figure 2

Partial packing diagram of the title compound. The H atoms bonded to C atoms are omitted for clarity.

Bis[μ -1,3-bis(4,5-dihydroimidazol-2-yl)benzene- $\kappa^2 N:N'$]bis[dichloridozinc(II)] N,N'-dimethylformamide disolvate

Crystal data	
$[Zn_2Cl_4(C_{12}H_{14}N_4)_2] \cdot 2C_3H_7NO$	F(000) = 872
$M_r = 847.28$	$D_{\rm x} = 1.495 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 781 reflections
a = 8.1774 (11) Å	$\theta = 2.4 - 28.0^{\circ}$
b = 8.5032 (12) Å	$\mu = 1.60 \text{ mm}^{-1}$
c = 27.097 (4) Å	T = 123 K
$\beta = 92.890 \ (2)^{\circ}$	Block, colorless
V = 1881.8 (4) Å ³	$0.43 \times 0.27 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Bruker APEX CCD	13375 measured reflections
diffractometer	3659 independent reflections
Radiation source: fine-focus sealed tube	3215 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
phi and ω scan	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 9$
(SADABS; Sheldrick, 2000)	$k = -10 \rightarrow 10$
$T_{\min} = 0.546, \ T_{\max} = 0.740$	$l = -31 \rightarrow 33$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.087$	neighbouring sites
S = 1.05	H-atom parameters constrained
3659 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0445P)^2 + 0.1856P]$
217 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.48008 (3)	0.59217 (3)	0.126447 (9)	0.01901 (11)	
Cl1	0.75119 (7)	0.59787 (7)	0.12124 (2)	0.03078 (16)	
Cl2	0.39514 (8)	0.76920 (7)	0.18274 (2)	0.03058 (17)	
N1	0.3153 (3)	0.1342 (2)	0.15690 (7)	0.0258 (5)	
H1C	0.2681	0.0467	0.1462	0.031*	
N2	0.4140 (2)	0.3782 (2)	0.15104 (7)	0.0207 (4)	
N3	0.8313 (2)	0.3109 (2)	-0.00124 (7)	0.0229 (4)	
H3A	0.8515	0.2981	0.0307	0.028*	
N4	0.6803 (2)	0.3684 (2)	-0.06974 (7)	0.0204 (4)	
C1	0.3390 (4)	0.1829 (3)	0.20863 (9)	0.0317 (6)	
H1A	0.4348	0.1300	0.2251	0.038*	
H1B	0.2406	0.1617	0.2274	0.038*	
C2	0.3685 (3)	0.3594 (3)	0.20290 (9)	0.0287 (6)	
H2A	0.2681	0.4198	0.2091	0.034*	
H2B	0.4581	0.3955	0.2261	0.034*	
C3	0.3786 (3)	0.2473 (3)	0.12837 (8)	0.0196 (5)	

C4	0.3941 (3)	0.2201 (3)	0.07490 (8)	0.0190 (5)
C5	0.2771 (3)	0.1283 (3)	0.04869 (9)	0.0211 (5)
H5A	0.1897	0.0817	0.0653	0.025*
C6	0.2896 (3)	0.1059 (3)	-0.00154 (9)	0.0221 (5)
H6A	0.2091	0.0454	-0.0195	0.026*
C7	0.4181 (3)	0.1707 (3)	-0.02578 (8)	0.0200 (5)
H7A	0.4255	0.1550	-0.0603	0.024*
C8	0.5371 (3)	0.2590 (2)	0.00036 (8)	0.0185 (5)
C9	0.5245 (3)	0.2843 (3)	0.05072 (8)	0.0190 (5)
H9A	0.6048	0.3453	0.0686	0.023*
C10	0.6822 (3)	0.3157 (3)	-0.02469 (8)	0.0188 (5)
C11	0.9542 (3)	0.3309 (3)	-0.03839 (8)	0.0248 (5)
H11A	0.9963	0.2285	-0.0496	0.030*
H11B	1.0469	0.3971	-0.0259	0.030*
C12	0.8515 (3)	0.4138 (3)	-0.07927 (9)	0.0256 (5)
H12A	0.8659	0.5292	-0.0772	0.031*
H12B	0.8819	0.3774	-0.1123	0.031*
N5	0.8751 (3)	0.1284 (3)	0.16839 (8)	0.0381 (6)
C13	0.8524 (5)	0.2201 (5)	0.21257 (12)	0.0666 (11)
H13A	0.8509	0.3322	0.2042	0.100*
H13B	0.9426	0.1990	0.2369	0.100*
H13C	0.7483	0.1911	0.2265	0.100*
C14	0.8795 (7)	-0.0394 (5)	0.17315 (14)	0.0913 (17)
H14A	0.8958	-0.0869	0.1408	0.137*
H14B	0.7758	-0.0766	0.1855	0.137*
H14C	0.9698	-0.0697	0.1963	0.137*
C15	0.8906 (3)	0.1948 (3)	0.12484 (10)	0.0328 (6)
H15A	0.8902	0.3064	0.1239	0.039*
O1	0.9055 (2)	0.1264 (2)	0.08571 (6)	0.0313 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02203 (17)	0.02012 (16)	0.01476 (16)	0.00103 (10)	-0.00025 (11)	0.00084 (10)
Cl1	0.0216 (3)	0.0318 (3)	0.0388 (4)	-0.0006 (2)	-0.0008 (3)	0.0019 (3)
Cl2	0.0501 (4)	0.0242 (3)	0.0176 (3)	0.0052 (3)	0.0033 (3)	-0.0022 (2)
N1	0.0358 (12)	0.0240 (10)	0.0179 (10)	-0.0066 (9)	0.0033 (9)	0.0009 (8)
N2	0.0265 (11)	0.0222 (10)	0.0135 (10)	0.0017 (8)	0.0020 (8)	0.0011 (7)
N3	0.0216 (11)	0.0327 (11)	0.0144 (10)	-0.0011 (9)	-0.0005 (8)	0.0020 (8)
N4	0.0194 (10)	0.0252 (10)	0.0167 (10)	0.0023 (8)	0.0026 (8)	0.0006 (8)
C1	0.0473 (17)	0.0289 (13)	0.0194 (13)	-0.0010 (12)	0.0065 (11)	0.0035 (10)
C2	0.0439 (16)	0.0279 (13)	0.0145 (12)	0.0012 (11)	0.0038 (11)	0.0021 (10)
C3	0.0179 (12)	0.0227 (11)	0.0180 (12)	0.0022 (9)	0.0003 (9)	0.0033 (9)
C4	0.0210 (12)	0.0178 (11)	0.0182 (12)	0.0022 (9)	0.0009 (9)	-0.0002 (9)
C5	0.0190 (12)	0.0204 (11)	0.0240 (13)	0.0017 (9)	0.0014 (10)	0.0028 (9)
C6	0.0215 (13)	0.0194 (11)	0.0245 (13)	0.0020 (9)	-0.0065 (10)	-0.0011 (9)
C7	0.0235 (13)	0.0201 (11)	0.0160 (11)	0.0045 (9)	-0.0021 (9)	0.0007 (9)
C8	0.0212 (12)	0.0184 (11)	0.0159 (11)	0.0028 (9)	-0.0006 (9)	0.0015 (9)

supporting information

C9	0.0210 (12)	0.0186 (11)	0.0171 (12)	0.0018 (9)	-0.0010 (9)	-0.0009 (9)
C10	0.0233 (13)	0.0169 (10)	0.0161 (12)	0.0019 (9)	-0.0002 (9)	-0.0024 (9)
C11	0.0198 (12)	0.0338 (13)	0.0208 (12)	0.0004 (10)	0.0008 (10)	0.0015 (10)
C12	0.0217 (13)	0.0340 (14)	0.0211 (13)	0.0005 (10)	0.0017 (10)	0.0049 (10)
N5	0.0468 (15)	0.0488 (15)	0.0192 (12)	-0.0060 (11)	0.0050 (10)	-0.0011 (10)
C13	0.071 (3)	0.096 (3)	0.0334 (19)	0.009 (2)	0.0134 (17)	-0.0192 (18)
C14	0.184 (5)	0.052 (2)	0.038 (2)	-0.034 (3)	0.008 (3)	0.0071 (18)
C15	0.0330 (16)	0.0336 (14)	0.0318 (15)	0.0057 (12)	0.0013 (11)	0.0033 (12)
01	0.0307 (10)	0.0468 (11)	0.0163 (9)	0.0015 (8)	-0.0001 (7)	0.0016 (8)

Geometric parameters (Å, °)

Zn1—N4 ⁱ	1.9978 (19)	С5—Н5А	0.9500
Zn1—N2	2.0205 (19)	C6—C7	1.382 (3)
Zn1—Cl1	2.2291 (7)	С6—Н6А	0.9500
Zn1—Cl2	2.2764 (7)	C7—C8	1.394 (3)
N1—C3	1.353 (3)	С7—Н7А	0.9500
N1—C1	1.465 (3)	C8—C9	1.390 (3)
N1—H1C	0.8800	C8—C10	1.477 (3)
N2—C3	1.298 (3)	С9—Н9А	0.9500
N2—C2	1.480 (3)	C11—C12	1.528 (3)
N3—C10	1.347 (3)	C11—H11A	0.9900
N3—C11	1.468 (3)	C11—H11B	0.9900
N3—H3A	0.8800	C12—H12A	0.9900
N4—C10	1.300 (3)	C12—H12B	0.9900
N4—C12	1.487 (3)	N5—C15	1.320 (3)
N4—Zn1 ⁱ	1.9978 (19)	N5-C14	1.433 (4)
C1—C2	1.529 (3)	N5—C13	1.449 (4)
C1—H1A	0.9900	C13—H13A	0.9800
C1—H1B	0.9900	C13—H13B	0.9800
C2—H2A	0.9900	C13—H13C	0.9800
C2—H2B	0.9900	C14—H14A	0.9800
C3—C4	1.479 (3)	C14—H14B	0.9800
C4—C9	1.391 (3)	C14—H14C	0.9800
C4—C5	1.400 (3)	C15—O1	1.221 (3)
C5—C6	1.383 (3)	С15—Н15А	0.9500
N4 ⁱ —Zn1—N2	103.21 (8)	C6—C7—C8	120.1 (2)
N4 ⁱ —Zn1—Cl1	124.35 (6)	С6—С7—Н7А	120.0
N2—Zn1—Cl1	108.90 (6)	С8—С7—Н7А	120.0
N4 ⁱ —Zn1—Cl2	101.17 (6)	C9—C8—C7	119.9 (2)
N2—Zn1—Cl2	106.18 (6)	C9—C8—C10	120.1 (2)
Cl1—Zn1—Cl2	111.47 (3)	C7—C8—C10	119.9 (2)
C3—N1—C1	108.03 (19)	C8—C9—C4	119.9 (2)
C3—N1—H1C	126.0	С8—С9—Н9А	120.1
C1—N1—H1C	126.0	С4—С9—Н9А	120.1
C3—N2—C2	107.20 (19)	N4—C10—N3	114.9 (2)
C3—N2—Zn1	132.35 (16)	N4	124.9 (2)

119.66 (14)	N3—C10—C8	120.2 (2)
107.93 (18)	N3—C11—C12	100.39 (18)
126.0	N3—C11—H11A	111.7
126.0	C12—C11—H11A	111.7
106.62 (19)	N3—C11—H11B	111.7
139.15 (17)	C12—C11—H11B	111.7
114.22 (14)	H11A—C11—H11B	109.5
101.20 (19)	N4—C12—C11	104.02 (19)
111.5	N4—C12—H12A	111.0
111.5	C11—C12—H12A	111.0
111.5	N4—C12—H12B	111.0
111.5	C11—C12—H12B	111.0
109.3	H12A—C12—H12B	109.0
104.55 (19)	C15—N5—C14	120.2 (3)
110.8	C15—N5—C13	122.1 (3)
110.8	C14—N5—C13	117.7 (3)
110.8	N5—C13—H13A	109.5
110.8	N5—C13—H13B	109.5
108.9	H13A—C13—H13B	109.5
115.0 (2)	N5—C13—H13C	109.5
124.7 (2)	H13A—C13—H13C	109.5
120.2 (2)	H13B—C13—H13C	109.5
120.0 (2)	N5—C14—H14A	109.5
120.4 (2)	N5—C14—H14B	109.5
119.6 (2)	H14A—C14—H14B	109.5
119.6 (2)	N5—C14—H14C	109.5
120.2	H14A—C14—H14C	109.5
120.2	H14B—C14—H14C	109.5
120.5 (2)	O1—C15—N5	126.3 (3)
119.7	O1—C15—H15A	116.9
119.7	N5—C15—H15A	116.9
	119.66 (14) $107.93 (18)$ 126.0 126.0 $106.62 (19)$ $139.15 (17)$ $114.22 (14)$ $101.20 (19)$ 111.5 111.5 111.5 111.5 109.3 $104.55 (19)$ 110.8 110.8 110.8 110.8 110.8 110.8 110.8 108.9 $115.0 (2)$ $124.7 (2)$ $120.2 (2)$ $120.2 (2)$ $120.4 (2)$ $119.6 (2)$ 120.2 120.2 $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.4 (2)$ $119.6 (2)$ $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.2 (2)$ $120.5 (2)$ 119.7	119.66 (14)N3—C10—C8 $107.93 (18)$ N3—C11—C12 126.0 N3—C11—H11A 126.0 C12—C11—H11A $106.62 (19)$ N3—C11—H11B $139.15 (17)$ C12—C11—H11B $114.22 (14)$ H11A—C11—H11B $101.20 (19)$ N4—C12—C11 111.5 N4—C12—H12A 111.5 C11—C12—H12A 111.5 N4—C12—H12B 109.3 H12A—C12—H12B 109.3 H12A—C12—H12B $104.55 (19)$ C15—N5—C13 10.8 C14—N5—C13 110.8 C13—H13A 10.8 N5—C13—H13A 108.9 H13A—C13—H13B 108.9 H13A—C13—H13C $120.2 (2)$ H13B—C13—H13C $120.4 (2)$ N5—C14—H14B $119.6 (2)$ H14A—C14—H14C 120.2 H14A—C14—H14C $120.5 (2)$ O1—C15—N5 119.7 O1—C15—H15A

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
N1—H1C····Cl2 ⁱⁱ	0.88	2.74	3.241 (2)	117
N3—H3 <i>A</i> …O1	0.88	2.12	2.870 (3)	143

Symmetry code: (ii) x, y-1, z.