

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (R)-N-{2-tert-Butyl-2-[(R)-tert-butylsulfonamido]ethylidene}-tert-butanesulfonamide

## Yu Hu,<sup>a</sup> Xiao-Xia Sun<sup>b\*</sup> and Cong-Bin Fan<sup>b</sup>

<sup>a</sup>Experimental Chemistry Center, Nanchang University, Nanchang 330031, People's Republic of China, and <sup>b</sup>Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: sunxiaoxia77@yahoo.cn.

Received 27 August 2008; accepted 3 September 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.084; data-to-parameter ratio = 17.7.

The title compound,  $C_{14}H_{30}N_2O_2S_2$ , is the product of the monoaddition reaction of tert-butyl magnesium chloride with bis-[(R)-N-tert-butanesulfinyl]ethanediimine. There are two almost identical molecules in the asymmetric unit, the molecular conformation of which is stabilized by an intramolecular N-H···N hydrogen bond.

#### **Related literature**

For general background, see: Sun et al. (2005). Alexakis et al. (2000); Alvaro et al. (1997). For related structures, see: Bambridge et al. (1994); Lucet et al. (1998); Roland & Mangeney (2000); Roland et al. (1999).



#### **Experimental**

Crystal data

 $C_{14}H_{30}N_2O_2S_2$  $M_r = 322.52$ Monoclinic, P21 a = 9.714 (2) Å b = 18.489(3) Å c = 11.169 (2) Å  $\beta = 109.23 \ (1)^{\circ}$ 

V = 1894.0 (7) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.28 \text{ mm}^{-1}$ T = 291 (2) K $0.52 \times 0.42 \times 0.38 \text{ mm}$  Data collection

```
Siemens P4 diffractometer
Absorption correction: multi-scan
  (SADABS: Sheldrick, 1996)
   T_{\min} = 0.936, T_{\max} = 0.975
  (expected range = 0.862 - 0.897)
7793 measured reflections
```

Refineme  $R[F^2 > 2\sigma]$ 

 $wR(F^2) =$ S = 0.936860 reflec 388 param 3 restraints 6860 independent reflections 5010 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.020$ 3 standard reflections every 97 reflections intensity decay: 3.1%

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ \AA}^{-3}$ |
| Absolute structure: Flack (1983),                          |
| 3214 Friedel pairs                                         |
| Flack parameter: $-0.04(5)$                                |
|                                                            |

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1 - H1N \cdots N2$        | 0.84 (2) | 2.19 (2)                | 2.697 (3)    | 118.5 (17)                           |
| N1' - H1'N \cdots N2'       | 0.84 (2) | 2.18 (3)                | 2.672 (3)    | 118 (2)                              |

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS: data reduction: SHELXTL (Sheldrick, 2008): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Science Fund of the Education Office of Jiangxi, China ([2007]279).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2777).

#### References

- Alexakis, A., Tomassini, A., Chouillet, C., Roland, S., Mangeney, P. & Bernardinelli, G. (2000). Angew. Chem. Int. Ed. 39, 4093-4095.
- Alvaro, J., Grepioni, F. & Savoia, D. (1997). J. Org. Chem. 62, 4180-4182.
- Bambridge, K., Begley, M. J. & Simpkins, N. S. (1994). Tetrahedron Lett. 35, 3391-3394.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580-2627
- Roland, S. & Mangeney, P. (2000). Eur. J. Org. Chem. pp. 611-616.
- Roland, S., Mangeney, P. & Alexakis, A. (1999). Synthesis, 2, 228-230.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin USA.
- Sun, X.-X., Wang, S.-J., Zhu, J. & Deng, J.-G. (2005). Synlett, 18, 2776-2781.

# supporting information

Acta Cryst. (2008). E64, o1913 [doi:10.1107/S1600536808028225]

# (*R*)-*N*-{2-*tert*-Butyl-2-[(*R*)-*tert*-butylsulfonamido]ethylidene}-*tert*-butane-sulfonamide

# Yu Hu, Xiao-Xia Sun and Cong-Bin Fan

# S1. Comment

The title compound is an important intermediate for the synthesis of unsymmetrically disubstituted 1,2-diamines and  $C_2$ -symmetric vicinal diamines. There are two almost identical molecules in the asymmetric unit whose molecular conformation is stabilized by an intramolecular N—H…N hydrogen bond.

# **S2. Experimental**

R-1-Amino-1-tert-butyl-N,N'-bis[(R)- N-tert-butanesulfinyl]-2-iminoethane was prepared from bis-[(R)-N-tert-butanesulfinyl]ethanediimine (264 mg, 1.00 mmol). The solution of bis-[(R)-N-tert-butanesulfinyl]ethanediimine was cooled to 195 K under a argon atmosphere. 3 mol/l t-BuMgCl in diethyl ether (0.5 ml) was added slowly to the solution and stirred for 3–5 h. The combined organic layers were dried over magnesium sulfate, filtered and concentrated.

Single crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the solution.

<sup>1</sup>HNMR (300 MHz, CDCl<sub>3</sub>, TMS):  $\delta$  1.03 (s, 9H, -3CH<sub>3</sub>), 1.22 (s, 9H, -3CH<sub>3</sub>), 1.26 (s, 9H, -3CH<sub>3</sub>), 3.98 (m, 1H, -NH), 4.84 (d, 1H, J = 5.6 Hz, -CH), 8.28 (d, 1H, J = 2.9 Hz, -CH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  22.55, 22.78, 26.64, 36.58, 56.41, 57.12, 66.70, 168.39; FT-IR (KBr, cm-1): 1065, 1070, 1621, 3278.

# S3. Refinement

Hydrogen atoms bonded to C were positioned geometrically and refined using a riding model with fixed individual displacement parameters  $[U(H) = 1.2U_{eq}(C) \text{ or } U(H) = 1.5 U_{eq}(C_{methyl})]$  using a riding model with  $C_{sp2}$ —H = 0.95 Å, tertiary C—H = 0.98 Å, or methyl C—H = 0.96 Å, respectively. The methyl groups were allowed to rotate but not to tip. The H atoms bonded to N were refined isotropically with a distance restraint of 0.84 (1) Å.



#### Figure 1

Molecular structure of title compound in the solid state with 50% probability ellipsoids showing the labelling scheme. H atoms omitted for clarity.



## Figure 2

Synthesis of the title compound.

### (R)-N-{2-tert-Butyl-2-[(R)-tert-butylsulfonamido]ethylidene}-tert-butanesulfonamide

#### Crystal data

 $C_{14}H_{30}N_2O_2S_2$  $M_r = 322.52$ Monoclinic,  $P2_1$ a = 9.714 (2) Å b = 18.489(3) Å c = 11.169 (2) Å $\beta = 109.23 (1)^{\circ}$ V = 1894.0 (7) Å<sup>3</sup> Z = 4

#### Data collection

Siemens P4 diffractometer Radiation source: normal-focus sealed tube Graphite monochromator  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.936, T_{\rm max} = 0.975$ 7793 measured reflections

#### Refinement

Refinement on  $F^2$ H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement  $R[F^2 > 2\sigma(F^2)] = 0.039$  $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2]$  $wR(F^2) = 0.084$ where  $P = (F_o^2 + 2F_c^2)/3$ S = 0.93 $(\Delta/\sigma)_{\rm max} = 0.001$ 6860 reflections  $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$ 388 parameters  $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 3 restraints 2008),  $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant Extinction coefficient: 0.0019 (5) direct methods Secondary atom site location: difference Fourier map pairs Hydrogen site location: inferred from Absolute structure parameter: -0.04(5)neighbouring sites

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>. conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|    | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|-------------|-------------|-------------|-----------------------------|
| S1 | 0.62185 (9) | 0.13531 (4) | 0.09753 (7) | 0.0524 (2)                  |

F(000) = 704 $D_{\rm x} = 1.131 {\rm Mg m^{-3}}$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 33 reflections  $\theta = 4.4 - 14.3^{\circ}$  $\mu = 0.29 \text{ mm}^{-1}$ T = 291 KBlock, colourless  $0.52 \times 0.42 \times 0.38 \text{ mm}$ 

6860 independent reflections 5010 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.020$  $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$  $h = -11 \rightarrow 11$  $k = -21 \rightarrow 22$  $l = -13 \rightarrow 12$ 3 standard reflections every 97 reflections intensity decay: 3.1%

Absolute structure: Flack (1983), 3214 Friedel

| S3         | 0.76902 (9) | 0.41227 (5)                | 0.24900 (7)          | 0.0597 (2)      |
|------------|-------------|----------------------------|----------------------|-----------------|
| 01         | 0.7320 (3)  | 0.13867 (14)               | 0.22466 (19)         | 0.0841 (7)      |
| 02         | 0.6577 (3)  | 0.45966 (12)               | 0.2718 (2)           | 0.0877 (8)      |
| N1         | 0.5765 (3)  | 0.21702 (12)               | 0.0354 (2)           | 0.0438 (6)      |
| N2         | 0.6898 (3)  | 0.33949 (12)               | 0.1602 (2)           | 0.0483 (6)      |
| C1         | 0.7187 (4)  | 0.10552 (16)               | -0.0102(3)           | 0.0573 (8)      |
| C2         | 0.6127 (4)  | 0.1053 (2)                 | -0.1445 (3)          | 0.0836 (11)     |
| H2A        | 0.6594      | 0.0853                     | -0.2005              | 0.100*          |
| H2B        | 0.5824      | 0.1540                     | -0.1699              | 0.100*          |
| H2C        | 0.5291      | 0.0766                     | -0.1482              | 0.100*          |
| C3         | 0.8487(3)   | 0.15443 (18)               | 0.0034(3)            | 0.0688 (9)      |
| НЗА        | 0.9114      | 0.1322                     | -0.0368              | 0.083*          |
| H3R        | 0.9017      | 0.1618                     | 0.0917               | 0.083*          |
| H3C        | 0.8152      | 0.2002                     | -0.0362              | 0.083*          |
| C4         | 0.7696 (5)  | 0.2002<br>0.02897 (19)     | 0.0361(5)            | 0.1111 (17)     |
|            | 0.8332      | 0.0310                     | 0.1225               | 0.133*          |
| H4R        | 0.8332      | 0.0085                     | -0.0159              | 0.133*          |
|            | 0.8210      | -0.0005                    | 0.0139               | 0.133*          |
| 114C<br>C5 | 0.0803      | 0.0003                     | 0.0309               | $0.133^{\circ}$ |
| U5         | 0.4621 (3)  | 0.23941 (14)               | 0.0870 (3)           | 0.0442(7)       |
| П3<br>Сб   | 0.4020      | 0.2294<br>0.22521 (15)     | 0.1522<br>0.1522 (2) | $0.033^{\circ}$ |
|            | 0.5590 (5)  | 0.32331 (13)               | 0.1332 (2)           | 0.0490 (7)      |
|            | 0.2110      | 0.3370<br>0.45628 (15)     | 0.1901               | $0.039^{\circ}$ |
| C7         | 0.8329(3)   | 0.43038(13)<br>0.52470(19) | 0.1300(3)            | 0.0311(7)       |
|            | 0.9063 (4)  | 0.52479 (18)               | 0.1961 (5)           | 0.0762 (10)     |
| H8A        | 0.9412      | 0.5524                     | 0.1392               | 0.091*          |
| H8B        | 0.9868      | 0.5121                     | 0.2699               | 0.091*          |
| H8C        | 0.83/4      | 0.5531                     | 0.2209               | 0.091*          |
| C9         | 0.7062 (4)  | 0.47343 (19)               | 0.0140 (3)           | 0.0759 (10)     |
| H9A        | 0.6643      | 0.4292                     | -0.0272              | 0.091*          |
| H9B        | 0.7390      | 0.5021                     | -0.0431              | 0.091*          |
| H9C        | 0.6342      | 0.4999                     | 0.0378               | 0.091*          |
| C10        | 0.9417 (4)  | 0.4065 (2)                 | 0.1017 (4)           | 0.0860 (11)     |
| H10A       | 0.9910      | 0.4321                     | 0.0528               | 0.103*          |
| H10B       | 0.8916      | 0.3655                     | 0.0544               | 0.103*          |
| H10C       | 1.0116      | 0.3904                     | 0.1798               | 0.103*          |
| C11        | 0.3333 (3)  | 0.27616 (16)               | -0.0148 (3)          | 0.0535 (8)      |
| C12        | 0.3570 (3)  | 0.3235 (2)                 | -0.1180 (3)          | 0.0729 (10)     |
| H12A       | 0.4012      | 0.3684                     | -0.0815              | 0.087*          |
| H12B       | 0.2650      | 0.3331                     | -0.1820              | 0.087*          |
| H12C       | 0.4199      | 0.2990                     | -0.1553              | 0.087*          |
| C13        | 0.2335 (4)  | 0.3140 (2)                 | 0.0462 (3)           | 0.0789 (10)     |
| H13A       | 0.2351      | 0.2882                     | 0.1213               | 0.095*          |
| H13B       | 0.1358      | 0.3148                     | -0.0126              | 0.095*          |
| H13C       | 0.2669      | 0.3626                     | 0.0682               | 0.095*          |
| C14        | 0.2615 (3)  | 0.20401 (18)               | -0.0705 (4)          | 0.0776 (10)     |
| H14A       | 0.1650      | 0.2130                     | -0.1280              | 0.093*          |
| H14B       | 0.2561      | 0.1731                     | -0.0031              | 0.093*          |
| H14C       | 0.3186      | 0.1809                     | -0.1152              | 0.093*          |

| S1′                 | 0.65069 (9) | 0.31033 (4)  | 0.68082 (7)  | 0.0563 (2)  |
|---------------------|-------------|--------------|--------------|-------------|
| S2′                 | 0.77418 (9) | 0.60677 (4)  | 0.72095 (7)  | 0.0623 (2)  |
| 01′                 | 0.7423 (3)  | 0.31879 (14) | 0.81314 (18) | 0.0963 (9)  |
| O2′                 | 0.6581 (3)  | 0.65720 (13) | 0.7277 (3)   | 0.0954 (9)  |
| N1′                 | 0.6110 (3)  | 0.38924 (13) | 0.6060 (2)   | 0.0512 (6)  |
| N2′                 | 0.7029 (3)  | 0.52435 (12) | 0.6713 (2)   | 0.0524 (6)  |
| C1′                 | 0.7708 (3)  | 0.27604 (16) | 0.5946 (3)   | 0.0561 (8)  |
| C2′                 | 0.6810 (4)  | 0.2677 (2)   | 0.4578 (3)   | 0.0813 (11) |
| H2'1                | 0.7416      | 0.2508       | 0.4110       | 0.098*      |
| H2'2                | 0.6393      | 0.3135       | 0.4246       | 0.098*      |
| H2'3                | 0.6044      | 0.2334       | 0.4502       | 0.098*      |
| C3'                 | 0 8974 (4)  | 0.3270(2)    | 0.6125(4)    | 0.0946(12)  |
| H3'1                | 0.09740     | 0.3023       | 0.5924       | 0.113*      |
| H3'2                | 0.9329      | 0.3430       | 0.6991       | 0.113*      |
| H3'3                | 0.8659      | 0.3450       | 0.5576       | 0.113*      |
| 115 5<br>C4'        | 0.8039      | 0.3030       | 0.5570       | 0.113       |
| C4<br>U <i>4</i> /1 | 0.8223 (3)  | 0.20221 (19) | 0.0538 (4)   | 0.0909 (13) |
| П4 I<br>II4/2       | 0.8828      | 0.2083       | 0.7400       | 0.109*      |
| П4 2<br>Ц4/2        | 0.8///      | 0.1788       | 0.0078       | 0.109*      |
| H4 3                | 0.7396      | 0.1750       | 0.6505       | 0.109*      |
| C5 <sup>7</sup>     | 0.5098 (3)  | 0.43696 (14) | 0.6406 (3)   | 0.0470(7)   |
| H5 <sup>°</sup>     | 0.4925      | 0.4164       | 0./153       | 0.056*      |
| C6'                 | 0.5765 (3)  | 0.51004 (15) | 0.6755 (2)   | 0.0501 (/)  |
| H6'                 | 0.5246      | 0.5458       | 0.7008       | 0.060*      |
| C7′                 | 0.8184 (3)  | 0.63050 (17) | 0.5785 (3)   | 0.0563 (8)  |
| C8′                 | 0.8951 (4)  | 0.70297 (18) | 0.6136 (4)   | 0.0860 (11) |
| H8′1                | 0.9151      | 0.7225       | 0.5414       | 0.103*      |
| H8′2                | 0.9850      | 0.6964       | 0.6820       | 0.103*      |
| H8′3                | 0.8336      | 0.7357       | 0.6395       | 0.103*      |
| C9′                 | 0.6820 (4)  | 0.6364 (2)   | 0.4637 (3)   | 0.0875 (11) |
| H9′1                | 0.6433      | 0.5889       | 0.4383       | 0.105*      |
| H9′2                | 0.7054      | 0.6589       | 0.3954       | 0.105*      |
| H9′3                | 0.6107      | 0.6650       | 0.4847       | 0.105*      |
| C10′                | 0.9242 (4)  | 0.57470 (19) | 0.5606 (4)   | 0.0842 (11) |
| H10D                | 1.0049      | 0.5700       | 0.6378       | 0.101*      |
| H10E                | 0.9591      | 0.5898       | 0.4936       | 0.101*      |
| H10F                | 0.8755      | 0.5290       | 0.5392       | 0.101*      |
| C11′                | 0.3593 (3)  | 0.44309 (16) | 0.5317 (3)   | 0.0534 (8)  |
| C12′                | 0.3752 (4)  | 0.4788 (2)   | 0.4167 (3)   | 0.0739 (10) |
| H12D                | 0.3947      | 0.5294       | 0.4333       | 0.089*      |
| H12E                | 0.2866      | 0.4730       | 0.3466       | 0.089*      |
| H12F                | 0.4544      | 0.4570       | 0.3965       | 0.089*      |
| C13′                | 0.2532 (4)  | 0.4833 (2)   | 0.5827 (4)   | 0.0854 (11) |
| H13D                | 0.1572      | 0.4816       | 0.5211       | 0.102*      |
| H13E                | 0.2835      | 0.5328       | 0.5990       | 0.102*      |
| H13F                | 0.2522      | 0.4609       | 0.6599       | 0.102*      |
| C14′                | 0.3006 (4)  | 0.36648 (17) | 0.4980 (3)   | 0.0754 (10) |
| H14D                | 0.2041      | 0.3687       | 0.4373       | 0.090*      |
| H14E                | 0.2976      | 0.3423       | 0.5732       | 0.090*      |
|                     |             |              | · · · · ·    |             |

# supporting information

| H14F | 0.3633      | 0.3403      | 0.4625    | 0.090*      |
|------|-------------|-------------|-----------|-------------|
| H1N  | 0.6536 (17) | 0.2404 (12) | 0.046 (2) | 0.043 (8)*  |
| H1′N | 0.686 (2)   | 0.4126 (14) | 0.607 (3) | 0.059 (10)* |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | U <sup>23</sup> |
|------------|-------------|-------------|-------------|--------------|-------------|-----------------|
| <b>S</b> 1 | 0.0687 (5)  | 0.0399 (4)  | 0.0566 (5)  | 0.0111 (4)   | 0.0316 (4)  | 0.0094 (3)      |
| S3         | 0.0751 (6)  | 0.0619 (5)  | 0.0430 (4)  | -0.0116 (5)  | 0.0207 (4)  | -0.0050 (4)     |
| 01         | 0.1006 (17) | 0.0986 (17) | 0.0521 (12) | 0.0434 (15)  | 0.0237 (13) | 0.0181 (13)     |
| O2         | 0.1073 (19) | 0.0810 (17) | 0.1057 (19) | -0.0254 (14) | 0.0769 (17) | -0.0468 (14)    |
| N1         | 0.0430 (15) | 0.0394 (13) | 0.0545 (15) | -0.0005 (12) | 0.0234 (12) | 0.0015 (11)     |
| N2         | 0.0558 (16) | 0.0456 (14) | 0.0470 (14) | 0.0005 (12)  | 0.0218 (12) | 0.0029 (10)     |
| C1         | 0.074 (2)   | 0.0438 (16) | 0.0651 (19) | 0.0105 (17)  | 0.0382 (17) | -0.0022 (16)    |
| C2         | 0.097 (3)   | 0.088 (3)   | 0.076 (2)   | -0.018 (2)   | 0.043 (2)   | -0.035 (2)      |
| C3         | 0.060 (2)   | 0.081 (3)   | 0.071 (2)   | 0.0117 (18)  | 0.0299 (18) | 0.0029 (18)     |
| C4         | 0.161 (4)   | 0.051 (2)   | 0.157 (4)   | 0.037 (3)    | 0.101 (4)   | 0.014 (2)       |
| C5         | 0.0469 (17) | 0.0418 (16) | 0.0514 (17) | 0.0042 (13)  | 0.0263 (14) | 0.0074 (13)     |
| C6         | 0.062 (2)   | 0.0476 (18) | 0.0451 (16) | 0.0084 (15)  | 0.0278 (15) | 0.0036 (13)     |
| C7         | 0.0535 (18) | 0.0515 (17) | 0.0517 (17) | -0.0040 (15) | 0.0220 (15) | -0.0024 (14)    |
| C8         | 0.080 (2)   | 0.068 (2)   | 0.083 (2)   | -0.015 (2)   | 0.031 (2)   | -0.0081 (19)    |
| C9         | 0.095 (3)   | 0.074 (2)   | 0.053 (2)   | -0.004 (2)   | 0.016 (2)   | 0.0147 (17)     |
| C10        | 0.071 (2)   | 0.087 (3)   | 0.119 (3)   | -0.005 (2)   | 0.058 (2)   | -0.024 (3)      |
| C11        | 0.0447 (18) | 0.0539 (18) | 0.0653 (19) | 0.0076 (15)  | 0.0225 (16) | 0.0109 (15)     |
| C12        | 0.061 (2)   | 0.088 (3)   | 0.064 (2)   | 0.0156 (19)  | 0.0134 (17) | 0.0272 (19)     |
| C13        | 0.063 (2)   | 0.077 (2)   | 0.106 (3)   | 0.019 (2)    | 0.041 (2)   | 0.014 (2)       |
| C14        | 0.052 (2)   | 0.075 (2)   | 0.097 (3)   | -0.0094 (18) | 0.013 (2)   | -0.005 (2)      |
| S1′        | 0.0768 (6)  | 0.0515 (5)  | 0.0470 (4)  | 0.0158 (4)   | 0.0288 (4)  | 0.0094 (4)      |
| S2′        | 0.0675 (6)  | 0.0626 (5)  | 0.0584 (5)  | -0.0102 (5)  | 0.0230 (4)  | -0.0121 (4)     |
| 01′        | 0.139 (2)   | 0.0970 (18) | 0.0443 (12) | 0.0514 (18)  | 0.0189 (13) | 0.0050 (13)     |
| O2′        | 0.1054 (19) | 0.0705 (17) | 0.141 (2)   | -0.0142 (15) | 0.0817 (18) | -0.0438 (15)    |
| N1′        | 0.0530 (17) | 0.0495 (15) | 0.0553 (15) | 0.0082 (14)  | 0.0238 (13) | 0.0069 (11)     |
| N2′        | 0.0523 (16) | 0.0532 (15) | 0.0516 (15) | 0.0041 (13)  | 0.0168 (13) | 0.0018 (12)     |
| C1′        | 0.068 (2)   | 0.0542 (19) | 0.0505 (18) | 0.0160 (17)  | 0.0261 (16) | 0.0047 (15)     |
| C2′        | 0.108 (3)   | 0.087 (3)   | 0.055 (2)   | 0.007 (2)    | 0.034 (2)   | -0.0077 (19)    |
| C3′        | 0.068 (2)   | 0.095 (3)   | 0.125 (3)   | 0.007 (2)    | 0.038 (2)   | -0.004 (3)      |
| C4′        | 0.123 (3)   | 0.074 (2)   | 0.091 (3)   | 0.046 (2)    | 0.056 (3)   | 0.021 (2)       |
| C5′        | 0.0494 (17) | 0.0515 (18) | 0.0452 (16) | 0.0010 (14)  | 0.0223 (14) | 0.0036 (13)     |
| C6′        | 0.060 (2)   | 0.0524 (18) | 0.0418 (16) | 0.0087 (15)  | 0.0217 (15) | 0.0009 (14)     |
| C7′        | 0.0511 (17) | 0.0549 (19) | 0.0652 (19) | 0.0032 (16)  | 0.0223 (16) | -0.0015 (16)    |
| C8′        | 0.081 (3)   | 0.072 (3)   | 0.107 (3)   | -0.005 (2)   | 0.033 (2)   | 0.008 (2)       |
| C9′        | 0.076 (2)   | 0.107 (3)   | 0.076 (2)   | 0.006 (2)    | 0.019 (2)   | 0.021 (2)       |
| C10′       | 0.083 (3)   | 0.082 (3)   | 0.108 (3)   | 0.007 (2)    | 0.059 (2)   | -0.006 (2)      |
| C11′       | 0.0448 (18) | 0.063 (2)   | 0.0516 (18) | 0.0070 (16)  | 0.0143 (15) | 0.0002 (15)     |
| C12′       | 0.066 (2)   | 0.088 (3)   | 0.058 (2)   | 0.007 (2)    | 0.0077 (18) | 0.0159 (19)     |
| C13′       | 0.062 (2)   | 0.095 (3)   | 0.099 (3)   | 0.021 (2)    | 0.025 (2)   | -0.013 (2)      |
| C14′       | 0.066 (2)   | 0.065 (2)   | 0.082 (2)   | -0.0054 (18) | 0.0073 (19) | -0.0018 (19)    |

Geometric parameters (Å, °)

| <u>S1—01</u> | 1.471 (2)  | \$1'—O1'  | 1.461 (2)  |
|--------------|------------|-----------|------------|
| S1—N1        | 1.661 (2)  | S1′—N1′   | 1.662 (2)  |
| S1—C1        | 1.839 (3)  | S1′—C1′   | 1.852 (3)  |
| S3—O2        | 1.478 (2)  | S2'—O2'   | 1.484 (2)  |
| S3—N2        | 1.698 (2)  | S2'—N2'   | 1.690 (3)  |
| S3—C7        | 1.833 (3)  | S2′—C7′   | 1.833 (3)  |
| N1—C5        | 1.465 (3)  | N1′—C5′   | 1.464 (3)  |
| N1—H1N       | 0.838 (10) | N1′—H1′N  | 0.845 (10) |
| N2—C6        | 1.268 (3)  | N2′—C6′   | 1.272 (3)  |
| C1—C2        | 1.514 (4)  | C1′—C2′   | 1.497 (4)  |
| C1—C3        | 1.520 (4)  | C1′—C3′   | 1.509 (5)  |
| C1—C4        | 1.532 (4)  | C1′—C4′   | 1.528 (4)  |
| C2—H2A       | 0.9600     | C2'—H2'1  | 0.9600     |
| C2—H2B       | 0.9600     | C2'—H2'2  | 0.9600     |
| C2—H2C       | 0.9600     | C2'—H2'3  | 0.9600     |
| С3—НЗА       | 0.9600     | C3'—H3'1  | 0.9600     |
| С3—Н3В       | 0.9600     | C3′—H3′2  | 0.9600     |
| С3—Н3С       | 0.9600     | C3'—H3'3  | 0.9600     |
| C4—H4A       | 0.9600     | C4′—H4′1  | 0.9600     |
| C4—H4B       | 0.9600     | C4′—H4′2  | 0.9600     |
| C4—H4C       | 0.9600     | C4′—H4′3  | 0.9600     |
| C5—C6        | 1.492 (4)  | C5′—C6′   | 1.493 (4)  |
| C5-C11       | 1.551 (4)  | C5'—C11'  | 1.568 (4)  |
| С5—Н5        | 0.9800     | С5'—Н5'   | 0.9800     |
| С6—Н6        | 0.9300     | С6'—Н6'   | 0.9300     |
| С7—С9        | 1.497 (4)  | C7′—C9′   | 1.514 (4)  |
| C7—C10       | 1.513 (4)  | C7′—C10′  | 1.515 (4)  |
| С7—С8        | 1.519 (4)  | C7′—C8′   | 1.520 (4)  |
| C8—H8A       | 0.9600     | C8′—H8′1  | 0.9600     |
| C8—H8B       | 0.9600     | C8′—H8′2  | 0.9600     |
| C8—H8C       | 0.9600     | C8′—H8′3  | 0.9600     |
| С9—Н9А       | 0.9600     | C9′—H9′1  | 0.9600     |
| С9—Н9В       | 0.9600     | C9′—H9′2  | 0.9600     |
| С9—Н9С       | 0.9600     | С9′—Н9′3  | 0.9600     |
| C10—H10A     | 0.9600     | C10′—H10D | 0.9600     |
| C10—H10B     | 0.9600     | C10'—H10E | 0.9600     |
| C10—H10C     | 0.9600     | C10'—H10F | 0.9600     |
| C11—C12      | 1.524 (4)  | C11'—C12' | 1.497 (4)  |
| C11—C13      | 1.525 (4)  | C11'—C13' | 1.525 (4)  |
| C11—C14      | 1.539 (4)  | C11'—C14' | 1.527 (4)  |
| C12—H12A     | 0.9600     | C12′—H12D | 0.9600     |
| C12—H12B     | 0.9600     | C12′—H12E | 0.9600     |
| C12—H12C     | 0.9600     | C12′—H12F | 0.9600     |
| C13—H13A     | 0.9600     | C13′—H13D | 0.9600     |
| C13—H13B     | 0.9600     | C13′—H13E | 0.9600     |
| C13—H13C     | 0.9600     | C13'—H13F | 0.9600     |

| C14—H14A            | 0.9600      | C14′—H14D        | 0.9600      |
|---------------------|-------------|------------------|-------------|
| C14—H14B            | 0.9600      | C14′—H14E        | 0.9600      |
| C14—H14C            | 0.9600      | C14′—H14F        | 0.9600      |
|                     |             |                  |             |
| O1—S1—N1            | 111.94 (14) | 01′—S1′—N1′      | 112.20 (14) |
| 01—S1—C1            | 106.14 (14) | O1′—S1′—C1′      | 106.52 (15) |
| N1—S1—C1            | 96.97 (13)  | N1′—S1′—C1′      | 96.92 (13)  |
| O2—S3—N2            | 110.71 (13) | O2'—S2'—N2'      | 110.32 (13) |
| O2—S3—C7            | 107.61 (15) | O2'—S2'—C7'      | 107.03 (15) |
| N2—S3—C7            | 97.23 (12)  | N2′—S2′—C7′      | 96.83 (13)  |
| C5—N1—S1            | 115.78 (18) | C5'—N1'—S1'      | 117.44 (19) |
| C5—N1—H1N           | 108.2 (18)  | C5'—N1'—H1'N     | 110 (2)     |
| S1—N1—H1N           | 107.9 (18)  | S1'—N1'—H1'N     | 113 (2)     |
| C6—N2—S3            | 116.8 (2)   | C6'—N2'—S2'      | 118.1 (2)   |
| C2-C1-C3            | 111.8 (3)   | C2'—C1'—C3'      | 112.1 (3)   |
| C2-C1-C4            | 111.8 (3)   | C2'—C1'—C4'      | 110.3 (3)   |
| C3-C1-C4            | 110.6 (3)   | C3'—C1'—C4'      | 111.3 (3)   |
| $C_2 - C_1 - S_1$   | 108.7(2)    | C2'-C1'-S1'      | 108.1(2)    |
| $C_3 - C_1 - S_1$   | 110.1(2)    | C3'-C1'-S1'      | 110.1(2)    |
| C4-C1-S1            | 103.5 (2)   | C4'-C1'-S1'      | 104.7(2)    |
| C1—C2—H2A           | 109.5       | C1' - C2' - H2'1 | 109.5       |
| C1—C2—H2B           | 109.5       | C1′—C2′—H2′2     | 109.5       |
| $H_2A - C_2 - H_2B$ | 109.5       | H2'1-C2'-H2'2    | 109.5       |
| C1—C2—H2C           | 109.5       | C1′—C2′—H2′3     | 109.5       |
| H2A—C2—H2C          | 109.5       | H2'1—C2'—H2'3    | 109.5       |
| H2B—C2—H2C          | 109.5       | H2′2—C2′—H2′3    | 109.5       |
| С1—С3—НЗА           | 109.5       | C1′—C3′—H3′1     | 109.5       |
| С1—С3—Н3В           | 109.5       | C1′—C3′—H3′2     | 109.5       |
| НЗА—СЗ—НЗВ          | 109.5       | H3'1—C3'—H3'2    | 109.5       |
| C1—C3—H3C           | 109.5       | C1'—C3'—H3'3     | 109.5       |
| НЗА—СЗ—НЗС          | 109.5       | H3'1—C3'—H3'3    | 109.5       |
| НЗВ—СЗ—НЗС          | 109.5       | H3′2—C3′—H3′3    | 109.5       |
| C1—C4—H4A           | 109.5       | C1′—C4′—H4′1     | 109.5       |
| C1—C4—H4B           | 109.5       | C1'—C4'—H4'2     | 109.5       |
| H4A—C4—H4B          | 109.5       | H4′1—C4′—H4′2    | 109.5       |
| C1—C4—H4C           | 109.5       | C1′—C4′—H4′3     | 109.5       |
| H4A—C4—H4C          | 109.5       | H4'1—C4'—H4'3    | 109.5       |
| H4B—C4—H4C          | 109.5       | H4′2—C4′—H4′3    | 109.5       |
| N1—C5—C6            | 110.6 (2)   | N1′—C5′—C6′      | 110.1 (2)   |
| N1—C5—C11           | 111.5 (2)   | N1′—C5′—C11′     | 112.0 (2)   |
| C6—C5—C11           | 113.3 (2)   | C6'—C5'—C11'     | 110.5 (2)   |
| N1—C5—H5            | 107.0       | N1′—C5′—H5′      | 108.1       |
| С6—С5—Н5            | 107.0       | C6'—C5'—H5'      | 108.1       |
| С11—С5—Н5           | 107.0       | C11′—C5′—H5′     | 108.1       |
| N2—C6—C5            | 122.1 (2)   | N2'—C6'—C5'      | 121.3 (2)   |
| N2—C6—H6            | 119.0       | N2'—C6'—H6'      | 119.4       |
| С5—С6—Н6            | 119.0       | С5'—С6'—Н6'      | 119.4       |
| C9—C7—C10           | 112.3 (3)   | C9'—C7'—C10'     | 112.3 (3)   |
|                     | × /         |                  |             |

| C9—C7—C8      | 111.5 (3) | C9′—C7′—C8′    | 111.9 (3) |
|---------------|-----------|----------------|-----------|
| C10—C7—C8     | 111.1 (3) | C10′—C7′—C8′   | 109.8 (3) |
| C9—C7—S3      | 110.1 (2) | C9'—C7'—S2'    | 111.2 (2) |
| C10—C7—S3     | 107.9 (2) | C10′—C7′—S2′   | 108.3 (2) |
| C8—C7—S3      | 103.6 (2) | C8'—C7'—S2'    | 102.8 (2) |
| C7—C8—H8A     | 109.5     | C7'—C8'—H8'1   | 109.5     |
| C7—C8—H8B     | 109.5     | C7'—C8'—H8'2   | 109.5     |
| H8A—C8—H8B    | 109.5     | H8'1—C8'—H8'2  | 109.5     |
| C7—C8—H8C     | 109.5     | C7'—C8'—H8'3   | 109.5     |
| H8A—C8—H8C    | 109.5     | H8'1—C8'—H8'3  | 109.5     |
| H8B—C8—H8C    | 109.5     | H8′2—C8′—H8′3  | 109.5     |
| С7—С9—Н9А     | 109.5     | С7′—С9′—Н9′1   | 109.5     |
| С7—С9—Н9В     | 109.5     | С7′—С9′—Н9′2   | 109.5     |
| Н9А—С9—Н9В    | 109.5     | H9'1—C9'—H9'2  | 109.5     |
| С7—С9—Н9С     | 109.5     | С7'—С9'—Н9'3   | 109.5     |
| Н9А—С9—Н9С    | 109.5     | H9'1—C9'—H9'3  | 109.5     |
| Н9В—С9—Н9С    | 109.5     | H9′2—C9′—H9′3  | 109.5     |
| C7—C10—H10A   | 109.5     | C7'—C10'—H10D  | 109.5     |
| C7—C10—H10B   | 109.5     | C7'—C10'—H10E  | 109.5     |
| H10A—C10—H10B | 109.5     | H10D—C10′—H10E | 109.5     |
| C7—C10—H10C   | 109.5     | C7'—C10'—H10F  | 109.5     |
| H10A—C10—H10C | 109.5     | H10D—C10′—H10F | 109.5     |
| H10B—C10—H10C | 109.5     | H10E—C10′—H10F | 109.5     |
| C12—C11—C13   | 110.6 (3) | C12′—C11′—C13′ | 112.2 (3) |
| C12—C11—C14   | 110.7 (3) | C12'—C11'—C14' | 109.5 (3) |
| C13—C11—C14   | 107.9 (3) | C13'—C11'—C14' | 107.5 (3) |
| C12—C11—C5    | 109.6 (2) | C12′—C11′—C5′  | 111.4 (3) |
| C13—C11—C5    | 109.7 (2) | C13'—C11'—C5'  | 108.5 (2) |
| C14—C11—C5    | 108.3 (2) | C14′—C11′—C5′  | 107.5 (2) |
| C11—C12—H12A  | 109.5     | C11'—C12'—H12D | 109.5     |
| C11—C12—H12B  | 109.5     | C11′—C12′—H12E | 109.5     |
| H12A—C12—H12B | 109.5     | H12D—C12′—H12E | 109.5     |
| C11—C12—H12C  | 109.5     | C11'—C12'—H12F | 109.5     |
| H12A—C12—H12C | 109.5     | H12D—C12′—H12F | 109.5     |
| H12B—C12—H12C | 109.5     | H12E—C12′—H12F | 109.5     |
| C11—C13—H13A  | 109.5     | C11'—C13'—H13D | 109.5     |
| C11—C13—H13B  | 109.5     | C11'—C13'—H13E | 109.5     |
| H13A—C13—H13B | 109.5     | H13D—C13′—H13E | 109.5     |
| C11—C13—H13C  | 109.5     | C11'—C13'—H13F | 109.5     |
| H13A—C13—H13C | 109.5     | H13D—C13'—H13F | 109.5     |
| H13B—C13—H13C | 109.5     | H13E—C13'—H13F | 109.5     |
| C11—C14—H14A  | 109.5     | C11'—C14'—H14D | 109.5     |
| C11—C14—H14B  | 109.5     | C11'—C14'—H14E | 109.5     |
| H14A—C14—H14B | 109.5     | H14D—C14′—H14E | 109.5     |
| C11—C14—H14C  | 109.5     | C11'—C14'—H14F | 109.5     |
| H14A—C14—H14C | 109.5     | H14D—C14′—H14F | 109.5     |
| H14B—C14—H14C | 109.5     | H14E—C14′—H14F | 109.5     |

| O1—S1—N1—C5   | -74.9 (2)    | O1'—S1'—N1'—C5'   | -71.0 (3)  |
|---------------|--------------|-------------------|------------|
| C1—S1—N1—C5   | 174.6 (2)    | C1'—S1'—N1'—C5'   | 178.0 (2)  |
| O2—S3—N2—C6   | -17.2 (2)    | O2'—S2'—N2'—C6'   | -16.3 (3)  |
| C7—S3—N2—C6   | -129.1 (2)   | C7'—S2'—N2'—C6'   | -127.3 (2) |
| O1—S1—C1—C2   | -176.6 (2)   | O1'—S1'—C1'—C2'   | -179.2 (2) |
| N1—S1—C1—C2   | -61.3 (2)    | N1′—S1′—C1′—C2′   | -63.5 (2)  |
| O1—S1—C1—C3   | -53.7 (2)    | O1'—S1'—C1'—C3'   | -56.5 (3)  |
| N1—S1—C1—C3   | 61.5 (2)     | N1'—S1'—C1'—C3'   | 59.1 (3)   |
| O1—S1—C1—C4   | 64.4 (3)     | O1'—S1'—C1'—C4'   | 63.2 (3)   |
| N1—S1—C1—C4   | 179.7 (3)    | N1'—S1'—C1'—C4'   | 178.8 (2)  |
| S1—N1—C5—C6   | 115.5 (2)    | S1'—N1'—C5'—C6'   | 126.5 (2)  |
| S1—N1—C5—C11  | -117.4 (2)   | S1'—N1'—C5'—C11'  | -110.2 (2) |
| S3—N2—C6—C5   | -174.66 (18) | S2'—N2'—C6'—C5'   | -176.3 (2) |
| N1-C5-C6-N2   | -0.4 (3)     | N1'—C5'—C6'—N2'   | 0.9 (4)    |
| C11—C5—C6—N2  | -126.5 (3)   | C11'—C5'—C6'—N2'  | -123.3 (3) |
| O2—S3—C7—C9   | -54.5 (3)    | O2'—S2'—C7'—C9'   | -49.8 (3)  |
| N2—S3—C7—C9   | 59.9 (2)     | N2'—S2'—C7'—C9'   | 64.0 (3)   |
| O2—S3—C7—C10  | -177.4 (2)   | O2'—S2'—C7'—C10'  | -173.7 (2) |
| N2—S3—C7—C10  | -62.9 (2)    | N2'—S2'—C7'—C10'  | -59.9 (2)  |
| O2—S3—C7—C8   | 64.7 (2)     | O2'—S2'—C7'—C8'   | 70.2 (2)   |
| N2—S3—C7—C8   | 179.2 (2)    | N2'—S2'—C7'—C8'   | -176.1 (2) |
| N1-C5-C11-C12 | -63.8 (3)    | N1'—C5'—C11'—C12' | -65.0 (3)  |
| C6-C5-C11-C12 | 61.8 (3)     | C6'—C5'—C11'—C12' | 58.1 (3)   |
| N1—C5—C11—C13 | 174.6 (2)    | N1'—C5'—C11'—C13' | 171.0 (3)  |
| C6-C5-C11-C13 | -59.8 (3)    | C6'—C5'—C11'—C13' | -65.9 (3)  |
| N1-C5-C11-C14 | 57.1 (3)     | N1'-C5'-C11'-C14' | 54.9 (3)   |
| C6-C5-C11-C14 | -177.3 (2)   | C6'—C5'—C11'—C14' | 178.0 (3)  |
|               |              |                   |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H      | Н…А      | D····A    | <i>D</i> —H··· <i>A</i> |
|--------------------------|----------|----------|-----------|-------------------------|
| N1—H1 <i>N</i> ···N2     | 0.84 (2) | 2.19 (2) | 2.697 (3) | 119 (2)                 |
| N1'—H1' <i>N</i> ····N2' | 0.84 (2) | 2.18 (3) | 2.672 (3) | 118 (2)                 |