

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ammonium benzenephosphonate

# Zhen Lin,<sup>a</sup> Xiu-Qing Lei,<sup>b</sup> Sheng-Di Bai<sup>b</sup> and Seik Weng Ng<sup>c</sup>\*

<sup>a</sup>Shanxi Vocational and Technical College of Biological Applications, Taiyuan 030031, Shanxi, People's Republic of China, <sup>b</sup>Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 July 2008; accepted 22 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.067; wR factor = 0.174; data-to-parameter ratio = 13.0.

In the crystal structure of the title salt,  $NH_4^+$ .[(C<sub>6</sub>H<sub>5</sub>)P(O)<sub>2</sub>-(OH)]<sup>-</sup> or  $NH_4^+$ ·C<sub>6</sub>H<sub>6</sub>O<sub>3</sub>P<sup>-</sup>, the N and O atoms interact *via* hydrogen bonds to generate a layer motif. The phenyl rings are stacked above and below this layer, sandwiching the hydrogen-bonded layer.

## **Related literature**

For the crystal structure of benzenephosphonic acid, see: Weakley (1976); Mahmoudkhani & Langer (2002). For the crystal structure of the 1:1 co-crystal of ammonium benzenephosphonate and benzenephosphonic acid, see: Rao & Vidyasagar (2005).



## Experimental

Crystal data  $NH_4^+ \cdot C_6 H_6 O_3 P^ M_r = 175.12$ 

Orthorhombic, *Pbcn* a = 31.122 (2) Å b = 7.1249 (5) Å c = 7.9441 (5) Å  $V = 1761.5 (2) \text{ Å}^3$ Z = 8

#### Data collection

Bruker SMART 1000 diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.807, T_{\rm max} = 0.947$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$   $wR(F^2) = 0.173$  S = 1.271565 reflections 120 parameters 11 restraints Mo *K* $\alpha$  radiation  $\mu = 0.27 \text{ mm}^{-1}$  *T* = 293 (2) K 0.4 × 0.4 × 0.2 mm

7880 measured reflections 1565 independent reflections 1540 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.027$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{\rm max}=0.31~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.39~{\rm e}~{\rm \AA}^{-3} \end{split}$$

2.940 (4)

2.775(4)

 $D - H \cdot \cdot \cdot A$ 

163 (4)

175 (3)

164 (3)

173 (3)

177 (3)

# Table 1Hydrogen-bond geometry (Å, °).

 $N1\!-\!H13\!\cdots\!O1^{iii}$ 

 $N1\!-\!H14\!\cdots\!O2^{iv}$ 

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$  $D \cdot \cdot \cdot A$ 1.71 (2)  $01 - H1 \cdots O3^{i}$ 0.85(1)2,526 (3)  $N1\!-\!H11\!\cdots\!O2$ 0.85(1) 1.91 (1) 2.762 (4) 1.99 (1) N1-H12···O3<sup>ii</sup> 0.85(1)2.814(4)

0.85(1)

0.85(1)

Symmetry codes: (i)  $x, -y + 1, z - \frac{1}{2}$ ; (ii)  $x, -y + 1, z + \frac{1}{2}$ ; (iii)  $-x + 1, y, -z + \frac{3}{2}$ ; (iv)  $x, -y + 2, z + \frac{1}{2}$ .

2.09 (2)

1.93 (1)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

This work was sponsored by the Natural Science Foundation of Shanxi Province (grant No. 2008011024) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2441).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Mahmoudkhani, A. H. & Langer, V. (2002). J. Mol. Struct. 609, 97–108.
Rao, K. P. & Vidyasagar, K. (2005). Eur. J. Inorg. Chem. pp. 4936–4943.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Weakley, T. J. R. (1976). Acta Cryst. B32, 2889–2890.
Westrin S. P. (2009). nub/ICE: In presentation

Westrip, S. P. (2008). publCIF. In preparation.

# supporting information

Acta Cryst. (2008). E64, o1607 [doi:10.1107/S1600536808023143]

# Ammonium benzenephosphonate

# Zhen Lin, Xiu-Qing Lei, Sheng-Di Bai and Seik Weng Ng

# S1. Comment

The title compound (Scheme I, Fig. 1) is a side-product in the synthesis of 2-methylphenylamidinium phenylphosphinate.

# **S2. Experimental**

*m*-Tolunitrile (0.6 ml, 5 mmol) and lithium bis(trimethylsilyl)amide (0.83 g, 5 mmol) were dissolved in THF (30 ml) at 273 K. The yellow solution was cooled to 195 K. Dichlorophenylphosphine (0.7 ml, 5 mmol) was added. The solution was kept at this temperature for an hour before being allowed to react at room temperature overnight. The solvent was removed and the residue extracted with dichloromethane to give a light yellow oil. The oil was dissolved in acetonitrile (30 ml) and 30% hydrogen peroxide (0.56 cm l, 5 mmol) was added. After 24 h, the solution was filtered. Colorless crystals of 2-methylphenylamidinium phenylphosphinate were first obtained; the second crop yielded the title compound (yield 0.04 g).

# S3. Refinement

The hydroxy and ammonium H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = N—H 0.85 (1) Å and H…H 1.39 (1) Å. Their temperature factors were freely refined. The aromatic H atoms were placed at calculated positions, and were included in the refinement in the riding model approximation, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



# Figure 1

The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

## Ammonium benzenephosphonate

### Crystal data

 $NH_4^+ \cdot C_6 H_6 O_3 P^ M_r = 175.12$ Orthorhombic, Pbcn Hall symbol: -P 2n 2ab a = 31.122 (2) Å b = 7.1249 (5) Åc = 7.9441 (5) Å V = 1761.5 (2) Å<sup>3</sup> Z = 8

## Data collection

| Bruker SMART 1000                        | 7880 measured reflections                                                 |
|------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                           | 1565 independent reflections                                              |
| Radiation source: fine-focus sealed tube | 1540 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int} = 0.027$                                                     |
| $\varphi$ and $\omega$ scans             | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$ |
| Absorption correction: multi-scan        | $h = -37 \rightarrow 30$                                                  |
| (SADABS; Sheldrick, 1996)                | $k = -8 \rightarrow 6$                                                    |
| $T_{\min} = 0.807, \ T_{\max} = 0.947$   | $l = -9 \rightarrow 9$                                                    |
|                                          |                                                                           |

F(000) = 736

 $\theta = 2.6 - 27.5^{\circ}$ 

 $\mu = 0.27 \text{ mm}^{-1}$ 

Block, colorless

 $0.4 \times 0.4 \times 0.2 \text{ mm}$ 

T = 293 K

 $D_{\rm x} = 1.321 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 3647 reflections

## Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.066$ Hydrogen site location: inferred from  $wR(F^2) = 0.173$ neighbouring sites *S* = 1.27 1565 reflections 120 parameters 11 restraints Primary atom site location: structure-invariant  $(\Delta/\sigma)_{\rm max} = 0.001$ direct methods  $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$ 

H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.073P)^2 + 2.2855P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| P1  | 0.42250 (3)  | 0.69330 (12) | 0.59684 (10) | 0.0317 (3)                  |  |
| 01  | 0.45014 (8)  | 0.6911 (4)   | 0.4300 (3)   | 0.0410 (7)                  |  |
| H1  | 0.4413 (14)  | 0.607 (4)    | 0.363 (4)    | 0.056 (13)*                 |  |
| O2  | 0.43772 (8)  | 0.8608 (3)   | 0.6936 (3)   | 0.0403 (6)                  |  |
| 03  | 0.42584 (8)  | 0.5088 (3)   | 0.6853 (3)   | 0.0431 (7)                  |  |
| N1  | 0.46015 (10) | 0.8111 (4)   | 1.0270 (4)   | 0.0373 (7)                  |  |
| H11 | 0.4547 (9)   | 0.827 (4)    | 0.9228 (14)  | 0.053 (13)*                 |  |
| H12 | 0.4455 (8)   | 0.720 (3)    | 1.065 (3)    | 0.052 (13)*                 |  |
| H13 | 0.4869 (4)   | 0.786 (4)    | 1.038 (4)    | 0.043 (11)*                 |  |
| H14 | 0.4541 (9)   | 0.910 (2)    | 1.081 (3)    | 0.048 (12)*                 |  |
| C1  | 0.36793 (11) | 0.7216 (5)   | 0.5282 (5)   | 0.0381 (8)                  |  |
| C2  | 0.33569 (14) | 0.6096 (7)   | 0.5945 (6)   | 0.0566 (11)                 |  |
| H2  | 0.3423       | 0.5194       | 0.6751       | 0.068*                      |  |

| C3 | 0.29380 (15) | 0.6318 (9) | 0.5410 (8) | 0.0742 (15) |
|----|--------------|------------|------------|-------------|
| H3 | 0.2722       | 0.5584     | 0.5879     | 0.089*      |
| C4 | 0.28380 (16) | 0.7611 (9) | 0.4195 (8) | 0.0802 (16) |
| H4 | 0.2556       | 0.7725     | 0.3822     | 0.096*      |
| C5 | 0.31517 (17) | 0.8734 (8) | 0.3528 (7) | 0.0755 (15) |
| Н5 | 0.3082       | 0.9619     | 0.2711     | 0.091*      |
| C6 | 0.35723 (14) | 0.8548 (6) | 0.4073 (6) | 0.0565 (11) |
| H6 | 0.3785       | 0.9320     | 0.3627     | 0.068*      |
|    |              |            |            |             |

| Atomic displacement parameters (2 | (Å <sup>2</sup> ) |
|-----------------------------------|-------------------|
|-----------------------------------|-------------------|

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| P1 | 0.0411 (5)  | 0.0288 (5)  | 0.0252 (5)  | -0.0007 (3)  | -0.0013 (3)  | 0.0022 (3)   |
| 01 | 0.0427 (14) | 0.0516 (16) | 0.0289 (13) | -0.0082 (12) | -0.0003 (11) | -0.0042 (11) |
| 02 | 0.0564 (15) | 0.0319 (12) | 0.0326 (13) | -0.0039 (11) | -0.0083 (11) | -0.0017 (10) |
| 03 | 0.0605 (16) | 0.0326 (13) | 0.0362 (13) | 0.0034 (12)  | -0.0034 (11) | 0.0064 (11)  |
| N1 | 0.0479 (19) | 0.0322 (16) | 0.0318 (16) | -0.0016 (13) | -0.0031 (14) | 0.0005 (13)  |
| C1 | 0.0419 (19) | 0.0355 (18) | 0.0369 (19) | 0.0011 (15)  | 0.0009 (15)  | -0.0046 (15) |
| C2 | 0.054 (2)   | 0.060 (3)   | 0.056 (3)   | -0.008(2)    | 0.001 (2)    | 0.002 (2)    |
| C3 | 0.041 (2)   | 0.092 (4)   | 0.089 (4)   | -0.011 (2)   | 0.004 (2)    | -0.011 (3)   |
| C4 | 0.045 (3)   | 0.099 (4)   | 0.097 (4)   | 0.016 (3)    | -0.018 (3)   | -0.019 (4)   |
| C5 | 0.066 (3)   | 0.078 (3)   | 0.082 (3)   | 0.017 (3)    | -0.026 (3)   | 0.011 (3)    |
| C6 | 0.055 (3)   | 0.055 (2)   | 0.060 (3)   | 0.005 (2)    | -0.011 (2)   | 0.014 (2)    |
|    |             |             |             |              |              |              |

Geometric parameters (Å, °)

| P1O3       | 1.494 (2)   | C1—C6    | 1.391 (5) |
|------------|-------------|----------|-----------|
| P1—O2      | 1.497 (2)   | C2—C3    | 1.380 (7) |
| P1-01      | 1.580 (3)   | C2—H2    | 0.9300    |
| P1—C1      | 1.795 (4)   | C3—C4    | 1.370 (8) |
| 01—H1      | 0.85 (1)    | С3—Н3    | 0.9300    |
| N1—H11     | 0.85(1)     | C4—C5    | 1.369 (8) |
| N1—H12     | 0.85 (1)    | C4—H4    | 0.9300    |
| N1—H13     | 0.85(1)     | C5—C6    | 1.385 (6) |
| N1—H14     | 0.85(1)     | C5—H5    | 0.9300    |
| C1—C2      | 1.386 (6)   | С6—Н6    | 0.9300    |
|            |             |          |           |
| O3—P1—O2   | 115.98 (14) | C3—C2—C1 | 120.1 (5) |
| O3—P1—O1   | 110.38 (14) | C3—C2—H2 | 120.0     |
| O2—P1—O1   | 105.45 (14) | C1—C2—H2 | 120.0     |
| O3—P1—C1   | 107.91 (16) | C4—C3—C2 | 120.6 (5) |
| O2—P1—C1   | 111.44 (16) | C4—C3—H3 | 119.7     |
| 01—P1—C1   | 105.14 (15) | С2—С3—Н3 | 119.7     |
| P1-01-H1   | 111 (3)     | C5—C4—C3 | 120.3 (5) |
| H11—N1—H12 | 109.6 (14)  | C5—C4—H4 | 119.9     |
| H11—N1—H13 | 108.8 (14)  | C3—C4—H4 | 119.9     |
| H12—N1—H13 | 109.2 (14)  | C4—C5—C6 | 119.8 (5) |
| H11—N1—H14 | 109.7 (14)  | C4—C5—H5 | 120.1     |
|            |             |          |           |

| H12—N1—H14<br>H13—N1—H14<br>C2—C1—C6<br>C2—C1—P1<br>C6—C1—P1 | 110.1 (14)<br>109.5 (14)<br>118.8 (4)<br>120.3 (3)<br>120.9 (3) | C6—C5—H5<br>C5—C6—C1<br>C5—C6—H6<br>C1—C6—H6 | 120.1<br>120.5 (4)<br>119.8<br>119.8 |
|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------|
| O3—P1—C1—C2                                                  | 15.9 (4)                                                        | P1-C1-C2-C3                                  | -179.9 (4)                           |
| O2—P1—C1—C2                                                  | -112.6 (3)                                                      | C1-C2-C3-C4                                  | 1.5 (8)                              |
| O1—P1—C1—C2                                                  | 133.7 (3)                                                       | C2-C3-C4-C5                                  | -1.7 (9)                             |
| O3—P1—C1—C6                                                  | -163.7 (3)                                                      | C3-C4-C5-C6                                  | 0.6 (9)                              |
| O2—P1—C1—C6                                                  | 67.8 (4)                                                        | C4-C5-C6-C1                                  | 0.6 (8)                              |
| O1—P1—C1—C6                                                  | -45.9 (4)                                                       | C2-C1-C6-C5                                  | -0.8 (7)                             |
| C6—C1—C2—C3                                                  | -0.3 (7)                                                        | P1-C1-C6-C5                                  | 178.8 (4)                            |

Hydrogen-bond geometry (Å, °)

|                            | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------|----------|----------|-----------|-------------------------|
| 01—H1…O3 <sup>i</sup>      | 0.85 (1) | 1.71 (2) | 2.526 (3) | 163 (4)                 |
| N1—H11…O2                  | 0.85 (1) | 1.91 (1) | 2.762 (4) | 175 (3)                 |
| N1—H12···O3 <sup>ii</sup>  | 0.85 (1) | 1.99 (1) | 2.814 (4) | 164 (3)                 |
| N1—H13···O1 <sup>iii</sup> | 0.85 (1) | 2.09 (2) | 2.940 (4) | 173 (3)                 |
| N1—H14…O2 <sup>iv</sup>    | 0.85 (1) | 1.93 (1) | 2.775 (4) | 177 (3)                 |

Symmetry codes: (i) x, -y+1, z-1/2; (ii) x, -y+1, z+1/2; (iii) -x+1, y, -z+3/2; (iv) x, -y+2, z+1/2.