Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Furylcarbonyl)piperidine-1-carbothioamide

J. Duque,^a* O. Estévez-Hernández,^a Yvonne Mascarenhas,^b J. Ellena^b and Rodrigo S. Corrêa^b

^aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, and ^bGrupo de Cristalografía. Instituto de Física de São Carlos. Universidade de São Paulo, São Carlos, Brazil Correspondence e-mail: duque@imre.oc.uh.cu

Received 9 May 2008; accepted 7 July 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.068; wR factor = 0.205; data-to-parameter ratio = 16.5.

The title compound, C₁₁H₁₄N₂O₂S, was synthesized from furoyl isothiocyanate and piperidine in dry acetone. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of $53.9 (1)^{\circ}$ with the furan carbonyl group. In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds, forming onedimensional chains along the c axis. An intramolecular N- $H \cdots O$ hydrogen bond is also present.

Related literature

For general background, see: Aly et al. (2007); Estévez-Hernández et al. (2006, 2007); Koch (2001). For related structures, see: Dago et al. (1987); Plutin et al. (2000); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental

Crystal data $C_{11}H_{14}N_2O_2S$ $M_r = 238.3$ Orthorhombic, Pbca a = 31.6377 (15) Åb = 8.6787 (4) Å c = 8.5308 (3) Å

$V = 2342.34 (18) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.26 \text{ mm}^{-1}$
T = 294 K
$0.15 \times 0.13 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	2387 independent reflections
Absorption correction: none	1550 reflections with $I > 2\sigma(I)$
4308 measured reflections	$R_{\rm int} = 0.039$

Refinement

v

5 2

$R[F^2 > 2\sigma(F^2)] = 0.067$	145 parameters
$VR(F^2) = 0.205$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
387 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
N1-H1···O2	0.86	2.38	2.756 (3)	107
$N1 - H1 \cdots O1^{i}$	0.86	2.18	2.994 (4)	157

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: COLLECT (Enraf-Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2121).

References

- Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.
- Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martin, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026.
- Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.
- Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands. Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros,
- J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488-494.
- Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. (2006). Spectrochim. Acta A, 64, 961-971
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
- Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, 0695-695.
- Plutin, A. M., Marquez, H., Ochoa, E., Morales, M., Sosa, M., Moran, L., Rodíguez, Y., Suarez, M., Martín, N. & Seoane, C. (2000). Tetrahedron, 56, 1533-1539
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1457 [doi:10.1107/S1600536808020977]

N-(2-Furylcarbonyl)piperidine-1-carbothioamide

J. Duque, O. Estévez-Hernández, Yvonne Mascarenhas, J. Ellena and Rodrigo S. Corrêa

S1. Comment

Thiourea and its derivatives form a versatile family of ligands that are suitable to form complexes with ions of transition and post-transition metal through the S atom (Koch *et al.*, 2001; Aly *et al.*, 2007). The title compound shows outstanding complexation properties (Estévez-Hernández *et al.*, 2006). The potential applications of this class of ligands as ionophores or chemical modifiers in amperometric sensors (Estévez-Hernández *et al.*, 2007) have stimulated our interest in their crystal structure. The title compound crystallizes in the thioamide form. The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Dago *et al.*, 1987; Plutin *et al.*, 2000). All the C–N bonds of thiourea fragment C1–N1, C2–N1 and C2–N2 (Table1) are in the range 1.415 (4)–1.327 (4) Å, intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å respectively). These results can be explained by the existence of resonance in this part of molecule (Pérez *et al.*, 2008; Duque *et al.*, 2008). The central thiourea fragment (N1 —C2—S1—N2) makes dihedral angle of 53.9 (1)° with the furan carbonyl (C1—C3—C4—C5—C6—O2) group. The *trans-cis* geometry in the thiourea moiety is stabilized by the N1–H1…O1 intermolecular hydrogen bond (Fig.1 and Table 2). In the crystal structure symmetry related molecules are linked by N1–H1…O1 intermolecular hydrogen bonds to form one-dimensional chains along *c* axis (Figs. 2 and Table 2).

S2. Experimental

The title compound was synthesized according to a previous report (Otazo-Sánchez *et al.*, 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with piperidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 120–121°C). Elemental analysis (%) for $C_{11}H_{14}N_2O_2S$ calculated: C 55.46, H 5.88, N 11.76, S 13.45; found: C 55.23, H 5.90, N 11.63, S 13.32.

S3. Refinement

All H atoms were refined with $U_{iso}(H)=1.2U_{eq}(C/N)$.

Figure 1

View of the molecular structure of the title compound (50% probability displacement ellipsoids). Intramolecular Hydrogen bonds (N1–H1…O2) are shown as dashed lines.

Figure 2

View of the crystal packing of the title compound projected down the *b* axis. Intermolecular hydrogen bonds (N1–H1…O1) form one-dimensional chains along *c* axis. The hydrogen bonds are shown as dotted lines.

N-(2-Furylcarbonyl)piperidine-1-carbothioamide

F(000) = 1008
$D_{\rm x} = 1.352 {\rm Mg} {\rm m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2684 reflections
$\theta = 2.9 - 26.4^{\circ}$
$\mu = 0.26 \text{ mm}^{-1}$
T = 294 K
Prism, colourless
$0.15 \times 0.13 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.039$ $ heta_{\rm max} = 26.4^{\circ}, \ heta_{\rm min} = 3.4^{\circ}$
CCD rotation images, thick slices scans	$h = -39 \rightarrow 39$
4308 measured reflections	$k = -10 \rightarrow 10$
2387 independent reflections	$l = -10 \rightarrow 10$
1550 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.1017P)^2 + 1.0533P]$
$wR(F^2) = 0.205$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2387 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
145 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and	isotropic	or equi	valent	isotropic	displ	acement	parameters	$(Å^2$?)
				1			1			1	A 6	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.05964 (9)	0.3587 (4)	0.2251 (4)	0.0455 (7)
C2	0.13205 (9)	0.2817 (4)	0.2882 (3)	0.0456 (8)
C3	0.01610 (9)	0.3667 (3)	0.2812 (3)	0.0442 (7)
C4	-0.01794 (10)	0.4368 (4)	0.2179 (4)	0.0561 (9)
H4	-0.0191	0.4904	0.1237	0.067*
C5	-0.05161 (11)	0.4118 (4)	0.3246 (5)	0.0678 (11)
Н5	-0.0792	0.4468	0.314	0.081*
C6	-0.03631 (12)	0.3293 (5)	0.4421 (5)	0.0776 (12)
H6	-0.0521	0.2957	0.5275	0.093*
C7	0.13358 (12)	0.5686 (4)	0.2859 (5)	0.0627 (10)
H7A	0.1051	0.5591	0.3268	0.075*
H7B	0.1321	0.6226	0.1865	0.075*
C8	0.16045 (13)	0.6593 (4)	0.3996 (5)	0.0743 (11)
H8A	0.1586	0.6123	0.5026	0.089*
H8B	0.1495	0.7633	0.4075	0.089*
С9	0.20640 (14)	0.6656 (5)	0.3497 (6)	0.0890 (13)
H9A	0.209	0.7254	0.2541	0.107*
H9B	0.223	0.7157	0.4305	0.107*
C10	0.22286 (12)	0.5045 (5)	0.3226 (6)	0.0849 (13)
H10A	0.2515	0.5098	0.2827	0.102*
H10B	0.2235	0.4492	0.4213	0.102*
C11	0.19565 (11)	0.4186 (5)	0.2081 (5)	0.0703 (11)
H11A	0.197	0.4688	0.1065	0.084*
H11B	0.2062	0.3143	0.1962	0.084*

N1	0.08854 (7)	0.2942 (3)	0.3243 (3)	0.0458 (7)
H1	0.0799	0.2594	0.4131	0.055*
N2	0.15184 (8)	0.4140 (3)	0.2619 (3)	0.0527 (7)
01	0.06909 (7)	0.4111 (3)	0.0970 (2)	0.0569 (7)
O2	0.00546 (7)	0.3001 (3)	0.4214 (3)	0.0651 (7)
S1	0.15400 (3)	0.10814 (10)	0.28587 (13)	0.0661 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0424 (16)	0.0478 (17)	0.0462 (19)	0.0006 (13)	-0.0034 (13)	-0.0070 (15)
C2	0.0397 (15)	0.056 (2)	0.0412 (17)	-0.0007 (14)	-0.0028 (13)	-0.0054 (15)
C3	0.0435 (16)	0.0484 (17)	0.0406 (16)	0.0015 (13)	-0.0001 (13)	0.0006 (14)
C4	0.0547 (19)	0.0541 (19)	0.060 (2)	0.0076 (16)	-0.0086 (16)	0.0046 (17)
C5	0.0423 (18)	0.070 (2)	0.091 (3)	0.0139 (17)	0.0037 (18)	-0.004 (2)
C6	0.050(2)	0.092 (3)	0.090 (3)	0.018 (2)	0.023 (2)	0.017 (2)
C7	0.057 (2)	0.049 (2)	0.082 (3)	0.0016 (16)	0.0006 (18)	0.0000 (18)
C8	0.089 (3)	0.048 (2)	0.086 (3)	-0.0092 (19)	-0.006(2)	-0.005(2)
C9	0.082 (3)	0.074 (3)	0.111 (3)	-0.027(2)	-0.018 (3)	0.002 (3)
C10	0.053 (2)	0.084 (3)	0.118 (4)	-0.017 (2)	-0.011 (2)	0.009 (3)
C11	0.0438 (19)	0.079 (3)	0.088 (3)	-0.0093 (18)	0.0112 (18)	-0.006(2)
N1	0.0374 (13)	0.0569 (17)	0.0430 (14)	0.0020 (11)	0.0016 (10)	0.0006 (12)
N2	0.0419 (15)	0.0509 (16)	0.0655 (18)	-0.0043 (12)	0.0023 (12)	-0.0071 (13)
01	0.0537 (13)	0.0760 (17)	0.0411 (13)	-0.0015 (11)	0.0017 (10)	0.0051 (11)
02	0.0520 (13)	0.0813 (18)	0.0619 (15)	0.0160 (12)	0.0121 (11)	0.0164 (13)
S1	0.0485 (5)	0.0536 (6)	0.0962 (8)	0.0069 (4)	-0.0001 (4)	-0.0080 (5)

Geometric parameters (Å, °)

C1-01	1.221 (4)	С7—Н7А	0.97	
C1—N1	1.366 (4)	C7—H7B	0.97	
C1—C3	1.460 (4)	C8—C9	1.516 (6)	
C2—N2	1.327 (4)	C8—H8A	0.97	
C2—N1	1.415 (4)	C8—H8B	0.97	
C2—S1	1.659 (3)	C9—C10	1.510(7)	
C3—C4	1.349 (4)	С9—Н9А	0.97	
C3—O2	1.371 (4)	C9—H9B	0.97	
C4—C5	1.418 (5)	C10—C11	1.500 (5)	
C4—H4	0.93	C10—H10A	0.97	
C5—C6	1.323 (5)	C10—H10B	0.97	
С5—Н5	0.93	C11—N2	1.461 (4)	
C6—O2	1.357 (4)	C11—H11A	0.97	
С6—Н6	0.93	C11—H11B	0.97	
C7—N2	1.475 (4)	N1—H1	0.86	
С7—С8	1.511 (5)			
01—C1—N1	122.9 (3)	C9—C8—H8B	109.2	
O1—C1—C3	120.4 (3)	H8A—C8—H8B	107.9	

N1—C1—C3	116.6 (3)	C10—C9—C8	109.9 (3)
N2—C2—N1	115.5 (3)	С10—С9—Н9А	109.7
N2—C2—S1	125.9 (2)	С8—С9—Н9А	109.7
N1—C2—S1	118.6 (2)	С10—С9—Н9В	109.7
C4—C3—O2	110.1 (3)	C8—C9—H9B	109.7
C4—C3—C1	130.1 (3)	H9A—C9—H9B	108.2
O2—C3—C1	119.8 (3)	C11—C10—C9	111.2 (3)
C3—C4—C5	105.9 (3)	C11—C10—H10A	109.4
C3—C4—H4	127	C9—C10—H10A	109.4
C5—C4—H4	127	C11—C10—H10B	109.4
C6—C5—C4	107.1 (3)	C9—C10—H10B	109.4
С6—С5—Н5	126.5	H10A—C10—H10B	108
С4—С5—Н5	126.5	N2-C11-C10	110.7 (3)
C5—C6—O2	111.0 (3)	N2-C11-H11A	109.5
С5—С6—Н6	124.5	C10-C11-H11A	109.5
O2—C6—H6	124.5	N2-C11-H11B	109.5
N2—C7—C8	110.0 (3)	C10-C11-H11B	109.5
N2—C7—H7A	109.7	H11A—C11—H11B	108.1
С8—С7—Н7А	109.7	C1—N1—C2	123.2 (3)
N2—C7—H7B	109.7	C1—N1—H1	118.4
С8—С7—Н7В	109.7	C2—N1—H1	118.4
H7A—C7—H7B	108.2	C2—N2—C11	121.6 (3)
С7—С8—С9	112.2 (4)	C2—N2—C7	125.4 (3)
С7—С8—Н8А	109.2	C11—N2—C7	113.0 (3)
С9—С8—Н8А	109.2	C6—O2—C3	105.9 (3)
С7—С8—Н8В	109.2		
O1—C1—C3—C4	-5.9 (5)	N2—C2—N1—C1	59.9 (4)
N1-C1-C3-C4	172.5 (3)	S1—C2—N1—C1	-121.4 (3)
O1—C1—C3—O2	176.5 (3)	N1-C2-N2-C11	-173.8 (3)
N1-C1-C3-O2	-5.2 (4)	S1—C2—N2—C11	7.6 (5)
O2—C3—C4—C5	-0.2 (4)	N1-C2-N2-C7	7.8 (4)
C1—C3—C4—C5	-178.0 (3)	S1—C2—N2—C7	-170.8 (3)
C3—C4—C5—C6	-0.5 (5)	C10-C11-N2-C2	-120.6 (4)
C4—C5—C6—O2	1.0 (5)	C10-C11-N2-C7	58.1 (4)
N2—C7—C8—C9	54.0 (5)	C8—C7—N2—C2	122.3 (4)
C7—C8—C9—C10	-53.7 (5)	C8—C7—N2—C11	-56.3 (4)
C8-C9-C10-C11	54.5 (5)	С5—С6—О2—С3	-1.1 (5)
C9-C10-C11-N2	-56.8 (5)	C4—C3—O2—C6	0.8 (4)
01—C1—N1—C2	-0.1 (5)	C1—C3—O2—C6	178.8 (3)
C3—C1—N1—C2	-178.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.86	2.38	2.756 (3)	107

			supporting information		
N1—H1···O1 ⁱ	0.86	2.18	2.994 (4)	157	
Symmetry code: (i) <i>x</i> , – <i>y</i> +1/2, <i>z</i> +1/2.					