

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zr₃NiSb₇: a new antimony-enriched ZrSb₂ derivative

V. Romaka,^a* A. Tkachuk^b and L. Romaka^a

^aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine, and ^bDepartment of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 Correspondence e-mail: romakav@yahoo.com

Received 27 June 2008; accepted 2 July 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (Sb–Ni) = 0.001 Å; R factor = 0.025; wR factor = 0.054; data-to-parameter ratio = 25.3.

Single crystals of trizirconium nickel heptaantimonide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms ($3 \times Zr$, $1 \times Ni$ and $7 \times Sb$) are located at sites with *m* symmetry. The structure contains ' $Zr_2Ni_2Sb_5$ ' and ' Zr_4Sb_9 ' fragments and might be described as a new $ZrSb_2$ derivative with a high Sb content.

Related literature

The structure of $ZrSb_2$ was described by Garcia & Corbett (1988). For related antimonides, see: Romaka *et al.* (2007); Tkachuk *et al.* (2007). For related literature, see: Emsley (1991).

Experimental

Crystal data

 Zr_3NiSb_7 $M_r = 1184.62$ Orthorhombic, *Pnma* a = 17.5165 (19) Å b = 3.9266 (4) Å c = 14.3968 (15) Å

Data collection

Bruker SMART 1000 diffractometer $V = 990.22 (18) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 23.56 mm⁻¹ T = 295 (2) K 0.37 \times 0.06 \times 0.04 mm

Absorption correction: numerical (SHELXTL; Sheldrick, 2008) $T_{\min} = 0.057, T_{\max} = 0.426$ 11118 measured reflections 1722 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.053$ S = 1.181722 reflections 68 parameters $\Delta \rho_{\rm max} = 2.12 \text{ e } \text{\AA}^{-3}$

1500 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm min} = -2.89 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.043$

Table 1Selected bond lengths (Å).

Zr1-Sb4 ⁱ	2.9620 (6)	Zr3-Sb6 ^v	2.9975 (8)
Zr1-Sb6	2.9876 (8)	Zr3-Sb3 ^{vi}	3.1616 (9)
Zr1-Sb1 ⁱⁱ	3.0669 (8)	Ni1-Sb7	2.5728 (10)
Zr1-Sb3 ⁱⁱⁱ	3.0720 (7)	Ni1-Sb2 ^{iv}	2.5875 (7)
Zr1-Sb7 ⁱⁱⁱ	3.0960 (6)	Ni1-Sb1 ^{iv}	2.6140 (7)
Zr1-Sb5	3.1324 (8)	Ni1-Sb4 ^{vi}	2.7141 (10)
Zr2-Sb6 ^{iv}	2.9478 (6)	Sb1-Sb2	3.1998 (8)
Zr2-Sb4 ⁱⁱⁱ	2.9499 (6)	Sb1-Sb3 ^{vii}	3.2645 (6)
Zr2-Sb2 ^{iv}	2.9604 (6)	Sb1-Sb4 ^{viii}	3.2981 (6)
Zr2-Sb2 ⁱⁱ	3.0029 (8)	Sb2-Sb2 ^{ix}	3.2250 (7)
Zr2-Sb5	3.0044 (8)	Sb2-Sb4 ^{viii}	3.3111 (6)
Zr3-Sb1 ^{iv}	2.9569 (6)	Sb5-Sb7 ⁱⁱⁱ	3.1380 (6)
Zr3-Sb3 ^{iv}	2.9944 (7)	Sb5-Sb6 ^{iv}	3.1387 (6)
Zr3-Sb5 ^{iv}	2.9958 (6)	Sb6-Sb7 ⁱ	3.1393 (6)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (v) x, y, z + 1; (vi) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (vii) -x, -y + 1, -z + 1; (viii) -x, -y, -z + 1; (ix) -x, -y, -z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

The work was in part supported by the Ministry of Ukraine for Education and Science (grant No. 0106U001299).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2182).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Emsley, J. (1991). The Elements, 2nd ed. Oxford: Clarendon Press.
- Garcia, E. & Corbett, J. D. (1988). J. Solid State Chem. 73, 440-451.
- Romaka, L., Tkachuk, A. & Stadnyk, Yu. (2007). *11th Scientific Conference 'L'viv Chemistry Reading 2007'*, Collected Abstracts, p. H37. L'viv: Publishing Center of Ivan Franko National University.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tkachuk, A., Romaka, L. & Stadnyk, Yu. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, L'viv (Ukraine), Collected Abstracts, p. 71. L'viv: Publishing Center of Ivan Franko National University.

supporting information

Acta Cryst. (2008). E64, i47 [doi:10.1107/S1600536808020278]

Zr₃NiSb₇: a new antimony-enriched ZrSb₂ derivative

V. Romaka, A. Tkachuk and L. Romaka

S1. Comment

Antimony based intermetallics attract interest due to interesting thermoelectric properties of some phases, *e.g.* antimonides with MgAgAs and Y₃Au₃Sb₄ type structures. The investigation of new intermetallic phases is useful for the development of new materials, and the accurate determination of their crystal structures is a basic requirement for a better understanding of the corresponding physical properties.

Investigation of the Zr–Ni–Sb ternary system revealed the presence of several compounds in the Sb-enriched area (Romaka *et al.*, 2007), including the new title antimonide with composition $Zr_{27}Ni_9Sb_{64}$ (in $\%_{at}$). Interatomic distances (Table 1) between Sb atoms are in good agreement with the sum of the atomic radius (Emsley, 1991), whereas the majority of Zr–Sb and all Ni–Sb distances are somewhat shortened. Such shortening may be explained by partial covalent bonding which appears to be significant between Ni–Sb atoms because their contact distances are rather close to the sum of their covalent radii (2.56 Å). As the majority of ternary intermetallics are constructed from the fragments of their most stable binary compounds, the structure analysis of the antimonides Zr_3NiSb_7 and the already known Zr_2NiSb_3 (Tkachuk *et al.*, 2007) in the Sb-enriched area shows that both can be derived from the binary compound $ZrSb_2$ (Garcia & Corbett, 1988), which crystallizes in the PbCl₂ structure type.

 Zr_3NiSb_7 belongs to the family of two-layer structures. It may be represented as a net of trigonal prisms formed by Sb atoms that are bridged by nickel atoms (Fig. 1a). Such an arrangement is very similar to that in the binary $ZrSb_2$ structure (Fig. 1b). The coordination polyhedra are distorted tri-capped trigonal prisms for the Zr atoms, and distorted octahedra for Ni atoms. In an alternative description, the Zr_3NiSb_7 structure contains fragments of the hypothetical " $Zr_2Ni_2Sb_5$ " and " Zr_4Sb_9 " structures (Fig. 2) which are so far unknown for the ternary Zr-Ni-Sb or binary Zr-Sb systems. The main feature of the Zr_3NiSb_7 structure is the absence of covalent bonding between antimony atoms in contrast to the $ZrSb_2$ structure. The general conclusion is that the presence of Ni atoms intensifies the interaction between Zr/Ni and Sb and, at the same time, reduces the bonding between Sb atoms. One may speculate that the composition of the Zr_3NiSb_7 compound may be the boundary limit of some solid solutions based on $ZrSb_2$. However, the detailed study of the phase equilibria in the Zr-Ni-Sb system did not show a formation of any substitutional or interstitial solid solution. Moreover, the diffraction patterns of Zr_3NiSb_7 and $ZrSb_2$ are rather different.

S2. Experimental

A sample with nominal composition Zr₃₀Ni₁₀Sb₆₀ was prepared by arc-melting the constituent elements Zr (99.99 wt.%), Ni (99.99 wt.%), and Sb (99.99 wt.%) on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. 5 wt.% excess of Sb was required to compensate the evaporative loss during arc-melting. The ingot was annealed at 870 K for 720 h in an evacuated silica ampoule, and finally quenched in cold water. A crystal of the title compound suitable for single-crystal X-ray diffraction was extracted directly from the annealed sample. The chemical composition of the crystal was determined on the basis of an energy dispersive X-ray spectroscopical analysis using a Hitachi S-2700

scanning electron microscope. The result of the analysis is in good aggreement with the composition calculated from the structural refinement: Measured: 24.5 (8) $\%_{at}$ Zr, 11.3 (6) $\%_{at}$ Ni, 64.2 (16) $\%_{at}$ Sb; calculated Zr 27 $\%_{at}$, Ni 9 $\%_{at}$, Sb 64 $\%_{at}$.

S3. Refinement

The highest remaining electron density peak and the deepest hole are located 0.80 Å from Sb1 and 1.78 Å from Ni1, respectively. The structure solution and refinement were also performed in the non-centrosymmetric space group $Pna2_1$, but were less satisfactory and resulted in larger *R* indices and atomic displacement parameters.

Figure 1

(*a*). Projection of the Zr₃NiSb₇ structure onto the (010) plane with displacement ellipsoids drawn at the 95% probability level. [Symmetry codes: (i) 0.5 - x, 1 - y, -1/2 + z; (iv) 0.5 - x, -y, 0.5 - z; (vi) 1/2 + x, y, 1.5 - z]; (*b*) Projection of the ZrSb₂ structure onto the (010) plane.

Zr₃NiSb₇

Figure 2

The stacked "Zr₂Ni₂Sb₅" and "Zr₄Sb₉" fragments in the Zr₃NiSb₇ structure.

trizirconium nickel heptaantimonide

Crystal data Zr₃NiSb₇ F(000) = 2020 $M_r = 1184.62$ $D_{\rm x} = 7.946 {\rm Mg} {\rm m}^{-3}$ Orthorhombic, Pnma Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ac 2n Cell parameters from 4956 reflections a = 17.5165 (19) Å $\theta = 2.3 - 33.1^{\circ}$ $\mu = 23.56 \text{ mm}^{-1}$ b = 3.9266 (4) Å*c* = 14.3968 (15) Å T = 295 K $V = 990.22 (18) Å^3$ Needle, silver Z = 4 $0.37 \times 0.06 \times 0.04 \text{ mm}$ Data collection Bruker SMART 1000 11118 measured reflections diffractometer 1722 independent reflections Radiation source: fine-focus sealed tube 1500 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.044$ φ and ω scans $\theta_{\rm max} = 30.5^{\circ}, \, \theta_{\rm min} = 2.3^{\circ}$ $h = -25 \rightarrow 25$ Absorption correction: numerical $k = -5 \rightarrow 5$ (SHELXTL; Sheldrick, 2008) $T_{\rm min} = 0.057, \ T_{\rm max} = 0.426$ $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0223P)^2 + 1.1518P]$
$wR(F^2) = 0.054$	where $P = (F_o^2 + 2F_o^2)/3$
S = 1.18	$(\Delta/\sigma)_{max} = 0.001$
1722 reflections	$\Delta\rho_{max} = 2.12 \text{ e} \text{ Å}^{-3}$
 68 parameters 0 restraints Primary atom site location: structure-invariant direct methods 	$\Delta \rho_{\min} = -2.89$ e A ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.00069 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zr1	0.34664 (4)	0.2500	0.19076 (5)	0.00788 (14)	
Zr2	0.37045 (4)	0.2500	0.47072 (5)	0.00721 (13)	
Zr3	0.39237 (4)	0.2500	0.90990 (5)	0.00782 (14)	
Ni1	0.43680 (5)	0.2500	0.68908 (6)	0.00903 (18)	
Sb1	0.02147 (3)	0.2500	0.29766 (3)	0.00871 (11)	
Sb2	0.03748 (2)	0.2500	0.07626 (3)	0.00790 (10)	
Sb3	0.07123 (3)	0.2500	0.56057 (3)	0.00957 (11)	
Sb4	0.09131 (3)	0.2500	0.82504 (3)	0.00823 (10)	
Sb5	0.22833 (3)	0.2500	0.35390 (3)	0.00918 (11)	
Sb6	0.24792 (2)	0.2500	0.02153 (3)	0.00875 (11)	
Sb7	0.28995 (3)	0.2500	0.68532 (4)	0.01218 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Zr1	0.0068 (3)	0.0083 (3)	0.0085 (3)	0.000	-0.0007 (2)	0.000	
Zr2	0.0054 (3)	0.0077 (3)	0.0085 (3)	0.000	0.0002 (2)	0.000	
Zr3	0.0064 (3)	0.0078 (3)	0.0092 (3)	0.000	0.0004 (2)	0.000	
Ni1	0.0085 (4)	0.0092 (5)	0.0094 (4)	0.000	0.0000 (3)	0.000	
Sb1	0.0081 (2)	0.0089 (2)	0.0092 (2)	0.000	-0.00158 (15)	0.000	
Sb2	0.0069 (2)	0.0084 (2)	0.0084 (2)	0.000	0.00046 (15)	0.000	
Sb3	0.0104 (2)	0.0100 (2)	0.0083 (2)	0.000	0.00042 (16)	0.000	
Sb4	0.0082 (2)	0.0086 (2)	0.0079 (2)	0.000	0.00022 (15)	0.000	
Sb5	0.0069 (2)	0.0104 (2)	0.0102 (2)	0.000	0.00005 (15)	0.000	
Sb6	0.0069 (2)	0.0100 (2)	0.0094 (2)	0.000	-0.00051 (15)	0.000	

					supporting i	nformation
Sb7	0.0076 (2)	0.0100 (3)	0.0189 (3)	0.000	0.00142 (16)	0.000
Geometr	ic parameters (Å, S	2)				
Zr1—Sb	4 ⁱ	2.9620 (6)	Sb2-	—Ni1 ⁱⁱ	2.587	6 (7)
Zr1—Sb	4 ⁱⁱ	2.9620 (6)	Sb2-	—Zr2 ⁱⁱ	2.960	4 (6)
Zr1—Sb	6	2.9876 (8)	Sb2-	—Zr2 ⁱ	2.960	4 (6)
Zr1—Sb	1 ⁱⁱⁱ	3.0669 (8)	Sb2-	—Zr2 ^{viii}	3.003	0 (8)
Zr1—Sb	3 ⁱⁱ	3.0720 (7)	Sb2-	—Sb2 ^{xi}	3.225	0(7)
Zr1—Sb	3 ⁱ	3.0720 (7)	Sb2-	—Sb2 ^{xii}	3.225	0(7)
Zr1—Sb	7 ⁱⁱ	3.0960 (6)	Sb2-	—Sb4 ^x	3.311	1 (6)
Zr1—Sb	7^{i}	3.0960 (6)	Sb2-	—Sb4 ^{ix}	3.311	1 (6)
Zr1—Sb	5	3.1324 (8)	Sb3-	—Zr3 ⁱⁱ	2.994	3 (7)
Zr2—Sb	6 ^{iv}	2.9478 (6)	Sb3-	—Zr3 ⁱ	2.994	3 (7)
Zr2—Sb	6 ^v	2.9478 (6)	Sb3-	—Zr1 ^v	3.072	0 (7)
Zr2—Sb	4 ⁱⁱ	2.9499 (6)	Sb3-	—Zr1 ^{iv}	3.072	0 (7)
Zr2—Sb	4 ⁱ	2.9499 (6)	Sb3-	—Zr3 ^{xiii}	3.161	7 (9)
Zr2—Sb	2 ^v	2.9604 (6)	Sb3-	—Sb1 ^{ix}	3.264	5 (6)
Zr2—Sb	2 ^{iv}	2.9604 (6)	Sb3-	—Sb1 ^x	3.264	5 (6)
Zr2—Sb	2 ⁱⁱⁱ	3.0029 (8)	Sb4	—Ni1 ^{xiii}	2.714	1 (10)
Zr2—Sb	5	3.0044 (8)	Sb4	—Zr2 ^v	2.949	9 (6)
Zr2—Sb	7	3.3962 (9)	Sb4	—Zr2 ^{iv}	2.949	9 (6)
Zr3—Sb	1 ^{iv}	2.9569 (6)	Sb4	—Zr1 ^{iv}	2.961	9 (6)
Zr3—Sb	1 ^v	2.9569 (6)	Sb4	—Zr1 ^v	2.961	9 (6)
Zr3—Sb	3 ^v	2.9944 (7)	Sb4	—Sb1 ^x	3.298	1 (6)
Zr3—Sb	3 ^{iv}	2.9944 (7)	Sb4	—Sb1 ^{ix}	3.298	1 (6)
Zr3—Sb	5 ^{iv}	2.9958 (6)	Sb4	—Sb2 ^x	3.311	1 (6)
Zr3—Sb	5 ^v	2.9958 (6)	Sb4	—Sb2 ^{ix}	3.311	0 (6)
Zr3—Sb	6 ^{vi}	2.9975 (8)	Sb5	—Zr3 ⁱⁱ	2.995	8 (6)
Zr3—Sb	3 ^{vii}	3.1616 (9)	Sb5	—Zr3 ⁱ	2.995	8 (6)
Zr3—Ni	1	3.2730 (12)	Sb5	—Sb7 ⁱⁱ	3.138	0 (6)
Ni1—Sb	7	2.5728 (10)	Sb5	—Sb7 ⁱ	3.138	0 (6)
Ni1—Sb	2 ^{iv}	2.5875 (7)	Sb5	—Sb6 ^v	3.138	7 (6)
Ni1—Sb	2 ^v	2.5875 (7)	Sb5	—Sb6 ^{iv}	3.138	7 (6)
Ni1—Sb	o1 ^v	2.6140 (7)	Sb6	—Zr2 ⁱⁱ	2.947	8 (6)
Ni1—Sb	01 ^{iv}	2.6140 (7)	Sb6	—Zr2 ⁱ	2.947	8 (6)
Ni1—Sb	4 ^{vii}	2.7141 (10)	Sb6	—Zr3 ^{xiv}	2.997	4 (8)
Sb1—Ni	1 ⁱⁱ	2.6139 (7)	Sb6	—Sb5 ⁱⁱ	3.138	8 (6)
Sb1—Ni	1 ⁱ	2.6139 (7)	Sb6	—Sb5 ⁱ	3.138	8 (6)
Sb1—Zr	·3 ⁱ	2.9570 (6)	Sb6	—Sb7 ⁱ	3.139	3 (6)
Sb1—Zr	·3 ⁱⁱ	2.9570 (6)	Sb6	—Sb7 ⁱⁱ	3.139	3 (6)
Sb1—Zr	·1 ^{viii}	3.0669 (8)	Sb7-	—Zr1 ^{iv}	3.096	0 (6)
Sb1—Sb	02	3.1998 (8)	Sb7-	—Zr1 ^v	3.096	0 (6)
Sb1—Sb	o3 ^{ix}	3.2645 (6)	Sb7-	—Sb5 ^v	3.138	0 (6)
Sb1—Sb	o3 ^x	3.2645 (6)	Sb7-	—Sb5 ^{iv}	3.138	0 (6)
Sb1—Sb	o4 ^x	3.2981 (6)	Sb7-	—Sb6 ^{iv}	3.139	3 (6)
Sb1—Sb	o4 ^{ix}	3.2981 (6)	Sb7-	—Sb6 ^v	3.139	3 (6)
Sb2—Ni	i1 ⁱ	2.5876 (7)				- /

Sb4 ⁱ —Zr1—Sb4 ⁱⁱ	83.03 (2)	Ni1 ⁱ —Sb2—Zr2 ^{viii}	108.12 (2)
Sb4 ⁱ —Zr1—Sb6	138.128 (11)	Ni1 ⁱⁱ —Sb2—Zr2 ^{viii}	108.12 (2)
Sb4 ⁱⁱ —Zr1—Sb6	138.128 (11)	Zr2 ⁱⁱ —Sb2—Zr2 ^{viii}	114.528 (17)
Sb4 ⁱ —Zr1—Sb1 ⁱⁱⁱ	66.303 (16)	Zr2 ⁱ —Sb2—Zr2 ^{viii}	114.528 (17)
Sb4 ⁱⁱ —Zr1—Sb1 ⁱⁱⁱ	66.303 (16)	Ni1 ⁱ —Sb2—Sb1	52.409 (19)
Sb6—Zr1—Sb1 ⁱⁱⁱ	128.48 (3)	Ni1 ⁱⁱ —Sb2—Sb1	52.409 (19)
Sb4 ⁱ —Zr1—Sb3 ⁱⁱ	130.54 (3)	Zr2 ⁱⁱ —Sb2—Sb1	123.991 (17)
Sb4 ⁱⁱ —Zr1—Sb3 ⁱⁱ	78.623 (15)	Zr2 ⁱ —Sb2—Sb1	123.991 (17)
Sb6—Zr1—Sb3 ⁱⁱ	76.910 (19)	Zr2 ^{viii} —Sb2—Sb1	97.986 (19)
Sb1 ⁱⁱⁱ —Zr1—Sb3 ⁱⁱ	64.250 (16)	Ni1 ⁱ —Sb2—Sb2 ^{xi}	163.78 (3)
Sb4 ⁱ —Zr1—Sb3 ⁱ	78.623 (15)	Ni1 ⁱⁱ —Sb2—Sb2 ^{xi}	92.085 (17)
Sb4 ⁱⁱ —Zr1—Sb3 ⁱ	130.54 (3)	Zr2 ⁱⁱ —Sb2—Sb2 ^{xi}	57.900 (17)
Sb6—Zr1—Sb3 ⁱ	76.911 (19)	Zr2 ⁱ —Sb2—Sb2 ^{xi}	106.03 (2)
Sb1 ⁱⁱⁱ —Zr1—Sb3 ⁱ	64.250 (16)	Zr2 ^{viii} —Sb2—Sb2 ^{xi}	56.628 (16)
Sb3 ⁱⁱ —Zr1—Sb3 ⁱ	79.45 (2)	Sb1—Sb2—Sb2 ^{xi}	129.982 (17)
$Sb4^{i}$ — $Zr1$ — $Sb7^{ii}$	136.09 (3)	Ni1 ⁱ —Sb2—Sb2 ^{xii}	92.085 (17)
Sb4 ⁱⁱ —Zr1—Sb7 ⁱⁱ	83.092 (15)	Ni1 ⁱⁱ —Sb2—Sb2 ^{xii}	163.78 (3)
Sb6—Zr1—Sb7 ⁱⁱ	62.103 (16)	Zr2 ⁱⁱ —Sb2—Sb2 ^{xii}	106.03 (2)
Sb1 ⁱⁱⁱ —Zr1—Sb7 ⁱⁱ	140.627 (10)	Zr2 ⁱ —Sb2—Sb2 ^{xii}	57.900 (16)
Sb3 ⁱⁱ —Zr1—Sb7 ⁱⁱ	86.630 (15)	Zr2 ^{viii} —Sb2—Sb2 ^{xii}	56.628 (16)
Sb3 ⁱ —Zr1—Sb7 ⁱⁱ	138.75 (3)	Sb1—Sb2—Sb2 ^{xii}	129.982 (17)
Sb4 ⁱ —Zr1—Sb7 ⁱ	83.092 (15)	Sb2 ^{xi} —Sb2—Sb2 ^{xii}	75.00 (2)
Sb4 ⁱⁱ —Zr1—Sb7 ⁱ	136.09 (3)	Ni1 ⁱ —Sb2—Sb4 ^x	107.40 (3)
Sb6—Zr1—Sb7 ⁱ	62.103 (16)	Ni1 ⁱⁱ —Sb2—Sb4 ^x	53.08 (2)
Sb1 ⁱⁱⁱ —Zr1—Sb7 ⁱ	140.627 (10)	Zr2 ⁱⁱ —Sb2—Sb4 ^x	101.431 (12)
Sb3 ⁱⁱ —Zr1—Sb7 ⁱ	138.75 (3)	Zr2 ⁱ —Sb2—Sb4 ^x	169.95 (2)
Sb3 ⁱ —Zr1—Sb7 ⁱ	86.630 (15)	Zr2 ^{viii} —Sb2—Sb4 ^x	55.446 (14)
Sb7 ⁱⁱ —Zr1—Sb7 ⁱ	78.71 (2)	Sb1—Sb2—Sb4 ^x	60.840 (12)
Sb4 ⁱ —Zr1—Sb5	75.722 (19)	Sb2 ^{xi} —Sb2—Sb4 ^x	69.745 (15)
Sb4 ⁱⁱ —Zr1—Sb5	75.722 (19)	Sb2 ^{xii} —Sb2—Sb4 ^x	112.07 (2)
Sb6—Zr1—Sb5	103.21 (2)	Ni1 ⁱ —Sb2—Sb4 ^{ix}	53.08 (2)
Sb1 ⁱⁱⁱ —Zr1—Sb5	128.31 (3)	Ni1 ⁱⁱ —Sb2—Sb4 ^{ix}	107.40 (3)
Sb3 ⁱⁱ —Zr1—Sb5	140.115 (11)	Zr2 ⁱⁱ —Sb2—Sb4 ^{ix}	169.95 (2)
Sb3 ⁱ —Zr1—Sb5	140.115 (11)	Zr2 ⁱ —Sb2—Sb4 ^{ix}	101.431 (12)
Sb7 ⁱⁱ —Zr1—Sb5	60.504 (16)	Zr2 ^{viii} —Sb2—Sb4 ^{ix}	55.446 (14)
Sb7 ⁱ —Zr1—Sb5	60.504 (16)	Sb1—Sb2—Sb4 ^{ix}	60.840 (12)
Sb6 ^{iv} —Zr2—Sb6 ^v	83.52 (2)	Sb2 ^{xi} —Sb2—Sb4 ^{ix}	112.07 (2)
Sb6 ^{iv} —Zr2—Sb4 ⁱⁱ	83.851 (14)	Sb2 ^{xii} —Sb2—Sb4 ^{ix}	69.745 (15)
Sb6 ^v —Zr2—Sb4 ⁱⁱ	141.21 (3)	Sb4 ^x —Sb2—Sb4 ^{ix}	72.732 (15)
Sb6 ^{iv} —Zr2—Sb4 ⁱ	141.21 (3)	Zr3 ⁱⁱ —Sb3—Zr3 ⁱ	81.94 (2)
Sb6 ^v —Zr2—Sb4 ⁱ	83.851 (14)	Zr3 ⁱⁱ —Sb3—Zr1 ^v	139.58 (2)
Sb4 ⁿ —Zr2—Sb4 ⁱ	83.45 (2)	Zr3 ¹ —Sb3—Zr1 ^v	85.597 (17)
$Sb6^{iv}$ — $Zr2$ — $Sb2^{v}$	134.23 (3)	$Zr3^{n}$ —Sb3—Zr1 ^w	85.597 (16)
$Sb6^{v}$ — $Zr2$ — $Sb2^{v}$	79.287 (15)	$Zr3^{1}$ —Sb3— $Zr1^{1v}$	139.58 (2)
$Sb4^{n}$ —Zr2—Sb2 ^v	133.05 (3)	$Zr1^{v}$ —Sb3— $Zr1^{v}$	79.45 (2)
$Sb4^{i}$ — $Zr2$ — $Sb2^{v}$	78.456 (15)	$Zr3^{\mu}$ —Sb3—Zr3 ^{xm}	107.962 (18)
$Sb6^{iv}$ — $Zr2$ — $Sb2^{iv}$	79.287 (15)	$Zr3^{1}$ —Sb3— $Zr3^{xm}$	107.962 (18)

Sb6 ^v —Zr2—Sb2 ^{iv}	134.23 (3)	Zr1 ^v —Sb3—Zr3 ^{xiiii}	112.458 (19)
Sb4 ⁱⁱ —Zr2—Sb2 ^{iv}	78.456 (15)	Zr1 ^{iv} —Sb3—Zr3 ^{xiii}	112.458 (19)
Sb4 ⁱ —Zr2—Sb2 ^{iv}	133.05 (3)	Zr3 ⁱⁱ —Sb3—Sb1 ^{ix}	162.39 (2)
Sb2 ^v —Zr2—Sb2 ^{iv}	83.09 (2)	Zr3 ⁱ —Sb3—Sb1 ^{ix}	99.468 (13)
Sb6 ^{iv} —Zr2—Sb2 ⁱⁱⁱ	137.839 (11)	Zr1 ^v —Sb3—Sb1 ^{ix}	57.799 (16)
Sb6 ^v —Zr2—Sb2 ⁱⁱⁱ	137.839 (11)	Zr1 ^{iv} —Sb3—Sb1 ^{ix}	103.64 (2)
Sb4 ⁱⁱ —Zr2—Sb2 ⁱⁱⁱ	67.583 (16)	Zr3 ^{xiii} —Sb3—Sb1 ^{ix}	54.764 (13)
Sb4 ⁱ —Zr2—Sb2 ⁱⁱⁱ	67.583 (16)	Zr3 ⁱⁱ —Sb3—Sb1 ^x	99.468 (13)
Sb2 ^v —Zr2—Sb2 ⁱⁱⁱ	65.474 (17)	Zr3 ⁱ —Sb3—Sb1 ^x	162.39 (2)
Sb2 ^{iv} —Zr2—Sb2 ⁱⁱⁱ	65.474 (17)	Zr1 ^v —Sb3—Sb1 ^x	103.64 (2)
Sb6 ^{iv} —Zr2—Sb5	63.641 (17)	Zr1 ^{iv} —Sb3—Sb1 ^x	57.799 (15)
Sb6 ^v —Zr2—Sb5	63.641 (17)	Zr3 ^{xiii} —Sb3—Sb1 ^x	54.764 (13)
Sb4 ⁱⁱ —Zr2—Sb5	77.886 (19)	Sb1 ^{ix} —Sb3—Sb1 ^x	73.942 (15)
Sb4 ⁱ —Zr2—Sb5	77.886 (19)	Ni1 ^{xiii} —Sb4—Zr2 ^v	106.24 (2)
Sb2 ^v —Zr2—Sb5	137.621 (11)	Ni1 ^{xiii} —Sb4—Zr2 ^{iv}	106.24 (2)
Sb2 ^{iv} —Zr2—Sb5	137.621 (12)	$Zr2^{v}$ —Sb4— $Zr2^{iv}$	83.45 (2)
Sb2 ⁱⁱⁱ —Zr2—Sb5	132.94 (3)	Ni1 ^{xiii} —Sb4—Zr1 ^{iv}	108.49 (2)
Sb6 ^{iv} —Zr2—Sb7	58.813 (15)	$Zr2^{v}$ —Sb4— $Zr1^{iv}$	145.27 (2)
Sb6 ^v —Zr2—Sb7	58.813 (15)	$Zr2^{iv}$ —Sb4— $Zr1^{iv}$	86.535 (17)
Sb4 ⁱⁱ —Zr2—Sb7	137.823 (12)	Ni1 ^{xiii} —Sb4—Zr1 ^v	108.49 (2)
Sb4 ⁱ —Zr2—Sb7	137.823 (12)	$Zr2^{v}$ —Sb4— $Zr1^{v}$	86.535 (17)
Sb2 ^v —Zr2—Sb7	76.068 (18)	$Zr2^{iv}$ —Sb4— $Zr1^{v}$	145.27 (2)
Sb2 ^{iv} —Zr2—Sb7	76.068 (18)	$Zr1^{iv}$ —Sb4— $Zr1^{v}$	83.03 (2)
Sb2 ⁱⁱⁱ —Zr2—Sb7	127.55 (2)	Ni1 ^{xiii} —Sb4—Sb1 ^x	50.403 (16)
Sb5—Zr2—Sb7	99.51 (2)	Zr2 ^v —Sb4—Sb1 ^x	155.92 (2)
Sb1 ^{iv} —Zr3—Sb1 ^v	83.21 (2)	Zr2 ^{iv} —Sb4—Sb1 ^x	96.928 (13)
Sb1 ^{iv} —Zr3—Sb3 ^v	136.27 (3)	Zr1 ^{iv} —Sb4—Sb1 ^x	58.375 (16)
Sb1 ^v —Zr3—Sb3 ^v	81.481 (15)	$Zr1^{v}$ —Sb4—Sb1 ^x	105.36 (2)
Sb1 ^{iv} —Zr3—Sb3 ^{iv}	81.481 (16)	Ni1 ^{xiii} —Sb4—Sb1 ^{ix}	50.403 (16)
Sb1 ^v —Zr3—Sb3 ^{iv}	136.27 (3)	Zr2 ^v —Sb4—Sb1 ^{ix}	96.928 (13)
Sb3 ^v —Zr3—Sb3 ^{iv}	81.94 (2)	Zr2 ^{iv} —Sb4—Sb1 ^{ix}	155.92 (2)
Sb1 ^{iv} —Zr3—Sb5 ^{iv}	77.172 (16)	Zr1 ^{iv} —Sb4—Sb1 ^{ix}	105.36 (2)
Sb1 ^v —Zr3—Sb5 ^{iv}	130.41 (3)	Zr1 ^v —Sb4—Sb1 ^{ix}	58.375 (16)
Sb3 ^v —Zr3—Sb5 ^{iv}	140.80 (3)	Sb1 ^x —Sb4—Sb1 ^{ix}	73.066 (15)
Sb3 ^{iv} —Zr3—Sb5 ^{iv}	85.155 (14)	Ni1 ^{xiii} —Sb4—Sb2 ^x	49.662 (16)
Sb1 ^{iv} —Zr3—Sb5 ^v	130.41 (3)	Zr2 ^v —Sb4—Sb2 ^x	104.14 (2)
Sb1 ^v —Zr3—Sb5 ^v	77.172 (15)	Zr2 ^{iv} —Sb4—Sb2 ^x	56.972 (16)
Sb3 ^v —Zr3—Sb5 ^v	85.155 (14)	$Zr1^{iv}$ —Sb4—Sb2 ^x	97.880 (13)
Sb3 ^{iv} —Zr3—Sb5 ^v	140.80 (3)	Zr1 ^v —Sb4—Sb2 ^x	157.39 (2)
Sb5 ^{iv} —Zr3—Sb5 ^v	81.89 (2)	Sb1 ^x —Sb4—Sb2 ^x	57.912 (14)
Sb1 ^{iv} —Zr3—Sb6 ^{vi}	136.371 (13)	Sb1 ^{ix} —Sb4—Sb2 ^x	100.063 (17)
Sb1 ^v —Zr3—Sb6 ^{vi}	136.371 (13)	Ni1 ^{xiii} —Sb4—Sb2 ^{ix}	49.662 (16)
Sb3 ^v —Zr3—Sb6 ^{vi}	77.956 (19)	Zr2 ^v —Sb4—Sb2 ^{ix}	56.972 (16)
Sb3 ^{iv} —Zr3—Sb6 ^{vi}	77.956 (19)	Zr2 ^{iv} —Sb4—Sb2 ^{ix}	104.14 (2)
Sb5 ^{iv} —Zr3—Sb6 ^{vi}	63.164 (17)	Zr1 ^{iv} —Sb4—Sb2 ^{ix}	157.39 (2)
Sb5 ^v —Zr3—Sb6 ^{vi}	63.164 (17)	Zr1 ^v —Sb4—Sb2 ^{ix}	97.880 (13)
Sb1 ^{iv} —Zr3—Sb3 ^{vii}	64.388 (16)	Sb1 ^x —Sb4—Sb2 ^{ix}	100.063 (17)
Sb1 ^v —Zr3—Sb3 ^{vii}	64.388 (16)	Sb1 ^{ix} —Sb4—Sb2 ^{ix}	57.912 (14)

Sb3 ^v —Zr3—Sb3 ^{vii}	72.038 (18)	Sb2 ^x —Sb4—Sb2 ^{ix}	72.734 (15)
Sb3 ^{iv} —Zr3—Sb3 ^{vii}	72.038 (18)	Zr3 ⁱⁱ —Sb5—Zr3 ⁱ	81.89 (2)
Sb5 ^{iv} —Zr3—Sb3 ^{vii}	137.351 (12)	Zr3 ⁱⁱ —Sb5—Zr2	115.73 (2)
Sb5 ^v —Zr3—Sb3 ^{vii}	137.351 (12)	Zr3 ⁱ —Sb5—Zr2	115.73 (2)
Sb6 ^{vi} —Zr3—Sb3 ^{vii}	139.85 (3)	Zr3 ⁱⁱ —Sb5—Zr1	131.970 (16)
Sb1 ^{iv} —Zr3—Ni1	49.295 (15)	Zr3 ⁱ —Sb5—Zr1	131.970 (16)
Sb1 ^v —Zr3—Ni1	49.295 (15)	Zr2—Sb5—Zr1	82.62 (2)
Sb3 ^v —Zr3—Ni1	130.769 (18)	Zr3 ⁱⁱ —Sb5—Sb7 ⁱⁱ	74.105 (16)
Sb3 ^{iv} —Zr3—Ni1	130.769 (18)	Zr3 ⁱ —Sb5—Sb7 ⁱⁱ	123.11 (2)
Sb5 ^{iv} —Zr3—Ni1	84.63 (2)	Zr2—Sb5—Sb7 ⁱⁱ	121.163 (17)
Sb5 ^v —Zr3—Ni1	84.63 (2)	Zr1—Sb5—Sb7 ⁱⁱ	59.174 (15)
Sb6 ^{vi} —Zr3—Ni1	136.18 (3)	Zr3 ⁱⁱ —Sb5—Sb7 ⁱ	123.11 (2)
Sb3 ^{vii} —Zr3—Ni1	83.97 (2)	Zr3 ⁱ —Sb5—Sb7 ⁱ	74.105 (16)
Sb7—Ni1—Sb2 ^{iv}	99.26 (3)	Zr2—Sb5—Sb7 ⁱ	121.163 (17)
Sb7—Ni1—Sb2 ^v	99.26 (3)	Zr1—Sb5—Sb7 ⁱ	59.174 (15)
Sb2 ^{iv} —Ni1—Sb2 ^v	98.71 (3)	Sb7 ⁱⁱ —Sb5—Sb7 ⁱ	77.460 (18)
Sb7—Ni1—Sb1 ^v	106.99 (3)	Zr3 ⁱⁱ —Sb5—Sb6 ^v	107.25 (2)
Sb2 ^{iv} —Ni1—Sb1 ^v	153.71 (4)	Zr3 ⁱ —Sb5—Sb6 ^v	58.444 (16)
Sb2 ^v —Ni1—Sb1 ^v	75.925 (16)	Zr2—Sb5—Sb6 ^v	57.301 (14)
Sb7—Ni1—Sb1 ^{iv}	106.99 (3)	Zr1—Sb5—Sb6 ^v	119.266 (16)
Sb2 ^{iv} —Ni1—Sb1 ^{iv}	75.925 (16)	Sb7 ⁱⁱ —Sb5—Sb6 ^v	178.23 (2)
Sb2 ^v —Ni1—Sb1 ^{iv}	153.71 (4)	Sb7 ⁱ —Sb5—Sb6 ^v	102.523 (11)
Sb1 ^v —Ni1—Sb1 ^{iv}	97.37 (3)	Zr3 ⁱⁱ —Sb5—Sb6 ^{iv}	58.444 (16)
Sb7—Ni1—Sb4 ^{vii}	174.50 (4)	Zr3 ⁱ —Sb5—Sb6 ^{iv}	107.25 (2)
Sb2 ^{iv} —Ni1—Sb4 ^{vii}	77.26 (2)	Zr2—Sb5—Sb6 ^{iv}	57.302 (14)
Sb2 ^v —Ni1—Sb4 ^{vii}	77.26 (2)	Zr1—Sb5—Sb6 ^{iv}	119.266 (16)
Sb1 ^v —Ni1—Sb4 ^{vii}	76.46 (2)	Sb7 ⁱⁱ —Sb5—Sb6 ^{iv}	102.523 (11)
Sb1 ^{iv} —Ni1—Sb4 ^{vii}	76.46 (2)	Sb7 ⁱ —Sb5—Sb6 ^{iv}	178.23 (2)
Sb7—Ni1—Zr3	77.45 (3)	Sb6 ^v —Sb5—Sb6 ^{iv}	77.438 (18)
Sb2 ^{iv} —Ni1—Zr3	130.623 (17)	Zr2 ⁱⁱ —Sb6—Zr2 ⁱ	83.52 (2)
Sb2 ^v —Ni1—Zr3	130.623 (17)	Zr2 ⁱⁱ —Sb6—Zr1	127.554 (17)
Sb1 ^v —Ni1—Zr3	59.04 (2)	Zr2 ⁱ —Sb6—Zr1	127.554 (17)
Sb1 ^{iv} —Ni1—Zr3	59.04 (2)	Zr2 ⁱⁱ —Sb6—Zr3 ^{xiv}	117.435 (19)
Sb4 ^{vii} —Ni1—Zr3	108.05 (3)	Zr2 ⁱ —Sb6—Zr3 ^{xiv}	117.435 (19)
Ni1 ⁱⁱ —Sb1—Ni1 ⁱ	97.37 (3)	Zr1—Sb6—Zr3 ^{xiv}	87.06 (2)
Ni1 ⁱⁱ —Sb1—Zr3 ⁱ	133.06 (3)	Zr2 ⁱⁱ —Sb6—Sb5 ⁱⁱ	59.058 (16)
Ni1 ⁱ —Sb1—Zr3 ⁱ	71.66 (2)	Zr2 ⁱ —Sb6—Sb5 ⁱⁱ	108.60 (2)
Ni1 ⁱⁱ —Sb1—Zr3 ⁱⁱ	71.66 (2)	Zr1—Sb6—Sb5 ⁱⁱ	123.387 (17)
Ni1 ⁱ —Sb1—Zr3 ⁱⁱ	133.06 (3)	Zr3 ^{xiv} —Sb6—Sb5 ⁱⁱ	58.391 (14)
Zr3 ⁱ —Sb1—Zr3 ⁱⁱ	83.21 (2)	Zr2 ⁱⁱ —Sb6—Sb5 ⁱ	108.60 (2)
Ni1 ⁱⁱ —Sb1—Zr1 ^{viii}	108.17 (2)	Zr2 ⁱ —Sb6—Sb5 ⁱ	59.058 (16)
Ni1 ⁱ —Sb1—Zr1 ^{viii}	108.17 (2)	Zr1—Sb6—Sb5 ⁱ	123.387 (17)
$Zr3^{i}$ —Sb1— $Zr1^{viii}$	118.681 (19)	$Zr3^{xiv}$ —Sb6—Sb5 ⁱ	58.391 (14)
Zr3 ⁱⁱ —Sb1—Zr1 ^{viii}	118.681 (19)	Sb5 ⁱⁱ —Sb6—Sb5 ⁱ	77.437 (18)
Ni1 ⁱⁱ —Sb1—Sb2	51.665 (19)	Zr2 ⁱⁱ —Sb6—Sb7 ⁱ	117.02 (2)
Ni1 ⁱ —Sb1—Sb2	51.665 (19)	Zr2 ⁱ —Sb6—Sb7 ⁱ	67.743 (16)
Zr3 ⁱ —Sb1—Sb2	119.976 (18)	Zr1—Sb6—Sb7 ⁱ	60.643 (16)
Zr3 ⁱⁱ —Sb1—Sb2	119.976 (18)	$Zr3^{xiv}$ —Sb6—Sb7 ⁱ	125.528 (15)

Zr1 ^{viii} —Sb1—Sb2	98.147 (19)	Sb5 ⁱⁱ —Sb6—Sb7 ⁱ	175.37 (2)
Ni1 ⁱⁱ —Sb1—Sb3 ^{ix}	164.74 (2)	Sb5 ⁱ —Sb6—Sb7 ⁱ	102.379 (11)
Ni1 ⁱ —Sb1—Sb3 ^{ix}	93.514 (18)	Zr2 ⁱⁱ —Sb6—Sb7 ⁱⁱ	67.743 (16)
Zr3 ⁱ —Sb1—Sb3 ^{ix}	60.848 (17)	Zr2 ⁱ —Sb6—Sb7 ⁱⁱ	117.02 (2)
Zr3 ⁱⁱ —Sb1—Sb3 ^{ix}	108.15 (2)	Zr1—Sb6—Sb7 ⁱⁱ	60.643 (16)
Zr1 ^{viii} —Sb1—Sb3 ^{ix}	57.951 (14)	Zr3 ^{xiv} —Sb6—Sb7 ⁱⁱ	125.528 (15)
Sb2—Sb1—Sb3 ^{ix}	131.792 (14)	Sb5 ⁱⁱ —Sb6—Sb7 ⁱⁱ	102.379 (11)
Ni1 ⁱⁱ —Sb1—Sb3 ^x	93.514 (18)	Sb5 ⁱ —Sb6—Sb7 ⁱⁱ	175.37 (2)
Ni1 ⁱ —Sb1—Sb3 ^x	164.74 (2)	Sb7 ⁱ —Sb6—Sb7 ⁱⁱ	77.422 (18)
Zr3 ⁱ —Sb1—Sb3 ^x	108.15 (2)	Ni1—Sb7—Zr1 ^{iv}	140.543 (10)
Zr3 ⁱⁱ —Sb1—Sb3 ^x	60.848 (17)	Ni1—Sb7—Zr1 ^v	140.543 (10)
Zr1 ^{viii} —Sb1—Sb3 ^x	57.951 (14)	Zr1 ^{iv} —Sb7—Zr1 ^v	78.71 (2)
Sb2—Sb1—Sb3 ^x	131.792 (13)	Ni1—Sb7—Sb5 ^v	94.92 (2)
Sb3 ^{ix} —Sb1—Sb3 ^x	73.942 (16)	Zr1 ^{iv} —Sb7—Sb5 ^v	107.36 (2)
Ni1 ⁱⁱ —Sb1—Sb4 ^x	53.14 (2)	Zr1 ^v —Sb7—Sb5 ^v	60.321 (16)
Ni1 ⁱ —Sb1—Sb4 ^x	107.12 (3)	Ni1—Sb7—Sb5 ^{iv}	94.92 (2)
Zr3 ⁱ —Sb1—Sb4 ^x	173.544 (17)	Zr1 ^{iv} —Sb7—Sb5 ^{iv}	60.321 (16)
Zr3 ⁱⁱ —Sb1—Sb4 ^x	101.722 (12)	Zr1 ^v —Sb7—Sb5 ^{iv}	107.36 (2)
Zr1 ^{viii} —Sb1—Sb4 ^x	55.321 (14)	Sb5 ^v —Sb7—Sb5 ^{iv}	77.460 (18)
Sb2—Sb1—Sb4 ^x	61.249 (13)	Ni1—Sb7—Sb6 ^{iv}	103.12 (2)
$Sb3^{ix}$ — $Sb1$ — $Sb4^{x}$	113.263 (18)	$Zr1^{iv}$ —Sb7—Sb6 ^{iv}	57.253 (16)
Sb3 ^x —Sb1—Sb4 ^x	71.272 (14)	Zr1 ^v —Sb7—Sb6 ^{iv}	104.61 (2)
Ni1 ⁱⁱ —Sb1—Sb4 ^{ix}	107.12 (3)	Sb5 ^v —Sb7—Sb6 ^{iv}	161.93 (2)
Ni1 ⁱ —Sb1—Sb4 ^{ix}	53.14 (2)	Sb5 ^{iv} —Sb7—Sb6 ^{iv}	99.677 (12)
Zr3 ⁱ —Sb1—Sb4 ^{ix}	101.722 (12)	Ni1—Sb7—Sb6 ^v	103.12 (2)
$Zr3^{ii}$ —Sb1—Sb4 ^{ix}	173.544 (17)	Zr1 ^{iv} —Sb7—Sb6 ^v	104.61 (2)
$Zr1^{viii}$ —Sb1—Sb4 ^{ix}	55.321 (14)	Zr1 ^v —Sb7—Sb6 ^v	57.253 (16)
Sb2—Sb1—Sb4 ^{ix}	61.249 (13)	Sb5 ^v —Sb7—Sb6 ^v	99.677 (12)
Sb3 ^{ix} —Sb1—Sb4 ^{ix}	71.272 (14)	Sb5 ^{iv} —Sb7—Sb6 ^v	161.93 (2)
Sb3 ^x —Sb1—Sb4 ^{ix}	113.263 (18)	Sb6 ^{iv} —Sb7—Sb6 ^v	77.422 (18)
Sb4 ^x —Sb1—Sb4 ^{ix}	73.066 (15)	Ni1—Sb7—Zr2	66.67 (2)
Ni1 ⁱ —Sb2—Ni1 ⁱⁱ	98.71 (3)	Zr1 ^{iv} —Sb7—Zr2	110.11 (2)
Ni1 ⁱ —Sb2—Zr2 ⁱⁱ	136.93 (3)	Zr1 ^v —Sb7—Zr2	110.11 (2)
Ni1 ⁱⁱ —Sb2—Zr2 ⁱⁱ	73.99 (2)	Sb5 ^v —Sb7—Zr2	138.240 (11)
$Ni1^i$ —Sb2—Zr2 ⁱ	73.99 (2)	Sb5 ^{iv} —Sb7—Zr2	138.240 (11)
Ni1 ⁱⁱ —Sb2—Zr2 ⁱ	136.93 (3)	Sb6 ^{iv} —Sb7—Zr2	53.446 (14)
$Zr2^{ii}$ —Sb2— $Zr2^{i}$	83.09 (2)	Sb6 ^v —Sb7—Zr2	53.446 (14)

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) -x+1/2, -y, z-1/2; (iii) x+1/2, y, -z+1/2; (iv) -x+1/2, -y, z+1/2; (v) -x+1/2, -y+1, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, -z+3/2; (viii) x-1/2, y, -z+1/2; (ix) -x, -y+1, -z+1; (x) -x, -y, -z+1; (xi) -x, -y, -z; (xii) x-1/2, y, -z+3/2; (xiv) x, y, z-1.