## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Aqua{2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}(3-nitrobenzoato)manganese(III)

#### V. S Thampidas,<sup>a</sup>\* T. Radhakrishnan<sup>b</sup> and Robert D. Pike<sup>c</sup>

<sup>a</sup>Department of Chemistry, SN College, Varkala, Kerala 695 145, India, <sup>b</sup>Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India, and <sup>c</sup>Department of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA

Correspondence e-mail: dasthampi@hotmail.com

Received 18 June 2008; accepted 27 June 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.093; data-to-parameter ratio = 11.8.

The title compound,  $[Mn(C_{16}H_{14}N_2O_2)(C_7H_4NO_4)(H_2O)]$ , is a Jahn–Teller-distorted manganese(III) monomer with an octahedral geometry. The tetradentate Schiff base accommodates the Mn<sup>III</sup> ion at the centre of a nearly planar square. The axial positions are occupied by a monodentate carboxylate group and a water molecule. Adjacent monomers interact through hydrogen bonding between the noncoordinated C==O group of the carboxylate and the coordinated water molecule to produce chains extending parallel to the *b* axis.

#### **Related literature**

For related literature, see: Christou (1989); Pecoraro & Hsieh (2000); Yocum & Pecoraro (2004); Zhang & Janiak (2001); Zouni *et al.* (2001); Aurangzeb *et al.* (1994); Hulme *et al.* (1997).



#### **Experimental**

Crystal data  $[Mn(C_{16}H_{14}N_2O_2)(C_7H_4NO_4)-(H_2O)]$   $M_r = 505.36$ Monoclinic,  $P2_1/n$  a = 6.7297 (1) Å b = 10.5793 (2) Å c = 29.228 (5) Å

 $\beta = 95.188 (1)^{\circ}$   $V = 2072.4 (4) \text{ Å}^{3}$  Z = 4Cu Ka radiation  $\mu = 5.66 \text{ mm}^{-1}$  T = 100 (2) K $0.35 \times 0.29 \times 0.09 \text{ mm}$ 

#### Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004)  $T_{min} = 0.245, T_{max} = 0.624$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.035$ | 308 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.092$               | H-atom parameters constrained                              |
| S = 1.11                        | $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3640 reflections                | $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ |

21257 measured reflections

 $R_{\rm int} = 0.046$ 

3640 independent reflections

3492 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected geometric parameters (Å, °).

| Mn1-O1                                                                                             | 1.8879 (15)                                                                  | Mn1-N1                                                        | 1.9980 (18)                                                   |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Mn1-O2                                                                                             | 1.9113 (15)                                                                  | Mn1-O3                                                        | 2.1513 (15)                                                   |
| Mn1-N2                                                                                             | 1.9946 (18)                                                                  | Mn1-O7                                                        | 2.3250 (16)                                                   |
|                                                                                                    |                                                                              |                                                               |                                                               |
| D1 - Mn1 - O2<br>D1 - Mn1 - N2<br>D2 - Mn1 - N2<br>D1 - Mn1 - N1<br>D2 - Mn1 - N1<br>D2 - Mn1 - N1 | 97.25 (7)<br>171.26 (7)<br>91.15 (7)<br>90.20 (7)<br>172.54 (7)<br>81.42 (7) | N2-Mn1-O3<br>N1-Mn1-O3<br>O1-Mn1-O7<br>O2-Mn1-O7<br>N2-Mn1-O7 | 91.40 (7)<br>89.75 (7)<br>90.07 (6)<br>91.54 (6)<br>87.29 (6) |
| $N_2 - Mn_1 - N_1$                                                                                 | 81.42 (7)                                                                    | NI-MnI-O/                                                     | 88.85 (6)                                                     |
| O1-Mn1-O3                                                                                          | 91.05 (6)                                                                    | O3-Mn1-O/                                                     | 178.21 (6)                                                    |
| O2-Mn1-O3                                                                                          | 89.70 (6)                                                                    |                                                               |                                                               |

## Table 2Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                 | D-H          | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------------------------------|--------------|-------------------------|-------------------------|--------------------------------------|
| $\begin{array}{c} O7 - H2W \cdots O2^{i} \\ O7 - H1W \cdots O4^{ii} \end{array}$ | 0.77<br>0.84 | 2.31<br>1.89            | 3.074 (2)<br>2.710 (2)  | 172<br>166                           |
|                                                                                  | 1 . 1        | 1. (n) 1. (n)           | . 1 . 1                 |                                      |

Symmetry codes: (i)  $-x - \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *XSHELL* (Bruker, 2004); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.* 2006); software used to prepare material for publication: *SHELXL97*.

We acknowledge the authorities of SN College, Varkala, Kerala, India, for providing the facilities for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2096).

#### References

- Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.
- Bruker (2004). APEX2, SAINT-Plus and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Christou, G. (1989). Acc. Chem. Res. 22, 328-335.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Pecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes, in Metal Ions in Biological Systems, edited by Astrid Sigel & Helmut Sigel, Vol. 37, ch. 14, p. 429. Basel: Marcel-Dekker Inc.

- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yocum, C. F. & Pecoraro, V. L. (2004). Curr. Opin. Chem. Biol. 3, 182-187.
- Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.
- Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sänger, W. & Orth, P. (2001). *Nature (London)*, **409**, 739–743.

# supporting information

Acta Cryst. (2008). E64, m990-m991 [doi:10.1107/S1600536808019715]

## Aqua{2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}(3-nitrobenzoato)manganese(III)

## V. S Thampidas, T. Radhakrishnan and Robert D. Pike

### S1. Comment

Manganese plays a vital role in several biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni *et al.*, 2001) and enzymes like superoxide dismutase, catalase, arginase etc. (Yocum & Pecoraro, 2004). The progress in elucidating the structural and functional aspects of the active-sites of these manganese-containing systems, has essentially been connected to the vast number of inorganic model complexes reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). Recent reports include a few Schiff base complexes of manganese(III) with ancillary carboxylate ligands (Aurangzeb *et al.*, 1994, Hulme *et al.*, 1997; Zhang & Janiak, 2001). Generally, symmetrical N<sub>2</sub>O<sub>2</sub> Schiff base ligands like the salen(H<sub>2</sub>salen = N,N'-bis(salicylidene)-1,2-diaminoethane), with aromatic rings amenable to  $\pi$ - $\pi$  overlap, tend to stabilize  $\mu$ -phenoxy dimers. Here we report a very rare structural type among such complexes, where the trans coordination positions in an octahedral manganese(III) monomer are occupied by a neutral ligand (H<sub>2</sub>O) and a monodentate carboxylate group (Fig. 1).

In the title compound, the salen ligand holds the manganese(III) ion at the centre of a nearly planar tetragon consisting of two Mn–O bonds [Mn(1)-O(1) = 1.8879(15) Å and Mn(1)-O(2) = 1.9113(15) Å] and two Mn–N bonds [Mn(1)-N(1) = 1.9980(18) Å and Mn(1)-N(2) = 1.9946(18)Å]. These bond lengths are comparable to those in complexes containing similar MnN<sub>2</sub>O<sub>2</sub> cores (Aurangzeb *et al.*, 1994; Hulme *et al.*, 1997). Jahn-Teller distortion causes an elongation of the Mn–Ocarb [Mn(1)-O(3) = 2.1513(15) Å] and the Mn–Oaq [Mn(1)-O(7) = 2.3250(16) Å] axial bonds (Table 1). Chains running parallel to the *b*-axis arise from H-bonding interactions between the non-coordinated O atom of the carboxylate and coordinated water molecules on adjacent molecules (Fig.2, Table 2).

### **S2. Experimental**

To a solution of  $Mn(m-NO_2C_6H_4CO_2)_2.2H_2O$  (1.00 g, 2.36 mmol) and salicylaldehyde (0.58 g, 4.72 mmol) in methanol (40 ml), ethane-1,2-diamine (0.14 g, 2.36 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of the title compound was 0.82 g (75.50%) based on manganese.

### **S3. Refinement**

All hydrogen atoms were initially located in the difference map and then were placed in theoretical positions using a riding model for all but the water H atoms which were allowed to rotate freely, O-H = 0.77 and 0.84 Å.  $Csp^2-H = 0.95$  Å,  $Csp^3-H = 0.99$  Å,  $U_{iso}(H) = 1.2U_{eq}(C,O)$ .



## Figure 1

*ORTEP* picture (Farrugia, 1997) of the title compound. Displacement ellipsoids have been drawn at the 50% probability level.



### Figure 2

Mercury (Macrae et al. 2006) ball and stick packing diagram of the title compound showing hydrogen-bonding chains.

#### Aqua{2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}(3- nitrobenzoato)manganese(III)

F(000) = 1040 $D_x = 1.620 \text{ Mg m}^{-3}$ 

 $\theta = 9.7-70.9^{\circ}$   $\mu = 5.66 \text{ mm}^{-1}$  T = 100 KPlate, brown

 $0.35 \times 0.29 \times 0.09 \text{ mm}$ 

Cu K $\alpha$  radiation,  $\lambda = 1.54178$  Å Cell parameters from 256 reflections

#### Crystal data

| $[Mn(C_{16}H_{14}N_2O_2)(C_7H_4NO_4)(H_2O)]$ |  |
|----------------------------------------------|--|
| $M_r = 505.36$                               |  |
| Monoclinic, $P2_1/n$                         |  |
| a = 6.7297 (1)  Å                            |  |
| b = 10.5793 (2) Å                            |  |
| c = 29.228 (5)  Å                            |  |
| $\beta = 95.188 \ (1)^{\circ}$               |  |
| V = 2072.4 (4) Å <sup>3</sup>                |  |
| Z = 4                                        |  |
|                                              |  |

#### Data collection

| Bruker SMART APEXII CCD<br>diffractometer | 21257 measured reflections 3640 independent reflections         |
|-------------------------------------------|-----------------------------------------------------------------|
| Radiation source: fine-focus sealed tube  | 3492 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                    | $R_{\rm int} = 0.046$                                           |
| $\omega$ and $\psi$ scans                 | $\theta_{\rm max} = 67.0^\circ, \ \theta_{\rm min} = 3.0^\circ$ |
| Absorption correction: multi-scan         | $h = -7 \rightarrow 7$                                          |
| (SADABS; Sheldrick, 2004)                 | $k = -10 \rightarrow 12$                                        |
| $T_{\min} = 0.245, \ T_{\max} = 0.624$    | $l = -31 \rightarrow 34$                                        |
|                                           |                                                                 |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.035$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.092$                               | neighbouring sites                                         |
| <i>S</i> = 1.11                                 | H-atom parameters constrained                              |
| 3640 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 2.1055P]$          |
| 308 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$      |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|---------------|-----------------------------|
| Mn1 | -0.00146 (5) | 0.54194 (3)  | 0.229187 (11) | 0.01142 (12)                |
| 01  | -0.2188 (2)  | 0.55831 (14) | 0.18400 (5)   | 0.0155 (3)                  |
| O2  | -0.1396 (2)  | 0.45279 (14) | 0.27355 (5)   | 0.0147 (3)                  |
| O3  | 0.0816 (2)   | 0.36457 (14) | 0.20036 (5)   | 0.0171 (3)                  |
| O4  | 0.3542 (2)   | 0.32126 (15) | 0.16477 (5)   | 0.0197 (4)                  |
|     |              |              |               |                             |

| 05  | 0.2710 (3)  | 0.15274 (18) | 0.00870 (6)  | 0.0311 (4) |
|-----|-------------|--------------|--------------|------------|
| O6  | -0.0245 (3) | 0.12490 (17) | -0.02568 (5) | 0.0282 (4) |
| 07  | -0.0810 (2) | 0.73579 (15) | 0.26027 (5)  | 0.0190 (3) |
| H1W | 0.0052      | 0.7545       | 0.2818       | 0.023*     |
| H2W | -0.1592     | 0.7863       | 0.2531       | 0.023*     |
| N1  | 0.1747 (3)  | 0.63243 (16) | 0.18849 (6)  | 0.0133 (4) |
| N2  | 0.2479 (3)  | 0.54511 (16) | 0.27161 (6)  | 0.0129 (4) |
| N3  | 0.0896 (3)  | 0.15170 (18) | 0.00848 (6)  | 0.0220 (5) |
| C1  | -0.2066 (3) | 0.5574 (2)   | 0.13906 (8)  | 0.0149 (5) |
| C2  | -0.3747 (3) | 0.5194 (2)   | 0.11019 (8)  | 0.0171 (5) |
| H2  | -0.4930     | 0.4950       | 0.1233       | 0.020*     |
| C3  | -0.3700(4)  | 0.5173(2)    | 0.06299 (8)  | 0.0223(5)  |
| H3  | -0.4848     | 0.4907       | 0.0442       | 0.027*     |
| C4  | -0.1991 (4) | 0.5536 (2)   | 0.04252 (8)  | 0.0239 (5) |
| H4  | -0.1976     | 0.5519       | 0.0101       | 0.029*     |
| C5  | -0.0333(4)  | 0.5917 (2)   | 0.06989 (8)  | 0.0202 (5) |
| H5  | 0.0831      | 0.6167       | 0.0561       | 0.024*     |
| C6  | -0.0331(3)  | 0.5945 (2)   | 0.11816 (7)  | 0.0150 (4) |
| C7  | 0.1445 (3)  | 0.63864 (19) | 0.14441 (7)  | 0.0141 (4) |
| H7  | 0.2464      | 0.6748       | 0.1281       | 0.017*     |
| C8  | 0.3601 (3)  | 0.6801 (2)   | 0.21297 (7)  | 0.0159 (5) |
| H8A | 0.3362      | 0.7622       | 0.2278       | 0.019*     |
| H8B | 0.4639      | 0.6920       | 0.1914       | 0.019*     |
| C9  | 0.4256 (3)  | 0.5815 (2)   | 0.24879 (7)  | 0.0153 (4) |
| H9A | 0.4818      | 0.5070       | 0.2341       | 0.018*     |
| H9B | 0.5291      | 0.6168       | 0.2715       | 0.018*     |
| C10 | 0.2631 (3)  | 0.5163 (2)   | 0.31447 (7)  | 0.0138 (4) |
| H10 | 0.3899      | 0.5276       | 0.3310       | 0.017*     |
| C11 | 0.1053 (3)  | 0.46869 (19) | 0.33948 (7)  | 0.0143 (4) |
| C12 | 0.1515 (4)  | 0.4424 (2)   | 0.38667 (8)  | 0.0173 (5) |
| H12 | 0.2813      | 0.4611       | 0.4006       | 0.021*     |
| C13 | 0.0131 (4)  | 0.3906 (2)   | 0.41291 (7)  | 0.0197 (5) |
| H13 | 0.0454      | 0.3749       | 0.4447       | 0.024*     |
| C14 | -0.1764 (4) | 0.3614 (2)   | 0.39192 (8)  | 0.0184 (5) |
| H14 | -0.2734     | 0.3258       | 0.4098       | 0.022*     |
| C15 | -0.2250(3)  | 0.3835(2)    | 0.34569 (7)  | 0.0157 (4) |
| H15 | -0.3541     | 0.3615       | 0.3322       | 0.019*     |
| C16 | -0.0877(3)  | 0.43777 (19) | 0.31824 (7)  | 0.0134 (4) |
| C17 | 0.1704 (3)  | 0.32348 (19) | 0.16688 (7)  | 0.0142 (4) |
| C18 | 0.0387 (3)  | 0.26862 (19) | 0.12698 (7)  | 0.0140 (4) |
| C19 | -0.1613 (3) | 0.2428 (2)   | 0.13095 (8)  | 0.0173 (5) |
| H19 | -0.2185     | 0.2639       | 0.1585       | 0.021*     |
| C20 | -0.2791 (4) | 0.1861 (2)   | 0.09498 (8)  | 0.0200 (5) |
| H20 | -0.4151     | 0.1676       | 0.0984       | 0.024*     |
| C21 | -0.1988 (4) | 0.1569 (2)   | 0.05438 (8)  | 0.0197 (5) |
| H21 | -0.2780     | 0.1188       | 0.0296       | 0.024*     |
| C22 | -0.0006 (3) | 0.1846 (2)   | 0.05094 (7)  | 0.0166 (5) |
| C23 | 0.1219 (3)  | 0.2390 (2)   | 0.08636 (7)  | 0.0155 (4) |

# supporting information

| H23      | 0.2586                                   | 0.2          | 556          | 0.0830        | 0.019*                 |              |  |
|----------|------------------------------------------|--------------|--------------|---------------|------------------------|--------------|--|
| Atomic d | Atomic displacement parameters ( $Å^2$ ) |              |              |               |                        |              |  |
|          | $U^{11}$                                 | $U^{22}$     | $U^{33}$     | $U^{12}$      | <i>U</i> <sup>13</sup> | $U^{23}$     |  |
| Mn1      | 0.0138 (2)                               | 0.01245 (19) | 0.00759 (19) | -0.00076 (13) | -0.00106 (13)          | 0.00132 (12) |  |
| 01       | 0.0173 (8)                               | 0.0190 (8)   | 0.0097 (8)   | 0.0005 (6)    | -0.0012 (6)            | 0.0015 (6)   |  |
| O2       | 0.0182 (8)                               | 0.0155 (8)   | 0.0099 (7)   | -0.0004 (6)   | -0.0023 (6)            | 0.0019 (6)   |  |
| O3       | 0.0262 (9)                               | 0.0129 (8)   | 0.0121 (8)   | 0.0011 (6)    | 0.0018 (6)             | -0.0013 (6)  |  |
| O4       | 0.0206 (9)                               | 0.0241 (9)   | 0.0137 (8)   | -0.0041 (7)   | -0.0018 (6)            | 0.0007 (6)   |  |
| 05       | 0.0317 (11)                              | 0.0424 (11)  | 0.0198 (9)   | 0.0022 (8)    | 0.0059 (7)             | -0.0056 (8)  |  |
| O6       | 0.0443 (11)                              | 0.0275 (9)   | 0.0113 (8)   | -0.0043 (8)   | -0.0053 (7)            | -0.0036 (7)  |  |
| O7       | 0.0211 (9)                               | 0.0181 (8)   | 0.0161 (8)   | 0.0047 (6)    | -0.0063 (6)            | -0.0028 (6)  |  |
| N1       | 0.0163 (9)                               | 0.0107 (9)   | 0.0128 (9)   | 0.0004 (7)    | 0.0004 (7)             | 0.0000 (7)   |  |
| N2       | 0.0162 (10)                              | 0.0096 (9)   | 0.0128 (9)   | 0.0004 (7)    | -0.0003 (7)            | -0.0009(7)   |  |
| N3       | 0.0357 (13)                              | 0.0190 (10)  | 0.0109 (10)  | 0.0011 (9)    | -0.0007(8)             | -0.0005 (8)  |  |
| C1       | 0.0208 (12)                              | 0.0104 (10)  | 0.0130 (11)  | 0.0025 (8)    | -0.0016 (9)            | 0.0014 (8)   |  |
| C2       | 0.0195 (12)                              | 0.0153 (11)  | 0.0156 (11)  | 0.0006 (9)    | -0.0025 (9)            | 0.0019 (9)   |  |
| C3       | 0.0275 (13)                              | 0.0222 (12)  | 0.0153 (12)  | 0.0000 (10)   | -0.0081 (9)            | -0.0016 (9)  |  |
| C4       | 0.0343 (14)                              | 0.0269 (13)  | 0.0096 (11)  | 0.0018 (10)   | -0.0026 (10)           | -0.0007 (9)  |  |
| C5       | 0.0283 (13)                              | 0.0180 (12)  | 0.0146 (11)  | 0.0027 (10)   | 0.0036 (9)             | 0.0015 (9)   |  |
| C6       | 0.0224 (12)                              | 0.0106 (10)  | 0.0117 (10)  | 0.0024 (9)    | -0.0010 (8)            | 0.0009 (8)   |  |
| C7       | 0.0201 (12)                              | 0.0076 (10)  | 0.0151 (11)  | 0.0013 (8)    | 0.0042 (8)             | 0.0016 (8)   |  |
| C8       | 0.0192 (11)                              | 0.0124 (11)  | 0.0160 (11)  | -0.0031 (8)   | 0.0008 (9)             | -0.0005 (8)  |  |
| C9       | 0.0142 (11)                              | 0.0150 (11)  | 0.0165 (11)  | -0.0004 (9)   | 0.0001 (8)             | -0.0003 (9)  |  |
| C10      | 0.0172 (11)                              | 0.0099 (10)  | 0.0131 (11)  | 0.0003 (8)    | -0.0042 (8)            | -0.0022 (8)  |  |
| C11      | 0.0215 (12)                              | 0.0105 (10)  | 0.0106 (11)  | 0.0011 (8)    | -0.0011 (8)            | -0.0017 (8)  |  |
| C12      | 0.0244 (12)                              | 0.0136 (11)  | 0.0128 (11)  | 0.0005 (9)    | -0.0043 (9)            | -0.0009 (8)  |  |
| C13      | 0.0337 (14)                              | 0.0159 (11)  | 0.0088 (10)  | -0.0018 (10)  | -0.0022 (9)            | 0.0000 (8)   |  |
| C14      | 0.0281 (13)                              | 0.0134 (11)  | 0.0141 (11)  | -0.0028 (9)   | 0.0046 (9)             | -0.0009 (8)  |  |
| C15      | 0.0201 (11)                              | 0.0128 (10)  | 0.0140 (11)  | 0.0004 (9)    | -0.0002 (8)            | -0.0010 (8)  |  |
| C16      | 0.0222 (12)                              | 0.0083 (10)  | 0.0093 (10)  | 0.0026 (8)    | -0.0001 (8)            | -0.0011 (8)  |  |
| C17      | 0.0230 (13)                              | 0.0092 (10)  | 0.0100 (10)  | -0.0020 (8)   | -0.0008(8)             | 0.0021 (8)   |  |
| C18      | 0.0215 (12)                              | 0.0091 (10)  | 0.0108 (10)  | 0.0015 (8)    | -0.0024 (8)            | 0.0013 (8)   |  |
| C19      | 0.0218 (12)                              | 0.0135 (11)  | 0.0166 (11)  | 0.0022 (9)    | 0.0022 (9)             | 0.0004 (8)   |  |
| C20      | 0.0165 (11)                              | 0.0191 (12)  | 0.0237 (12)  | -0.0005 (9)   | -0.0024 (9)            | 0.0009 (9)   |  |
| C21      | 0.0260 (13)                              | 0.0158 (11)  | 0.0158 (11)  | -0.0019 (9)   | -0.0073 (9)            | -0.0013 (9)  |  |
| C22      | 0.0260 (12)                              | 0.0124 (11)  | 0.0108 (10)  | 0.0019 (9)    | -0.0016 (9)            | -0.0003 (8)  |  |
| C23      | 0.0191 (11)                              | 0.0129 (10)  | 0.0140 (11)  | -0.0006 (8)   | -0.0018 (8)            | 0.0014 (8)   |  |

Geometric parameters (Å, °)

| Mn1—O1 | 1.8879 (15) | С7—Н7  | 0.9500    |
|--------|-------------|--------|-----------|
| Mn1—O2 | 1.9113 (15) | С8—С9  | 1.515 (3) |
| Mn1—N2 | 1.9946 (18) | C8—H8A | 0.9900    |
| Mn1—N1 | 1.9980 (18) | C8—H8B | 0.9900    |
| Mn1—O3 | 2.1513 (15) | С9—Н9А | 0.9900    |
| Mn1—O7 | 2.3250 (16) | С9—Н9В | 0.9900    |
|        |             |        |           |

| O1—C1                | 1.324 (3)              | C10-C11                 | 1.434 (3)            |
|----------------------|------------------------|-------------------------|----------------------|
| O2—C16               | 1.331 (3)              | C10—H10                 | 0.9500               |
| O3—C17               | 1.269 (3)              | C11—C12                 | 1.414 (3)            |
| O4—C17               | 1.244 (3)              | C11—C16                 | 1.426 (3)            |
| O5—N3                | 1.220 (3)              | C12—C13                 | 1.373 (3)            |
| 06—N3                | 1.236 (3)              | C12—H12                 | 0.9500               |
| 07—H1W               | 0.8400                 | C13—C14                 | 1.399 (3)            |
| 07—H2W               | 0.7659                 | C13—H13                 | 0.9500               |
| N1-C7                | 1 288 (3)              | C14-C15                 | 1.381(3)             |
| N1-C8                | 1.200(3)<br>1 471(3)   | C14—H14                 | 0.9500               |
| N2                   | 1.471(3)<br>1 284(3)   | C15-C16                 | 1,400(3)             |
| N2 C9                | 1.204(3)<br>1.472(3)   | C15_H15                 | 0.9500               |
| N2 C22               | 1.472(3)               | C13— $I113C17$ $C18$    | 1.515(2)             |
| $N_{3}$ $-C_{22}$    | 1.472(3)               | C1/-C10                 | 1.313(3)<br>1.280(2) |
| C1 - C2              | 1.408(3)               | C10 - C19               | 1.369 (3)            |
|                      | 1.421 (3)              | C18 - C23               | 1.393 (3)            |
| C2—C3                | 1.383 (3)              | C19 - C20               | 1.394 (3)            |
| C2—H2                | 0.9500                 | C19—H19                 | 0.9500               |
| C3—C4                | 1.397 (4)              | C20—C21                 | 1.383 (3)            |
| С3—Н3                | 0.9500                 | C20—H20                 | 0.9500               |
| C4—C5                | 1.374 (3)              | C21—C22                 | 1.378 (3)            |
| C4—H4                | 0.9500                 | C21—H21                 | 0.9500               |
| C5—C6                | 1.411 (3)              | C22—C23                 | 1.389 (3)            |
| С5—Н5                | 0.9500                 | C23—H23                 | 0.9500               |
| C6—C7                | 1.439 (3)              |                         |                      |
| O1—Mn1—O2            | 97.25 (7)              | С9—С8—Н8А               | 110.5                |
| O1—Mn1—N2            | 171.26 (7)             | N1—C8—H8B               | 110.5                |
| O2-Mn1-N2            | 91.15 (7)              | C9—C8—H8B               | 110.5                |
| O1-Mn1-N1            | 90.20 (7)              | H8A—C8—H8B              | 108.7                |
| $\Omega^2$ —Mn1—N1   | 172 54 (7)             | N2-C9-C8                | 107 21 (17)          |
| N2-Mn1-N1            | 81 42 (7)              | N2                      | 110.3                |
| 01 - Mn1 - 03        | 91.05 (6)              | $C_8 - C_9 - H_9A$      | 110.3                |
| $0^{2}$ Mn1 $-0^{3}$ | 89.70 (6)              | N2 - C9 - H9B           | 110.3                |
| N2 $Mn1 O3$          | 91.40(7)               | $C_8 C_9 H_{9B}$        | 110.3                |
| $N_1 = Mn_1 = O_3$   | 91.40 (7)<br>80.75 (7) |                         | 108.5                |
| M = M m = 03         | 89.73 (7)<br>90.07 (6) | N2 C10 C11              | 108.3<br>125.7(2)    |
| $O_1 = Mn_1 = O_7$   | 90.07 (0)              | $N_2 = C_{10} = C_{11}$ | 123.7(2)             |
| $M_{\rm m} = 07$     | 91.34 (0)              | N2-C10-H10              | 117.2                |
| N2Min107             | 87.29(6)               |                         | 11/.2                |
| NI - MinI - O/       | 88.85 (6)              |                         | 119.4 (2)            |
| 03-MnI=07            | 1/8.21 (6)             |                         | 117.3 (2)            |
| CI_OI_MnI            | 125.44 (14)            | C16—C11—C10             | 123.1 (2)            |
| C16—O2—Mn1           | 128.63 (14)            | C13—C12—C11             | 121.5 (2)            |
| C17—O3—Mn1           | 139.29 (14)            | C13—C12—H12             | 119.2                |
| Mn1—O7—H1W           | 109.5                  | C11—C12—H12             | 119.2                |
| Mn1—O7—H2W           | 133.3                  | C12—C13—C14             | 118.7 (2)            |
| H1W—O7—H2W           | 116.8                  | C12—C13—H13             | 120.6                |
| C7—N1—C8             | 121.31 (19)            | C14—C13—H13             | 120.6                |
| C7—N1—Mn1            | 124.86 (15)            | C15—C14—C13             | 121.2 (2)            |

| C8—N1—Mn1     | 113.44 (13)  | C15—C14—H14     | 119.4        |
|---------------|--------------|-----------------|--------------|
| C10—N2—C9     | 120.50 (19)  | C13—C14—H14     | 119.4        |
| C10—N2—Mn1    | 126.20 (16)  | C14—C15—C16     | 121.3 (2)    |
| C9—N2—Mn1     | 113.27 (13)  | C14—C15—H15     | 119.3        |
| O5—N3—O6      | 123.7 (2)    | C16—C15—H15     | 119.3        |
| O5—N3—C22     | 118.83 (19)  | O2—C16—C15      | 118.9 (2)    |
| O6—N3—C22     | 117.5 (2)    | O2—C16—C11      | 123.2 (2)    |
| O1—C1—C2      | 118.6 (2)    | C15—C16—C11     | 117.8 (2)    |
| O1—C1—C6      | 123.5 (2)    | O4—C17—O3       | 125.8 (2)    |
| C2—C1—C6      | 117.9 (2)    | O4—C17—C18      | 118.00 (19)  |
| C3—C2—C1      | 120.9 (2)    | O3—C17—C18      | 116.17 (19)  |
| С3—С2—Н2      | 119.6        | C19—C18—C23     | 119.6 (2)    |
| C1—C2—H2      | 119.6        | C19—C18—C17     | 121.01 (19)  |
| C2—C3—C4      | 121.1 (2)    | C23—C18—C17     | 119.3 (2)    |
| С2—С3—Н3      | 119.4        | C18—C19—C20     | 120.8 (2)    |
| С4—С3—Н3      | 119.4        | С18—С19—Н19     | 119.6        |
| C5—C4—C3      | 119.2 (2)    | С20—С19—Н19     | 119.6        |
| C5—C4—H4      | 120.4        | C21—C20—C19     | 120.3 (2)    |
| C3—C4—H4      | 120.4        | С21—С20—Н20     | 119.9        |
| C4—C5—C6      | 121.0 (2)    | С19—С20—Н20     | 119.9        |
| C4—C5—H5      | 119.5        | C22—C21—C20     | 118.1 (2)    |
| С6—С5—Н5      | 119.5        | C22—C21—H21     | 121.0        |
| C5—C6—C1      | 119.9 (2)    | C20—C21—H21     | 121.0        |
| C5—C6—C7      | 117.7 (2)    | C21—C22—C23     | 123.2 (2)    |
| C1—C6—C7      | 122.4 (2)    | C21—C22—N3      | 119.2 (2)    |
| N1—C7—C6      | 124.4 (2)    | C23—C22—N3      | 117.6 (2)    |
| N1—C7—H7      | 117.8        | C22—C23—C18     | 118.1 (2)    |
| С6—С7—Н7      | 117.8        | С22—С23—Н23     | 121.0        |
| N1—C8—C9      | 106.32 (17)  | C18—C23—H23     | 121.0        |
| N1—C8—H8A     | 110.5        |                 |              |
|               |              |                 |              |
| O2—Mn1—O1—C1  | -146.55 (16) | C2-C1-C6-C7     | 178.0 (2)    |
| N2—Mn1—O1—C1  | 49.5 (5)     | C8—N1—C7—C6     | -179.76 (19) |
| N1—Mn1—O1—C1  | 33.04 (17)   | Mn1—N1—C7—C6    | 7.9 (3)      |
| O3—Mn1—O1—C1  | -56.72 (16)  | C5—C6—C7—N1     | -171.5 (2)   |
| O7—Mn1—O1—C1  | 121.89 (16)  | C1—C6—C7—N1     | 10.2 (3)     |
| O1—Mn1—O2—C16 | -161.93 (17) | C7—N1—C8—C9     | -136.1 (2)   |
| N2—Mn1—O2—C16 | 15.66 (17)   | Mn1—N1—C8—C9    | 37.1 (2)     |
| N1—Mn1—O2—C16 | 21.3 (6)     | C10—N2—C9—C8    | -145.69 (19) |
| O3—Mn1—O2—C16 | 107.05 (17)  | Mn1—N2—C9—C8    | 35.9 (2)     |
| O7—Mn1—O2—C16 | -71.66 (17)  | N1—C8—C9—N2     | -45.6 (2)    |
| O1—Mn1—O3—C17 | 78.3 (2)     | C9—N2—C10—C11   | -174.05 (19) |
| O2—Mn1—O3—C17 | 175.5 (2)    | Mn1—N2—C10—C11  | 4.1 (3)      |
| N2—Mn1—O3—C17 | -93.3 (2)    | N2-C10-C11-C12  | 180.0 (2)    |
| N1—Mn1—O3—C17 | -11.9 (2)    | N2-C10-C11-C16  | 5.2 (3)      |
| O7—Mn1—O3—C17 | -50.6 (19)   | C16—C11—C12—C13 | -1.6 (3)     |
| O1—Mn1—N1—C7  | -24.13 (18)  | C10—C11—C12—C13 | -176.7 (2)   |
| O2—Mn1—N1—C7  | 152.7 (5)    | C11—C12—C13—C14 | 1.2 (3)      |

| 158.36 (18)  | C12—C13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2 (3)                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 66.92 (18)   | C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0 (3)                                             |
| -114.20 (18) | Mn1-02-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171.22 (14)                                          |
| 162.98 (14)  | Mn1-02-C16-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11.9 (3)                                            |
| -20.2 (6)    | C14—C15—C16—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.58 (19)                                          |
| -14.53 (14)  | C14—C15—C16—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 (3)                                              |
| -105.98 (14) | C12-C11-C16-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -176.14 (19)                                         |
| 72.91 (14)   | C10-C11-C16-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.4 (3)                                             |
| 152.3 (4)    | C12—C11—C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8 (3)                                              |
| -11.72 (18)  | C10-C11-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175.50 (19)                                          |
| 169.01 (19)  | Mn1—O3—C17—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.7 (3)                                             |
| -101.45 (18) | Mn1—O3—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -104.5 (2)                                           |
| 79.77 (18)   | O4—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.9 (2)                                            |
| -29.4 (5)    | O3—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12.1 (3)                                            |
| 166.56 (14)  | O4—C17—C18—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11.5 (3)                                            |
| -12.70 (14)  | O3—C17—C18—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170.54 (19)                                          |
| 76.84 (14)   | C23-C18-C19-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8 (3)                                              |
| -101.95 (14) | C17—C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -176.6 (2)                                           |
| 154.51 (16)  | C18—C19—C20—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.2 (3)                                             |
| -26.4 (3)    | C19—C20—C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 (3)                                              |
| 179.8 (2)    | C20-C21-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7 (3)                                              |
| 0.6 (3)      | C20-C21-C22-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178.6 (2)                                            |
| -0.5 (4)     | O5—N3—C22—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -165.6 (2)                                           |
| 0.1 (4)      | O6—N3—C22—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.7 (3)                                             |
| 0.1 (4)      | O5—N3—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.4 (3)                                             |
| 0.0 (3)      | O6—N3—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -167.3 (2)                                           |
| -178.4 (2)   | C21—C22—C23—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0 (3)                                             |
| -179.4 (2)   | N3—C22—C23—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -178.95 (18)                                         |
| -0.3 (3)     | C19—C18—C23—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3 (3)                                              |
| -1.1 (3)     | C17—C18—C23—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177.69 (19)                                          |
|              | $\begin{array}{c} 158.36 \ (18) \\ 66.92 \ (18) \\ -114.20 \ (18) \\ 162.98 \ (14) \\ -20.2 \ (6) \\ -14.53 \ (14) \\ -105.98 \ (14) \\ 72.91 \ (14) \\ 152.3 \ (4) \\ -11.72 \ (18) \\ 169.01 \ (19) \\ -101.45 \ (18) \\ 79.77 \ (18) \\ -29.4 \ (5) \\ 166.56 \ (14) \\ -12.70 \ (14) \\ 76.84 \ (14) \\ -101.95 \ (14) \\ 154.51 \ (16) \\ -26.4 \ (3) \\ 179.8 \ (2) \\ 0.6 \ (3) \\ -0.5 \ (4) \\ 0.1 \ (4) \\ 0.0 \ (3) \\ -178.4 \ (2) \\ -179.4 \ (2) \\ -0.3 \ (3) \\ -1.1 \ (3) \end{array}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

## Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H  | H···A | D···· $A$ | D—H···A |
|-------------------------------------|------|-------|-----------|---------|
| O7—H2W····O2 <sup>i</sup>           | 0.77 | 2.31  | 3.074 (2) | 172     |
| O7—H1 <i>W</i> ····O4 <sup>ii</sup> | 0.84 | 1.89  | 2.710 (2) | 166     |

Symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.