

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-2-[(2-Ammoniophenyl)sulfanylmethyl]pyrrolidinium dibromide

Bailin Li,^{a,b} Shuai Zhang,^a Yifeng Wang^a and Shuping Luo^a*

^aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China Correspondence e-mail: bailinli1972@gmail.com

Received 10 June 2008; accepted 8 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; R factor = 0.058; wR factor = 0.134; data-to-parameter ratio = 21.0.

In the title compound, $C_{11}H_{18}N_2S^{2+}\cdot 2Br^-$, the pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å out of the plane of the other four atoms. The methylene C atom, which connects the pyrrolidinium ring and the thioether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction as the flap C atom. The plane of four pyrrolidinium atoms is almost perpendicular to the benzene ring [dihedral angle = $75.02 (4)^{\circ}$]. The crystal structure is stabilized by hydrogen bonds between the N and Br atoms.

Related literature

The synthesis of (S)-(+)-2-bromomethylpyrrolidine hydrobromide was described by Xu et al. (2006). The development of asymmetric organocatalysis was reviewed by Seavad & List (2005).

V = 1520.2 (3) Å³

Mo $K\alpha$ radiation

 $0.49 \times 0.42 \times 0.36 \text{ mm}$

8969 measured reflections 3311 independent reflections

1808 reflections with $I > 2\sigma(I)$

 $\mu = 5.45 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.136$

Z = 4

Experimental

Crystal data

 $C_{11}H_{18}N_2S^{2+}\cdot 2Br^{-1}$ $M_r = 370.15$ Orthorhombic, $P2_12_12_1$ a = 7.9399 (9) Å b = 10.8427 (13) Å c = 17.658 (2) Å

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.103, \ T_{\max} = 0.137$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 0.83	refinement
3311 reflections	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e} \text{ Å}^{-3}$
3 restraints	Absolute structure: Flack (1983),
	1394 Friedel pairs
	Flack parameter: 0.00 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2E\cdots Br1^{i}$ $N2-H2D\cdots Br2^{ii}$ $N2-H2C\cdots Br1$ $N1-H1B\cdots Br2$ $N1-H1A\cdots Br2^{ii}$	0.83 (8) 0.84 (6) 0.84 (7) 0.90 0.90	2.39 (8) 2.48 (4) 2.47 (7) 2.47 2.33	3.201 (9) 3.277 (9) 3.298 (9) 3.355 (7) 3.224 (7)	169 (10) 159 (8) 173 (8) 169 170

Symmetry codes: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, -z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2105).

References

Bruker (2000). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881. Seayad, J. & List, B. (2005). Org. Biol. Chem. 3, 719-724.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569-2572.

supporting information

Acta Cryst. (2008). E64, o1549 [doi:10.1107/S1600536808021089]

(S)-2-[(2-Ammoniophenyl)sulfanylmethyl]pyrrolidinium dibromide

Bailin Li, Shuai Zhang, Yifeng Wang and Shuping Luo

S1. Comment

In recent years, the field of asymmetric organocatalysis has developed rapidly, attracting an increasing number of research groups around the world (Seayad & List, 2005). The title compound, readily synthesized from commercially available *L*-proline and 2-aminobenzenethiol, could act as an organocatalyst in the Michael addition of ketones to nitrostyrenes. The reaction gave the desired Michael adducts in good yields and high enantioselectivities. The structure of (S)-2-((2-ammoniophenylthio)methyl)pyrrolidinium dibromide is shown in Fig. 1.

The crystal is built of doubly protonated cations and bromide anions. The pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å from the remaining four atoms of the pyrrolidine which are almost coplanar. The methylene C atom, which connects the pyrrolidinium ring and the thioether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction, as the flap C atom. The plane of four pyrrolidinium ring atoms is almost perpendicular to the benzene ring [dihedral angle 75.02 (4) °]. The crystal structure is stabilized by hydrogen-bonds between the N and Br atoms. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups is shown in Fig. 2.

S2. Experimental

The title compound was synthesized by treating 2-aminobenzenethiol (1.25 g,10 mmol) with (*S*)-2-bromomethylpyrrolidine hydrobromide (2.47 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 87%). The compound (*S*)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available *L*-proline by reduction with NaBH₄ and subsequent bromination with PBr₃ (Xu *et al.*, 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

S3. Refinement

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (C_{ar}), C—H = 0.98 Å (R₃CH), C—H = 0.97 Å (R₂CH₂) and refined using a riding model, with U_{iso} (H)=1.2_{eq}(C). NH₃ hydrogen atoms were located in a difference map and refined with an N—H distance restraint of 0.83 (1) Å, with U value being 0.06, 0.06, 0.09 respectively, while NH₂ hydrogens were treated using a riding model with N—H distance of 0.90 Å.

Figure 1

The asymmetric unit of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups.

(S)-2-[(2-Ammoniophenyl)sulfanylmethyl]pyrrolidinium dibromide

Crystal data	
$C_{11}H_{18}N_2S^{2+}\cdot 2Br^-$	F(000) = 736
$M_r = 370.15$	$D_{\rm x} = 1.617 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1525 reflections
a = 7.9399 (9) Å	$\theta = 4.4 - 38.3^{\circ}$
b = 10.8427 (13) Å	$\mu = 5.45 \text{ mm}^{-1}$
c = 17.658 (2) Å	T = 293 K
V = 1520.2 (3) Å ³	Prismatic, colorless
Z = 4	$0.49\times0.42\times0.37~mm$
Data collection	
Bruker SMART CCD area-detector	8969 measured reflections
diffractometer	3311 independent reflections
Radiation source: fine-focus sealed tube	1808 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.136$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 12$
$T_{\min} = 0.103, \ T_{\max} = 0.137$	$l = -22 \rightarrow 18$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.134$ S = 0.83	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.049P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
3311 reflections	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm A}^{-5}$
158 parameters	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm A}^{-3}$
3 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0005 (1)
Secondary atom site location: difference Fourier map	Absolute structure: Flack (1983), 1394 Friedel pairs
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.30470 (12)	-0.24305 (9)	-0.08797 (5)	0.0559 (3)
Br2	-0.38177 (12)	0.34415 (8)	0.06967 (5)	0.0526 (3)
S1	-0.0443 (3)	0.1034 (2)	0.14946 (13)	0.0524 (6)
N1	0.0399 (9)	0.3571 (6)	0.0600 (4)	0.0502 (18)
H1A	0.0636	0.2939	0.0288	0.060*
H1B	-0.0728	0.3650	0.0630	0.060*
N2	0.1147 (12)	-0.0815 (8)	0.0452 (5)	0.0487 (18)
C1	0.1159 (18)	0.4726 (9)	0.0308 (7)	0.083 (3)
H1C	0.0296	0.5273	0.0111	0.100*
H1D	0.1959	0.4549	-0.0093	0.100*
C2	0.2025 (14)	0.5297 (9)	0.0973 (7)	0.072 (3)
H2A	0.3237	0.5225	0.0921	0.087*
H2B	0.1735	0.6164	0.1013	0.087*
C3	0.1443 (14)	0.4625 (9)	0.1640 (6)	0.068 (3)
H3A	0.0420	0.4990	0.1840	0.081*
H3B	0.2297	0.4627	0.2033	0.081*
C4	0.1120 (12)	0.3339 (8)	0.1362 (4)	0.049 (2)
H4	0.2194	0.2901	0.1309	0.059*
C5	-0.0079 (11)	0.2577 (8)	0.1852 (4)	0.052 (2)
H5A	-0.1150	0.3004	0.1885	0.062*
H5B	0.0381	0.2519	0.2359	0.062*
C6	0.1553 (11)	0.0316 (8)	0.1640 (5)	0.047 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C7	0.2504 (11)	0.0537 (9)	0.2270 (5)	0.056 (3)	
H7	0.2117	0.1092	0.2632	0.068*	
C8	0.4032 (13)	-0.0049 (10)	0.2382 (6)	0.073 (3)	
H8	0.4680	0.0138	0.2805	0.087*	
С9	0.4579 (14)	-0.0887 (10)	0.1879 (6)	0.071 (3)	
H9	0.5602	-0.1285	0.1956	0.085*	
C10	0.3611 (11)	-0.1161 (8)	0.1239 (5)	0.053 (2)	
H10	0.3980	-0.1750	0.0893	0.063*	
C11	0.2112 (12)	-0.0555 (8)	0.1123 (5)	0.045 (2)	
H2C	0.157 (10)	-0.127 (6)	0.012 (4)	0.06 (3)*	
H2D	0.094 (12)	-0.032 (6)	0.010 (3)	0.06 (3)*	
H2E	0.043 (10)	-0.135 (7)	0.054 (6)	0.09 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0514 (6)	0.0627 (5)	0.0536 (6)	0.0081 (5)	-0.0055 (4)	-0.0024 (5)
Br2	0.0526 (6)	0.0614 (5)	0.0438 (5)	0.0072 (5)	-0.0041 (4)	-0.0022(5)
S 1	0.0412 (14)	0.0682 (15)	0.0479 (14)	0.0052 (12)	0.0015 (11)	0.0049 (12)
N1	0.045 (4)	0.060 (4)	0.046 (4)	0.007 (4)	0.004 (3)	-0.001 (4)
N2	0.054 (5)	0.048 (5)	0.044 (5)	-0.003 (5)	0.002 (5)	-0.002 (4)
C1	0.105 (10)	0.061 (7)	0.084 (8)	0.010 (7)	0.005 (8)	0.006 (6)
C2	0.055 (7)	0.055 (6)	0.107 (10)	0.005 (5)	0.010 (7)	-0.017 (6)
C3	0.062 (8)	0.074 (7)	0.067 (7)	-0.006 (6)	-0.007 (6)	-0.021 (6)
C4	0.038 (5)	0.066 (6)	0.044 (5)	0.015 (5)	0.000 (4)	0.003 (5)
C5	0.053 (6)	0.070 (6)	0.033 (4)	0.019 (6)	0.002 (4)	-0.009 (5)
C6	0.033 (6)	0.062 (6)	0.046 (5)	0.008 (4)	-0.006 (4)	0.010 (4)
C7	0.043 (6)	0.077 (7)	0.048 (6)	0.012 (5)	0.003 (5)	0.000 (5)
C8	0.062 (8)	0.102 (8)	0.055 (7)	0.010 (7)	-0.022 (6)	-0.008 (6)
C9	0.054 (7)	0.103 (8)	0.056 (7)	0.028 (7)	-0.005 (6)	-0.001 (6)
C10	0.046 (6)	0.061 (6)	0.051 (5)	0.022 (5)	0.011 (5)	0.010 (4)
C11	0.044 (6)	0.059 (6)	0.031 (5)	0.000 (5)	0.000 (4)	0.007 (4)

Geometric parameters (Å, °)

Br1—H2C	2.47 (7)	C3—C4	1.500 (12)
Br2—H1B	2.4665	С3—НЗА	0.9700
S1—C6	1.784 (8)	C3—H3B	0.9700
S1—C5	1.811 (9)	C4—C5	1.529 (12)
N1-C1	1.483 (12)	C4—H4	0.9800
N1-C4	1.484 (10)	C5—H5A	0.9700
N1—H1A	0.9000	C5—H5B	0.9700
N1—H1B	0.9000	C6—C7	1.366 (11)
N2-C11	1.438 (11)	C6—C11	1.388 (11)
N2—H2C	0.84 (7)	C7—C8	1.383 (13)
N2—H2D	0.84 (6)	С7—Н7	0.9300
N2—H2E	0.83 (8)	C8—C9	1.343 (13)
C1—C2	1.495 (14)	C8—H8	0.9300

C1—H1C	0.9700	C9—C10	1.399 (13)
C1—H1D	0.9700	С9—Н9	0.9300
C2—C3	1.460 (13)	C10—C11	1.374 (12)
C2—H2A	0.9700	C10—H10	0.9300
C2—H2B	0.9700		
C6—S1—C5	102.2 (4)	N1—C4—C3	101.8 (7)
C1—N1—C4	107.5 (8)	N1-C4-C5	111.3 (7)
C1—N1—H1A	110.2	C3—C4—C5	115.1 (8)
C4—N1—H1A	110.2	N1—C4—H4	109.4
C1—N1—H1B	110.2	C3—C4—H4	109.4
C4—N1—H1B	110.2	С5—С4—Н4	109.4
H1A—N1—H1B	108.5	C4—C5—S1	113.7 (6)
C11—N2—H2C	118 (6)	С4—С5—Н5А	108.8
C11—N2—H2D	126 (6)	S1—C5—H5A	108.8
H2C—N2—H2D	87 (7)	C4—C5—H5B	108.8
C11—N2—H2E	111 (7)	S1—C5—H5B	108.8
H2C—N2—H2E	90 (9)	H5A—C5—H5B	107.7
H2D—N2—H2E	117 (10)	C7—C6—C11	118.6 (8)
N1—C1—C2	105.3 (9)	C7—C6—S1	122.1 (7)
N1—C1—H1C	110.7	C11—C6—S1	119.1 (7)
C2—C1—H1C	110.7	C6—C7—C8	121.3 (9)
N1—C1—H1D	110.7	С6—С7—Н7	119.3
C2—C1—H1D	110.7	С8—С7—Н7	119.3
H1C—C1—H1D	108.8	C9—C8—C7	120.0 (10)
C3—C2—C1	106.3 (8)	С9—С8—Н8	120.0
C3—C2—H2A	110.5	С7—С8—Н8	120.0
C1—C2—H2A	110.5	C8—C9—C10	120.1 (9)
C3—C2—H2B	110.5	С8—С9—Н9	120.0
C1—C2—H2B	110.5	С10—С9—Н9	120.0
H2A—C2—H2B	108.7	C11—C10—C9	119.6 (9)
C2—C3—C4	104.7 (7)	C11—C10—H10	120.2
С2—С3—НЗА	110.8	С9—С10—Н10	120.2
С4—С3—НЗА	110.8	C10—C11—C6	120.3 (8)
С2—С3—Н3В	110.8	C10—C11—N2	119.4 (8)
С4—С3—Н3В	110.8	C6—C11—N2	120.3 (8)
НЗА—СЗ—НЗВ	108.9		
C4—N1—C1—C2	-12.2 (11)	C11—C6—C7—C8	2.8 (14)
N1—C1—C2—C3	-12.1 (11)	S1—C6—C7—C8	178.6 (8)
C1—C2—C3—C4	31.4 (11)	C6—C7—C8—C9	-2.4 (15)
C1—N1—C4—C3	30.7 (10)	C7—C8—C9—C10	0.5 (16)
C1—N1—C4—C5	153.8 (8)	C8—C9—C10—C11	1.0 (15)
C2-C3-C4-N1	-38.0 (10)	C9—C10—C11—C6	-0.6 (13)
C2—C3—C4—C5	-158.6 (8)	C9—C10—C11—N2	178.2 (9)
N1-C4-C5-S1	64.5 (8)	C7—C6—C11—C10	-1.3 (12)
C3—C4—C5—S1	179.7 (7)	S1—C6—C11—C10	-177.2 (6)
C6—S1—C5—C4	69.0 (6)	C7—C6—C11—N2	180.0 (8)

supporting information

169

170

3.355 (7)

3.224 (7)

C5—S1—C6—C7 C5—S1—C6—C11	38.7 (8) -145.6 (7)	S1—C6—C11—N2	4.1	(11)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	D····A	D—H···A
N2—H2E···Br1 ⁱ	0.83 (8)	2.39 (8)	3.201 (9)	169 (10)
N2—H2D····Br2 ⁱⁱ	0.84 (6)	2.48 (4)	3.277 (9)	159 (8)
N2—H2C···Br1	0.84 (7)	2.47 (7)	3.298 (9)	173 (8)

2.47

2.33

0.90

0.90

Symmetry codes: (i) *x*-1/2, -*y*-1/2, -*z*; (ii) *x*+1/2, -*y*+1/2, -*z*.

N1—H1*B*····Br2

 $N1 - H1 A \cdots Br2^{ii}$