organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Acetylphenyl)-3-butyrylthiourea

Sohail Saeed,^a* Moazzam Hussain Bhatti,^a Uzma Yunus^a and Peter G. Iones^b

^aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: sohail262001@yahoo.com

Received 29 May 2008; accepted 15 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.088; data-to-parameter ratio = 20.9.

The title compound, C₁₃H₁₆N₂O₂S, crystallizes in the thioamide form with an intramolecular hydrogen bond of type N-H···O_{butvrvl}. Molecules are linked into chains parallel to $[10\overline{1}]$ by a further hydrogen bond of type N-H···O_{acetyl}. $C-H \cdots O$ and $C-H \cdots S$ hydrogen bonds are also present.

Related literature

For related literature, see: D'hooghe et al. (2005); Glasser & Doughty (1964); Huebner et al. (1953); Jain & Rao (2003); Morales et al. (2000); Ru et al. (1994); Xu et al. (2004); Xue et al. (2003); Zeng et al. (2003); Zheng et al. (2004); Douglas & Dains (1934).

Experimental

Crystal data

 $C_{13}H_{16}N_2O_2S$ $M_r = 264.34$ Triclinic, P1 a = 7.5111 (5) Å b = 9.7585 (8) Å c = 10.5036 (5) Å $\alpha = 65.283(5)^{\circ}$ $\beta = 76.245 \ (4)^{\circ}$

$\gamma = 68$	3.589 (5)°
V = 64	47.78 (8) Å ³
Z = 2	
Mo K	α radiation
$\mu = 0.$	25 mm^{-1}
T = 10	00 (2) K
0.35 ×	$0.20 \times 0.10 \text{ mm}$

22401 measured reflections

 $R_{\rm int} = 0.030$

3613 independent reflections

3036 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur S diffractometer Absorption correction: multi-scan (CrvsAlis RED; Oxford Diffraction, 2008) $T_{\min} = 0.940, \ T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.087$	independent and constrained
S = 1.06	refinement
3613 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
173 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N2 - H02 \cdots O1 \\ N1 - H01 \cdots O2^{i} \\ C3 - H3B \cdots O2^{i} \\ C1 - H1C \cdots S^{ii} \\ C3 - H3A \cdots S^{ii} \end{array}$	0.840 (16) 0.835 (16) 0.99 0.98 0.99	1.874 (16) 2.087 (16) 2.54 3.01 2.92	2.6211 (12) 2.9057 (12) 3.1345 (13) 3.8996 (13) 3.8444 (11)	147.4 (16) 166.7 (13) 118 151 155

Symmetry codes: (i) x - 1, y, z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2008): cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2104).

References

- D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.
- Douglas, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.
- Glasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40-42.
- Huebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schro, D. C. & Troxell, H. A. (1953). J. Am. Chem. Soc. 75, 2274-2275
- Jain, V. K. & Rao, J. T. (2003). J. Inst. Chem. 75, 24-26.
- Morales, A. D., Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. & Pomés Hernández, R. (2000). Acta Cryst. C56, 503-504.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Ru, C., Wang, Y., Li, J., Ma, D., Gong, F., Liu, Y. & Lu, P. (1994). Yingyong Huaxue, 11, 82-85.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.
- Xue, S., Duan, L., Ke, S. & Jia, L. (2003). Chem. Mag. 5, 67-70.
- Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659
- Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855-6860.

supporting information

Acta Cryst. (2008). E64, o1566 [doi:10.1107/S1600536808022095]

1-(4-Acetylphenyl)-3-butyrylthiourea

Sohail Saeed, Moazzam Hussain Bhatti, Uzma Yunus and Peter G. Jones

S1. Comment

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng *et al.*, 2003), 2-imino-1, 3-thiazolines (D'hooghe *et al.*, 2005) pyrimidines-2-thione (Jain & Rao, 2003) and (benzothiazolyl)-4-quinazolinones. N– (Substituted phenyl)-*N*-phenylthioureas and N– (substituted butanoyl)-*N*-phenylthioureas have been developed. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, (Huebner *et al.*, 1953) antitubercular, antithyroidal, herbicidal and insecticidal activities and as agrochemicals (Xu *et al.*, 2004), *e.g.* 1-benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)- thioureas, which have excellent herbicidal activity (Zheng *et al.*, 2004). Thioureas are also well known chelating agents for transition metals (Xu *et al.*, 2003). *N*,*N*-Dialkyl-*N*'-benzoyl thioureas act as selective complexing agents for the enrichment of platinum metals even from strongly interfacing matrixes (Ru *et al.*, 1994). The complexes of thiourea are also known as epoxy resin curing agents.

The title compound is a precursor for an attempt to synthesize imidazole derivatives and transition metal complexes as epoxy resin curing agents and accelerators. It crystallizes in the thioamide form (Fig. 1). The molecule is essentially planar (r.m.s. deviation of all non-H atoms 0.118 (1) Å), as reflected by the torsion angles O1—C4—N1—C5, C4—N1—C5—S and C4—N1—C5—N2 of 0.85 (17)°, 174.53 (8)° and -5.70 (15)°, respectively. The C4—O1, C5—S and C12—O2 bonds show a typical double bond character with bond lengths of 1.2246 (13), 1.6629 (11) and 1.2243 (13) Å, respectively. All the C—N bonds, C4—N1 = 1.3864 (13), C6—N2 = 1.4061 (12), C5—N2 = 1.3458 (13) and C5—N1 = 1.3948 (12) Å display a partial double bond character. Among the latter three C—N bonds, C4—N1 is the longest indicating a $C(sp^2)$ —N(sp^2) single bond, while C5—N2 is the shortest bond with more double bond character. This demonstrates that there is π conjugation along S—C5—N2 but not along O1—C4—N1 and C4—N1—C5 as found in 1-(3-methoxybenzoyl)-3, 3-diethylthiourea (Morales *et al.*, 2000). There is a strong intramolecular hydrogen bond N2—H02…O1, with H2…O1 = 1.874 (16) Å, forming a 6-membered ring.

Molecules are connected in chains parallel to $[10\overline{1}]$ by classical hydrogen bonds N1—H1…O2 and a weak bifurcated component C3—H3B…O2; the chains are further connected in an antiparallel sense by a bifurcated system of two C—H…S contacts (Table 2, Fig. 2).

S2. Experimental

The title compound was synthesized by a slight modification of the published procedure (Douglas & Dains, 1934). A solution of butanoyl chloride (0.1 mol) in dry acetone (75 ml) was added dropwise to a suspension of ammonium thiocyanate (0.1 mol) in dry acetone (55 ml) and the reaction mixture was refluxed for 45 minutes. After cooling to room temperature, a solution of 4-aminoacetophenone (0.1 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 1.5 hrs. The reaction mixture was poured into five times its volume of cold water whereupon the thiourea precipitated as a solid. The product was recrystallized from ethyl acetate as colourless crystals (2.85 g, 79%). m.p.458 K.

S3. Refinement

H atoms of NH groups were refined freely. Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C —H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at $1.5U_{iso}(C)$ of the parent C atom for methyl H, $1.2U_{iso}(C)$ for other H.

Figure 1

The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.

Figure 2

Packing diagram of the title compound showing classical and "weak" H bonds as thick and thin dashed bonds respectively. H atoms not involved in H bonds are omitted for clarity.

1-(4-Acetylphenyl)-3-butyrylthiourea

Crystal data	
$C_{13}H_{16}N_2O_2S$	Triclinic, $P\overline{1}$
$M_r = 264.34$	Hall symbol: -P 1

a = 7.5111 (5) Å b = 9.7585 (8) Å c = 10.5036 (5) Å $a = 65.283 (5)^{\circ}$ $\beta = 76.245 (4)^{\circ}$ $\gamma = 68.589 (5)^{\circ}$ $V = 647.78 (8) \text{ Å}^{3}$ Z = 2F(000) = 280

Data collection

Oxford Diffraction Xcalibur S
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
$T_{\min} = 0.940, \ T_{\max} = 0.976$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.087$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
3613 reflections	and constrained refinement
173 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.0789P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.003$
direct methods	$\Delta ho_{ m max} = 0.45$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.22 \mathrm{e} \mathrm{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $D_{\rm x} = 1.355 {\rm Mg} {\rm m}^{-3}$

Tablet, pale yellow $0.35 \times 0.20 \times 0.10$ mm

22401 measured reflections 3613 independent reflections 3036 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 30.7^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

 $\theta = 2.6 - 30.6^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.030$

 $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$

Melting point: 458 K

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 13985 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.29224 (4)	0.76793 (3)	0.30824 (3)	0.01606 (9)	
01	0.44460 (12)	0.23350 (9)	0.43763 (8)	0.01882 (17)	
O2	1.01149 (11)	0.57384 (9)	-0.32905 (8)	0.01832 (17)	
N1	0.30196 (13)	0.47376 (10)	0.46308 (9)	0.01281 (18)	
H01	0.223 (2)	0.5166 (17)	0.5163 (15)	0.020 (3)*	
N2	0.50761 (13)	0.49957 (11)	0.26018 (9)	0.01395 (18)	

H02	0.522 (2)	0.4018 (19)	0.2950 (17)	0.032 (4)*
C1	0.19337 (17)	0.00779 (13)	0.85964 (12)	0.0201 (2)
H1A	0.2003	0.0630	0.9169	0.030*
H1B	0.2504	-0.1064	0.9066	0.030*
H1C	0.0587	0.0302	0.8482	0.030*
C2	0.30349 (17)	0.06471 (12)	0.71538 (12)	0.0192 (2)
H2A	0.4416	0.0343	0.7261	0.023*
H2B	0.2907	0.0134	0.6556	0.023*
C3	0.22642 (15)	0.24316 (12)	0.64468 (11)	0.0149 (2)
H3A	0.0909	0.2712	0.6285	0.018*
H3B	0.2281	0.2925	0.7096	0.018*
C4	0.33675 (14)	0.31196 (12)	0.50663 (11)	0.0134 (2)
C5	0.37498 (14)	0.57496 (12)	0.33954 (10)	0.01180 (19)
C6	0.60770 (14)	0.55630 (12)	0.12737 (10)	0.01210 (19)
C7	0.70848 (15)	0.44211 (12)	0.06708 (11)	0.0145 (2)
H7	0.7064	0.3359	0.1171	0.017*
C8	0.81080 (15)	0.48184 (12)	-0.06408 (11)	0.0145 (2)
H8	0.8775	0.4033	-0.1039	0.017*
C9	0.81661 (14)	0.63750 (12)	-0.13858 (11)	0.0126 (2)
C10	0.71839 (15)	0.74982 (12)	-0.07705 (11)	0.0148 (2)
H10	0.7227	0.8555	-0.1264	0.018*
C11	0.61396 (15)	0.71148 (12)	0.05482 (11)	0.0148 (2)
H11	0.5478	0.7900	0.0949	0.018*
C12	0.92871 (14)	0.67675 (12)	-0.27915 (11)	0.0143 (2)
C13	0.93843 (19)	0.84247 (14)	-0.35931 (12)	0.0241 (3)
H13A	1.0270	0.8463	-0.4451	0.036*
H13B	0.9845	0.8759	-0.3005	0.036*
H13C	0.8102	0.9136	-0.3848	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.01598 (13)	0.01249 (13)	0.01624 (14)	-0.00382 (9)	0.00445 (9)	-0.00563 (10)
O1	0.0236 (4)	0.0161 (4)	0.0159 (4)	-0.0068 (3)	0.0050 (3)	-0.0081 (3)
O2	0.0209 (4)	0.0178 (4)	0.0143 (4)	-0.0047 (3)	0.0052 (3)	-0.0086 (3)
N1	0.0140 (4)	0.0132 (4)	0.0103 (4)	-0.0044 (3)	0.0036 (3)	-0.0058 (3)
N2	0.0168 (4)	0.0127 (4)	0.0110 (4)	-0.0054 (3)	0.0035 (3)	-0.0050 (3)
C1	0.0255 (5)	0.0160 (5)	0.0161 (5)	-0.0089 (4)	0.0005 (4)	-0.0023 (4)
C2	0.0232 (5)	0.0127 (5)	0.0181 (5)	-0.0055 (4)	0.0031 (4)	-0.0050 (4)
C3	0.0153 (5)	0.0142 (5)	0.0127 (5)	-0.0054 (4)	0.0024 (4)	-0.0037 (4)
C4	0.0137 (4)	0.0148 (5)	0.0120 (5)	-0.0052 (4)	-0.0007 (4)	-0.0048 (4)
C5	0.0112 (4)	0.0149 (5)	0.0100 (5)	-0.0049 (3)	-0.0002 (3)	-0.0048 (4)
C6	0.0117 (4)	0.0153 (5)	0.0095 (4)	-0.0050 (4)	0.0010 (3)	-0.0051 (4)
C7	0.0163 (5)	0.0132 (5)	0.0138 (5)	-0.0052 (4)	0.0017 (4)	-0.0059 (4)
C8	0.0148 (4)	0.0148 (5)	0.0139 (5)	-0.0041 (4)	0.0013 (4)	-0.0072 (4)
C9	0.0124 (4)	0.0155 (5)	0.0099 (5)	-0.0043 (4)	0.0001 (4)	-0.0051 (4)
C10	0.0171 (5)	0.0139 (5)	0.0126 (5)	-0.0054 (4)	0.0017 (4)	-0.0052 (4)
C11	0.0172 (5)	0.0141 (5)	0.0131 (5)	-0.0044 (4)	0.0024 (4)	-0.0073 (4)

supporting information

C12	0.0143 (4)	0.0165 (5)	0.0112 (5)	-0.0048(4)	0.0008 (4)	-0.0054 (4)
C13	0.0345 (6)	0.0192 (5)	0.0167 (5)	-0.0126 (5)	0.0104 (5)	-0.0077 (4)

Geometric parameters (Å, °)

S—C5	1.6629 (11)	C12—C13	1.4993 (15)
O1—C4	1.2246 (13)	N1—H01	0.835 (16)
O2—C12	1.2243 (13)	N2—H02	0.840 (16)
N1-C4	1.3864 (13)	C1—H1A	0.9800
N1-C5	1.3948 (12)	C1—H1B	0.9800
N2—C5	1.3458 (13)	C1—H1C	0.9800
N2—C6	1.4061 (12)	C2—H2A	0.9900
C1—C2	1.5245 (15)	C2—H2B	0.9900
C2—C3	1.5185 (14)	С3—НЗА	0.9900
C3—C4	1.5036 (14)	C3—H3B	0.9900
C6—C11	1.3949 (14)	С7—Н7	0.9500
С6—С7	1.4008 (14)	C8—H8	0.9500
С7—С8	1.3807 (14)	C10—H10	0.9500
С8—С9	1.3999 (14)	C11—H11	0.9500
C9—C10	1.3923 (14)	C13—H13A	0.9800
C9—C12	1.4856 (14)	C13—H13B	0.9800
C10-C11	1.3921 (14)	C13—H13C	0.9800
C4—N1—C5	128.62 (9)	H1A—C1—H1B	109.5
C5—N2—C6	131.77 (9)	C2—C1—H1C	109.5
C3—C2—C1	110.45 (9)	H1A—C1—H1C	109.5
C4—C3—C2	114.32 (8)	H1B—C1—H1C	109.5
O1-C4-N1	122.98 (9)	C3—C2—H2A	109.6
O1—C4—C3	123.40 (9)	C1—C2—H2A	109.6
N1-C4-C3	113.60 (9)	C3—C2—H2B	109.6
N2-C5-N1	113.62 (9)	C1—C2—H2B	109.6
N2—C5—S	128.35 (8)	H2A—C2—H2B	108.1
N1—C5—S	118.03 (7)	C4—C3—H3A	108.7
С11—С6—С7	119.43 (9)	С2—С3—Н3А	108.7
C11—C6—N2	125.91 (9)	C4—C3—H3B	108.7
C7—C6—N2	114.66 (9)	C2—C3—H3B	108.7
C8—C7—C6	120.86 (9)	НЗА—СЗ—НЗВ	107.6
С7—С8—С9	120.25 (10)	С8—С7—Н7	119.6
С10—С9—С8	118.54 (9)	С6—С7—Н7	119.6
С10—С9—С12	122.35 (9)	С7—С8—Н8	119.9
C8—C9—C12	119.11 (9)	С9—С8—Н8	119.9
С11—С10—С9	121.78 (9)	C11-C10-H10	119.1
C10-C11-C6	119.12 (9)	C9—C10—H10	119.1
O2—C12—C9	119.80 (9)	C10-C11-H11	120.4
O2—C12—C13	120.49 (9)	C6—C11—H11	120.4
C9—C12—C13	119.71 (9)	C12—C13—H13A	109.5
C4—N1—H01	115.4 (10)	C12—C13—H13B	109.5
C5—N1—H01	115.9 (10)	H13A—C13—H13B	109.5

C5—N2—H02 C6—N2—H02 C2—C1—H1A C2—C1—H1B	111.5 (11) 116.4 (11) 109.5 109.5	C12—C13—H13C H13A—C13—H13C H13B—C13—H13C	109.5 109.5 109.5
C1-C2-C3-C4 C5-N1-C4-O1 C5-N1-C4-C3 C2-C3-C4-O1 C2-C3-C4-N1 C6-N2-C5-N1 C6-N2-C5-S C4-N1-C5-S C4-N1-C5-S C5-N2-C6-C11 C5-N2-C6-C7	$\begin{array}{c} 175.26 \ (9) \\ 0.85 \ (17) \\ -177.92 \ (9) \\ 18.45 \ (15) \\ -162.79 \ (9) \\ 176.36 \ (10) \\ -3.91 \ (17) \\ -5.70 \ (15) \\ 174.53 \ (8) \\ 11.68 \ (18) \\ -168.56 \ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.55 \ (16) \\ 0.39 \ (15) \\ 179.66 \ (9) \\ -0.70 \ (16) \\ -179.95 \ (10) \\ 0.07 \ (16) \\ 0.87 \ (15) \\ -179.38 \ (10) \\ -179.50 \ (10) \\ 1.26 \ (15) \\ 0.06 \ (16) \end{array}$
C11—C6—C7—C8 N2—C6—C7—C8	-1.19 (16) 179.03 (9)	C8—C9—C12—C13	-179.18 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H02…O1	0.840 (16)	1.874 (16)	2.6211 (12)	147.4 (16)
N1—H01···O2 ⁱ	0.835 (16)	2.087 (16)	2.9057 (12)	166.7 (13)
C3—H3 <i>B</i> ···O2 ⁱ	0.99	2.54	3.1345 (13)	118
C1—H1C····S ⁱⁱ	0.98	3.01	3.8996 (13)	151
C3—H3A····S ⁱⁱ	0.99	2.92	3.8444 (11)	155

Symmetry codes: (i) x-1, y, z+1; (ii) -x, -y+1, -z+1.