

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(2,4,6-triamino-1,3,5-triazin-1ium) tris(pyridine-2,6-dicarboxylato)calcate(II) hexahydrate

Hossein Aghabozorg,^a* Shirin Daneshvar^b and Andya Nemati^a

^aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and ^bDepartment of Chemistry, Islamic Azad University, Ardabil Branch, Ardabil, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 26 June 2008; accepted 21 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.127; data-to-parameter ratio = 17.0.

The title compound, $(C_3H_7N_6)_4[Ca(C_7H_3NO_4)_3]\cdot 6H_2O$ or $(tataH)_4[Ca(pydc)_3]\cdot 6H_2O$ (where tata is 2,4,6-triamino-1,3,5-triazine and pydcH₂ is pyridine-2,6-dicarboxylic acid), was obtained by reaction of Ca(NO_3)_2\cdot 4H_2O with the proton-transfer compound $(tataH)_2(pydc)$ in aqueous solution. The $[Ca(pydc)_3]^{4-}$ anion has twofold crystallographic symmetry. It is a nine-coordinate Ca^{II} complex with a distorted tricapped trigonal-prismatic coordination geometry. The structure also contains four tataH⁺ cations and six uncoordinated water molecules. There are extensive $O-H\cdots O$, $O-H\cdots N$, $N-H\cdots O$, $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds in the crystal structure.

Related literature

For related literature, see: Aghabozorg *et al.* (2006); Aghabozorg, Attar Gharamaleki *et al.* (2008); Aghabozorg, Manteghi & Sheshmani (2008); Aghajani *et al.* (2006); Sharif *et al.* (2007).

V = 4719.1 (7) Å³

Mo $K\alpha$ radiation

 $\mu = 0.24 \text{ mm}^{-1}$

T = 100 (2) K $0.30 \times 0.20 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.031$

Z = 4

Experimental

Crystal data

 $(C_3H_7N_6)_4[Ca(C_7H_3NO_4)_3]\cdot 6H_2O$ $M_r = 1152.07$ Monoclinic, C2/c a = 17.9605 (15) Å b = 10.1672 (9) Å c = 25.922 (2) Å $\beta = 94.467$ (2)°

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.928, T_{\rm max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.127$ S = 1.096215 reflections 365 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.51$ e Å⁻³ $\Delta \rho_{\rm min} = -0.77$ e Å⁻³

16983 measured reflections

6215 independent reflections

4412 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WB····O2 ⁱ	0.84	1.91	2.710 (3)	160
$O1W-H1WA\cdots O6^{ii}$	0.84	1.92	2.751 (3)	170
O2W−H2WB···N4 ⁱⁱⁱ	0.84	2.26	3.022 (3)	151
N3−H3 <i>N</i> ···O2	0.88	1.79	2.667 (2)	176
$O2W - H2WA \cdots O5$	0.84	2.05	2.888 (3)	175
$O3W - H3WB \cdot \cdot \cdot O2W^{iv}$	0.84	2.18	2.963 (3)	154
$O3W-H3WA\cdots N14^{v}$	0.84	2.17	3.007 (3)	180
$N6-H6NA\cdotsO1W^{i}$	0.88	2.45	3.294 (3)	162
$N6-H6NB\cdotsO1W$	0.88	1.90	2.740 (3)	160
$N7 - H7NA \cdot \cdot \cdot N11^{v}$	0.88	2.22	3.103 (3)	176
$N7 - H7NB \cdot \cdot \cdot O2W^{ii}$	0.88	2.44	3.205 (3)	146
$N7 - H7NB \cdot \cdot \cdot O4^{ii}$	0.88	2.53	3.111 (2)	124
$N8-H8NA\cdotsO1$	0.88	2.07	2.948 (2)	172
$N12-H11A \cdot \cdot \cdot N10^{vi}$	0.88	2.23	3.109 (2)	178
$N12-H11B\cdots O5$	0.88	2.32	3.196 (2)	175
$N8 - H8NB \cdot \cdot \cdot O3W$	0.88	2.15	2.832 (4)	134
N9-H9NA···O3	0.88	1.89	2.754 (2)	165
N13 $-H13A \cdots O4^{vii}$	0.88	2.08	2.925 (2)	160
$N13-H13B\cdots O6^{vi}$	0.88	1.96	2.790 (2)	157
N14−H14A···O3	0.88	2.39	3.143 (2)	144
$N14-H14B\cdots N5^{viii}$	0.88	2.10	2.978 (3)	178
$C4-H4A\cdots O2^{ix}$	0.95	2.55	3.370 (3)	145

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x, -y + 1, z - \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y + 1, -z + \frac{1}{2}$; (vi) -x, -y + 1, -z + 1; (vii) -x, -y, -z + 1; (viii) $-x, y - 1, -z + \frac{1}{2}$; (ix) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2249).

References

- Aghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930–m1932.
- Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). *Acta Cryst.* E64, m187–m188.
- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.
- Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830-m832.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599– m1601.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2008). E64, m1063-m1064 [doi:10.1107/S1600536808022873]

Tetrakis(2,4,6-triamino-1,3,5-triazin-1-ium) tris(pyridine-2,6-dicarboxylato)calcate(II) hexahydrate

Hossein Aghabozorg, Shirin Daneshvar and Andya Nemati

S1. Comment

Hydrogen bonding plays a key role in chemical, catalytic and biochemical processes, as well as in supramolecular chemistry and crystal engineering. Recently we have reported the reaction between the proton-transfer compound, (tataH)₂(pydc) with metal salts Co(NO₃)₂.6H₂O, Bi(NO₃)₃.5H₂O, Zn(NO₃)₂.4H₂O and Cd(NO₃)₂.2H₂O in a 2:1 molar ratio. These reactions lead to the formation of the (tataH)₂[Co(H₂O)₆][Co(pydc)₂].4H₂O (Aghabozorg, Attar Gharamaleki *et al.*, 2008), (tataH)_n [Bi(pydc)₂(H₂O)]_n(Sharif *et al.*, 2007), (tataH)₂ [Zn(pydc)₂].10H₂O (Aghajani *et al.*, 2006) and (tataH)₂ [Cd(pydc)₂] (Aghabozorg, Aghajani *et al.*, 2006) compounds respectively. For more details and related literature see our recent review article (Aghabozorg, Manteghi *et al.*, 2008).

The structure of the title compound is shown in Fig.1. The anion has crystallographic 2-fold symmetry. The compound contains $[Ca(pydc)_3]^{4-}$ anion, four (tataH)⁺ cations and six uncoordinated water molecules. In the $[Ca(pydc)_3]^{4-}$ anions, Ca^{II} atom is nine-coordinated by three N atoms (N1, N1a and N2) and six O atoms (O1, O1a, O3, O3a, O5 and O5a) with the range of 2.5031 (14)–2.5472 (15)Å from the carboxylate groups of three (pydc)²⁻ groups that act as tridentate ligands. The coordination geometry around the Ca^{II} atom is distorted tricapped trigonal prism (Fig.2). Three N atoms (N1, N1a and N2) occupying three cap positions and make a flat triangle with N1—Ca1—N1a: 119.78 (8)°, N1—Ca1—N2: 120.11 (4)° that the sum of these angles is 360.00° and six O atoms (O1, O1a, O3, O3a, O5 and O5a, O5 and O5a) forming the trigonal prism positions.

There are various hydrogen bonds such as O—H···O, O—H···N, N—H···O and N—H···N [in the range 2.667 (2)– 3.294 (3) Å] in this structure (Fig.3) and C—H···O hydrogen bonds [with D···A 3.370 (3) Å] are also present (Table 1). These extensive hydrogen bonds between $[Ca(pydc)_3]^4$ anions, $(tataH)^+$ cations and uncoordinated water molecules play an important role in stabilization of the crystal packing.

S2. Experimental

The proton-transfer compound, $(tataH)_2(pydc)$, was prepared by the reaction of pyridine-2,6-dicarboxylic acid $(pydcH_2)$ with 2,4,6-triamino-1,3,5-triazine (tata). The reaction between Ca(NO₃)₂.4H₂O (118 mg, 0.5 mmol) in water (20 ml) and $(tataH)_2(pydc)$ (420 mg, 1.0 mmol) in water (20 ml), in 1:2 molar ratio gave a colorless compound after slow evaporation of the solvent at the room temperature.

S3. Refinement

The hydrogen atoms of NH groups and also H atoms of water molecule were found in difference Fourier synthesis. The hydrogen atoms of the H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the $U_{iso}(H)$ parameters equal to 1.2 $U_{eq}(Xi)$, where U(Xi) the equivalent thermal parameters of the carbon or nitrogen or oxygen atom to which corresponding H atom is bonded. Distances employed in the riding model

are, N-H, 0.88 Å; O-H, 0.84 Å; C-H, 0.95 Å.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The anion is located on a 2-fold axis and thus, the asymmetric unit contains one half anion, two cations and three water molecules.

Figure 2

A view of the distorted tricapped trigonal prism around the Ca^{II} atom.

Figure 3

Crystal packing with hydrogen bonds shown as dashed lines.

Tetrakis(2,4,6-triamino-1,3,5-triazin-1-ium) tris(pyridine-2,6-dicarboxylato)calcate(II) hexahydrate

Crystal data	
$(C_{3}H_{7}N_{6})_{4}[Ca(C_{7}H_{3}NO_{4})_{3}] \cdot 6H_{2}O$ $M_{r} = 1152.07$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.9605 (15) Å b = 10.1672 (9) Å c = 25.922 (2) Å $\beta = 94.467 (2)^{\circ}$ $V = 4719.1 (7) \text{ Å}^{3}$ Z = 4	F(000) = 2400 $D_x = 1.622 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 935 reflections $\theta = 3-29^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 100 K Prism, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.928$, $T_{max} = 0.954$ 16983 measured reflections 6215 independent reflections 4412 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.031$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 29.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$	$l = -35 \rightarrow 35$
$h = -19 \rightarrow 24$	

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.127$	neighbouring sites
S = 1.09	H-atom parameters constrained
6215 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 1P]$
365 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.77$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cal	0.0000	0.32225 (5)	0.2500	0.01468 (13)
C1	0.17008 (12)	0.2206 (2)	0.21823 (8)	0.0189 (4)
N1	0.12161 (10)	0.19798 (16)	0.25401 (6)	0.0167 (3)
01	0.08882 (8)	0.38891 (14)	0.18496 (5)	0.0198 (3)
O1W	0.25538 (11)	0.3625 (2)	-0.08194 (7)	0.0511 (6)
H1WB	0.2800	0.3196	-0.1025	0.061*
H1WA	0.2150	0.3792	-0.0992	0.061*
O2W	0.20543 (11)	0.3177 (2)	0.38198 (7)	0.0464 (5)
H2WB	0.2093	0.3575	0.4105	0.056*
H2WA	0.1704	0.3502	0.3627	0.056*
O2	0.18167 (9)	0.32683 (15)	0.13789 (6)	0.0225 (3)
N2	0.0000	0.5723 (2)	0.2500	0.0160 (5)
C2	0.23993 (13)	0.1634 (3)	0.21999 (9)	0.0291 (5)
H2A	0.2733	0.1824	0.1943	0.035*
O3W	0.16530 (16)	0.8783 (3)	0.17830 (10)	0.0743 (8)
H3WB	0.2094	0.8677	0.1704	0.089*
H3WA	0.1367	0.9132	0.1550	0.089*
N3	0.16153 (10)	0.53273 (18)	0.07458 (7)	0.0222 (4)
H3N	0.1666	0.4663	0.0963	0.027*
O3	0.02261 (8)	0.15716 (14)	0.32346 (5)	0.0203 (3)
C3	0.26030 (14)	0.0777 (3)	0.26017 (9)	0.0345 (6)
H3A	0.3079	0.0366	0.2624	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

04	0 10224 (0)	0.02065(15)	0.27124(6)	0.0252 (2)
04 C4	0.10324(9) 0.21035(14)	0.02903(13)	0.37134(0) 0.20714(0)	0.0232(3) 0.0202(5)
	0.21033 (14)	-0.0063	0.23/14 (3)	0.0292(3)
N4	0.2230 0.18475 (10)	0.0005	-0.00573(7)	0.033°
05	0.18473(10) 0.08072(0)	0.02300(18) 0.42271(14)	0.00373(7)	0.0217(4)
03	0.08075(9) 0.14127(12)	0.432/1(14) 0.1152(2)	0.32080(0)	0.0220(3)
C5 N5	0.14127(12) 0.12422(10)	0.1153(2)	0.29278(8)	0.0183(4)
N5	0.12433 (10)	0.75024 (17)	0.05810(7)	0.0207 (4)
N6	0.22996 (11)	0.41835 (19)	0.01860 (8)	0.0275 (4)
H6NA	0.2338	0.3554	0.0419	0.033*
H6NB	0.2477	0.4118	-0.0120	0.033*
06	0.11801 (9)	0.61386 (15)	0.36402 (6)	0.0236 (3)
C6	0.14421 (12)	0.3194 (2)	0.17714 (7)	0.0174 (4)
N7	0.13887 (10)	0.83102 (18)	-0.02277 (7)	0.0224 (4)
H7NA	0.1188	0.9049	-0.0129	0.027*
H7NB	0.1526	0.8246	-0.0545	0.027*
C7	0.08494 (12)	0.09839 (19)	0.33279 (8)	0.0171 (4)
N8	0.09931 (11)	0.64715 (19)	0.13431 (7)	0.0257 (4)
H8NA	0.0972	0.5743	0.1525	0.031*
H8NB	0.0923	0.7219	0.1503	0.031*
C8	0.04098 (11)	0.6393 (2)	0.28661 (8)	0.0175 (4)
N9	-0.02526 (10)	0.21627 (17)	0.41916 (6)	0.0189 (4)
H9NA	-0.0085	0.2124	0.3882	0.023*
С9	0.04259 (14)	0.7762 (2)	0.28768 (9)	0.0250 (5)
H9A	0.0724	0.8215	0.3138	0.030*
C10	0.0000	0.8452 (3)	0.2500	0.0301 (8)
H10A	0.0000	0.9386	0.2500	0.036*
N10	-0.03939(10)	0.32331 (17)	0.49808 (6)	0.0179 (4)
C11	0.08390 (11)	0.5555 (2)	0.32701 (8)	0.0170 (4)
N11	-0.07504 (10)	0.09514 (17)	0.48552 (7)	0.0187 (4)
N12	0.01468 (10)	0.42995 (18)	0.43181 (7)	0.0219 (4)
H11A	0.0226	0.4986	0.4522	0.041 (8)*
H11B	0.0304	0.4273	0.4005	0.033 (7)*
C12	0.15006 (12)	0.7326(2)	0.01068 (8)	0.0199 (4)
N13	-0.08510(11)	0 19908 (18)	0 56239 (7)	0.0230(4)
HIJA	-0.0983	0 1240	0 5759	0.039(8)*
H13B	-0.0842	0.2683	0.5828	0.029(7)*
C13	0.12875(12)	0.2003	0.08866 (8)	0.029(7)
N14	-0.06375(11)	0.0101(2)	0.00000(0) 0.40544(7)	0.0200(1) 0.0273(4)
	-0.0459	0.0126	0.40544 (7)	0.0275(4)
H14R	-0.0830	-0.0706	0.4158	$0.035(7)^{\circ}$ 0.036(8)*
C14	0.0000 (12)	0.0700	0.7130	$0.030(0)^{\circ}$
C14	-0.01697(11)	0.3230(2) 0.2235(2)	0.02023(0) 0.45052(8)	0.0217(4)
C15	-0.06500(12)	0.3233(2)	0.43033(0) 0.51422(8)	0.01/1(4)
C10 C17	-0.00399(12)	0.2000(2)	$0.31433(\delta)$	0.0183(4)
U1/	-0.05485 (11)	0.1040 (2)	0.43/38 (8)	0.0188 (4)

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	U^{13}	U^{23}
Cal	0.0160 (3)	0.0136 (3)	0.0145 (3)	0.000	0.0015 (2)	0.000
C1	0.0193 (11)	0.0216 (10)	0.0160 (9)	0.0004 (8)	0.0023 (8)	0.0019 (8)
N1	0.0178 (9)	0.0173 (8)	0.0150 (8)	-0.0001 (7)	0.0020 (6)	-0.0004 (6)
01	0.0198 (8)	0.0186 (7)	0.0215 (7)	0.0008 (6)	0.0044 (6)	0.0036 (6)
O1W	0.0303 (10)	0.0852 (16)	0.0357 (10)	0.0236 (10)	-0.0111 (8)	-0.0261 (10)
O2W	0.0510 (12)	0.0472 (12)	0.0378 (10)	0.0222 (10)	-0.0160 (9)	-0.0154 (9)
O2	0.0240 (8)	0.0243 (8)	0.0200 (7)	0.0016 (6)	0.0077 (6)	0.0054 (6)
N2	0.0160 (12)	0.0156 (11)	0.0168 (11)	0.000	0.0044 (9)	0.000
C2	0.0240 (12)	0.0416 (14)	0.0227 (11)	0.0080 (11)	0.0074 (9)	0.0077 (10)
O3W	0.089 (2)	0.0615 (16)	0.0691 (17)	0.0005 (15)	-0.0175 (14)	-0.0047 (13)
N3	0.0229 (10)	0.0190 (9)	0.0250 (9)	0.0023 (7)	0.0041 (8)	0.0065 (7)
03	0.0202 (8)	0.0223 (8)	0.0187 (7)	0.0012 (6)	0.0037 (6)	0.0027 (6)
C3	0.0242 (13)	0.0500 (16)	0.0300 (13)	0.0167 (11)	0.0075 (10)	0.0120 (11)
04	0.0322 (9)	0.0242 (8)	0.0197 (7)	0.0030(7)	0.0047 (6)	0.0077 (6)
C4	0.0303 (13)	0.0347 (13)	0.0227 (11)	0.0120 (11)	0.0038 (9)	0.0097 (10)
N4	0.0190 (9)	0.0227 (9)	0.0230 (9)	0.0009 (7)	0.0003 (7)	0.0035 (7)
05	0.0249 (8)	0.0161 (7)	0.0238 (8)	-0.0007 (6)	-0.0048 (6)	-0.0004 (6)
C5	0.0209 (11)	0.0182 (10)	0.0160 (9)	0.0029 (8)	0.0022 (8)	0.0008 (7)
N5	0.0205 (9)	0.0192 (9)	0.0220 (9)	-0.0017 (7)	0.0004 (7)	0.0015 (7)
N6	0.0297 (11)	0.0248 (10)	0.0290 (10)	0.0063 (8)	0.0080 (8)	0.0063 (8)
O6	0.0250 (8)	0.0246 (8)	0.0205 (7)	-0.0011 (7)	-0.0031 (6)	-0.0052 (6)
C6	0.0188 (10)	0.0183 (10)	0.0149 (9)	-0.0030 (8)	0.0006 (8)	0.0002 (7)
N7	0.0233 (10)	0.0222 (9)	0.0217 (9)	0.0012 (8)	0.0006 (7)	0.0037 (7)
C7	0.0231 (11)	0.0117 (9)	0.0167 (9)	-0.0021 (8)	0.0029 (8)	-0.0013 (7)
N8	0.0339 (11)	0.0198 (9)	0.0241 (9)	0.0005 (8)	0.0065 (8)	0.0028 (7)
C8	0.0183 (10)	0.0171 (9)	0.0178 (9)	-0.0006 (8)	0.0055 (8)	-0.0011 (7)
N9	0.0219 (9)	0.0207 (9)	0.0147 (8)	0.0016 (7)	0.0050 (7)	0.0009 (7)
C9	0.0322 (13)	0.0194 (10)	0.0228 (11)	-0.0025 (9)	-0.0019 (9)	-0.0030 (8)
C10	0.044 (2)	0.0179 (15)	0.0273 (17)	0.000	-0.0032 (15)	0.000
N10	0.0215 (9)	0.0158 (8)	0.0167 (8)	0.0008 (7)	0.0032 (7)	0.0012 (6)
C11	0.0146 (10)	0.0199 (10)	0.0168 (9)	-0.0012 (8)	0.0034 (7)	-0.0010 (7)
N11	0.0197 (9)	0.0173 (8)	0.0193 (8)	-0.0011 (7)	0.0038 (7)	-0.0011 (7)
N12	0.0249 (10)	0.0214 (9)	0.0200 (9)	-0.0006 (8)	0.0068 (7)	0.0025 (7)
C12	0.0144 (10)	0.0228 (10)	0.0217 (10)	-0.0031 (8)	-0.0035 (8)	0.0027 (8)
N13	0.0356 (11)	0.0160 (9)	0.0182 (8)	-0.0043 (8)	0.0071 (8)	-0.0012 (7)
C13	0.0185 (10)	0.0201 (10)	0.0227 (10)	-0.0027 (8)	-0.0004 (8)	0.0012 (8)
N14	0.0353 (11)	0.0258 (10)	0.0221 (9)	-0.0079 (9)	0.0106 (8)	-0.0068 (8)
C14	0.0152 (10)	0.0234 (11)	0.0265 (11)	-0.0008 (8)	0.0009 (8)	0.0033 (8)
C15	0.0150 (10)	0.0172 (9)	0.0189 (9)	0.0024 (8)	0.0004 (7)	0.0021 (8)
C16	0.0170 (10)	0.0183 (10)	0.0197 (10)	0.0016 (8)	0.0014 (8)	0.0009 (8)
C17	0.0155 (10)	0.0206 (10)	0.0204 (10)	0.0015 (8)	0.0020 (8)	-0.0013 (8)

Geometric parameters (Å, °)

Ca1—01	2.5031 (14)	O5—C11	1.259 (2)
Cal—Ol ⁱ	2.5032 (14)	C5—C7	1.514 (3)
Cal—O5 ⁱ	2.5145 (15)	N5-C13	1.319 (3)
Cal—O5	2.5145 (15)	N5-C12	1.358 (3)
Cal—N1 ⁱ	2.5184 (18)	N6	1.321 (3)
Cal—N1	2.5184 (18)	N6—H6NA	0.8800
Cal—N2	2.542 (2)	N6—H6NB	0.8798
Ca1—O3 ⁱ	2.5472 (15)	O6—C11	1.248 (2)
Ca1—O3	2.5472 (15)	N7—C12	1.329 (3)
C1—N1	1.340 (3)	N7—H7NA	0.8800
C1—C2	1.380 (3)	N7—H7NB	0.8800
C1—C6	1.511 (3)	N8—C13	1.333 (3)
N1—C5	1.337 (3)	N8—H8NA	0.8800
O1—C6	1.250 (2)	N8—H8NB	0.8800
O1W—H1WB	0.8400	C8—C9	1.393 (3)
O1W—H1WA	0.8400	C8—C11	1.514 (3)
O2W—H2WB	0.8400	N9—C15	1.362 (3)
O2W—H2WA	0.8400	N9—C17	1.361 (3)
O2—C6	1.265 (2)	N9—H9NA	0.8800
N2—C8 ⁱ	1.340 (2)	C9—C10	1.384 (3)
N2—C8	1.340 (2)	С9—Н9А	0.9500
С2—С3	1.385 (3)	C10C9 ⁱ	1.384 (3)
C2—H2A	0.9500	C10—H10A	0.9500
O3W—H3WB	0.8400	N10—C15	1.327 (3)
O3W—H3WA	0.8401	N10—C16	1.363 (3)
N3—C13	1.360 (3)	N11—C17	1.324 (3)
N3—C14	1.360 (3)	N11—C16	1.355 (3)
N3—H3N	0.8800	N12—C15	1.330 (3)
O3—C7	1.275 (3)	N12—H11A	0.8801
C3—C4	1.386 (3)	N12—H11B	0.8799
С3—НЗА	0.9500	N13—C16	1.319 (3)
O4—C7	1.243 (2)	N13—H13A	0.8800
C4—C5	1.392 (3)	N13—H13B	0.8799
C4—H4A	0.9500	N14—C17	1.320 (3)
N4—C14	1.329 (3)	N14—H14A	0.8800
N4—C12	1.356 (3)	N14—H14B	0.8800
O1—Ca1—O1 ⁱ	148.58 (7)	N1C5C4	122.08 (19)
O1-Ca1-O5 ⁱ	75.43 (5)	N1—C5—C7	115.77 (18)
O1 ⁱ —Ca1—O5 ⁱ	90.55 (5)	C4—C5—C7	122.11 (19)
01—Ca1—O5	90.55 (5)	C13—N5—C12	115.43 (19)
O1 ⁱ —Ca1—O5	75.43 (5)	C14—N6—H6NA	119.0
O5 ⁱ —Ca1—O5	126.94 (7)	C14—N6—H6NB	117.5
O1-Ca1-N1 ⁱ	134.76 (5)	H6NA—N6—H6NB	123.4
O1 ⁱ —Ca1—N1 ⁱ	64.37 (5)	O1—C6—O2	125.19 (19)
O5 ⁱ —Ca1—N1 ⁱ	75.23 (5)	O1—C6—C1	117.84 (17)

O5—Ca1—N1 ⁱ	134.68 (5)	O2—C6—C1	116.96 (18)
O1—Ca1—N1	64.37 (5)	C12—N7—H7NA	119.8
O1 ⁱ —Ca1—N1	134.76 (5)	C12—N7—H7NB	121.1
O5 ⁱ —Ca1—N1	134.68 (5)	H7NA—N7—H7NB	119.1
O5—Ca1—N1	75.23 (5)	O4—C7—O3	126.11 (19)
N1 ⁱ —Ca1—N1	119.78 (8)	O4—C7—C5	117.75 (19)
O1—Ca1—N2	74.29 (4)	O3—C7—C5	116.14 (17)
O1 ⁱ —Ca1—N2	74.29 (4)	C13—N8—H8NA	120.4
O5 ⁱ —Ca1—N2	63.47 (4)	C13—N8—H8NB	120.4
O5—Ca1—N2	63.47 (4)	H8NA—N8—H8NB	117.4
N1 ⁱ —Ca1—N2	120.11 (4)	N2—C8—C9	122.1 (2)
N1—Ca1—N2	120.11 (4)	N2—C8—C11	115.19 (18)
O1—Ca1—O3 ⁱ	75.39 (5)	C9—C8—C11	122.70 (19)
O1 ⁱ —Ca1—O3 ⁱ	127.53 (5)	C15—N9—C17	119.35 (17)
O5 ⁱ —Ca1—O3 ⁱ	72.48 (5)	C15—N9—H9NA	123.4
O5—Ca1—O3 ⁱ	152.84 (5)	C17—N9—H9NA	117.0
N1 ⁱ —Ca1—O3 ⁱ	63.34 (5)	С10—С9—С8	118.9 (2)
N1—Ca1—O3 ⁱ	77.73 (5)	С10—С9—Н9А	120.6
N2—Ca1—O3 ⁱ	131.22 (3)	С8—С9—Н9А	120.6
O1—Ca1—O3	127.53 (5)	C9 ⁱ —C10—C9	119.1 (3)
O1 ⁱ —Ca1—O3	75.39 (5)	C9 ⁱ —C10—H10A	120.5
O5 ⁱ —Ca1—O3	152.84 (5)	С9—С10—Н10А	120.5
O5—Ca1—O3	72.48 (5)	C15—N10—C16	115.35 (18)
N1 ⁱ —Ca1—O3	77.73 (5)	O6—C11—O5	125.73 (19)
N1—Ca1—O3	63.34 (5)	O6—C11—C8	117.19 (18)
N2—Ca1—O3	131.22 (3)	O5—C11—C8	117.06 (18)
O3 ⁱ —Ca1—O3	97.56 (7)	C17—N11—C16	115.51 (18)
N1—C1—C2	122.86 (19)	C15—N12—H11A	118.7
N1—C1—C6	114.91 (18)	C15—N12—H11B	119.2
C2—C1—C6	122.16 (19)	H11A—N12—H11B	121.9
C5—N1—C1	118.70 (18)	N7—C12—N4	117.41 (19)
C5—N1—Ca1	121.61 (13)	N7—C12—N5	116.5 (2)
C1—N1—Ca1	119.56 (13)	N4—C12—N5	126.05 (19)
C6—O1—Ca1	120.86 (12)	C16—N13—H13A	121.4
H1WB—O1W—H1WA	104.1	C16—N13—H13B	122.1
H2WB—O2W—H2WA	109.9	H13A—N13—H13B	116.5
C8 ⁱ —N2—C8	118.9 (2)	N5—C13—N8	121.3 (2)
C8 ⁱ —N2—Ca1	120.53 (12)	N5—C13—N3	121.8 (2)
C8—N2—Ca1	120.53 (12)	N8—C13—N3	116.96 (19)
C3—C2—C1	118.4 (2)	C17—N14—H14A	116.7
C3—C2—H2A	120.8	C17—N14—H14B	120.1
C1—C2—H2A	120.8	H14A—N14—H14B	123.0
H3WB—O3W—H3WA	114.4	N6-C14-N4	121.3 (2)
C13—N3—C14	119.60 (18)	N6—C14—N3	117.3 (2)
C13—N3—H3N	120.4	N4—C14—N3	121.4 (2)
C14—N3—H3N	119.8	N10-C15-N12	120.64 (19)
C7—O3—Ca1	122.48 (12)	N10—C15—N9	121.73 (18)
C2—C3—C4	119.2 (2)	N12—C15—N9	117.63 (18)
	× /		~ /

С2—С3—Н3А	120.4	N13-C16-N11	116 54 (19)
C_{4} C_{3} H_{3A}	120.4	N13 C16 N10	11751(19)
C_{4}	120.4 118.7(2)	N11 C16 N10	117.51(19) 125.06(18)
$C_3 = C_4 = C_3$	110.7 (2)	N14 C17 N11	123.30(10)
C_{5} C_{4} H_{4}	120.7	N14 - C17 - N0	120.7(2)
C_{3} $-C_{4}$ $-H_{4}$ $-H_{4}$	120.7	N14-C17-N9	117.33 (19)
C14 N4 $C12$	115.36 (18)	N11-C1/N9	121.95 (19)
CII—05—Cai	123.58 (13)		
$C_{2} - C_{1} - N_{1} - C_{5}$	-0.8(3)	$N1 - C_{21} - O5 - C_{11}$	138 44 (17)
C6-C1-N1-C5	-17772(18)	N_{2} Ca1 05 C11	3.08(14)
$C_2 - C_1 - N_1 - C_{a_1}$	175 25 (18)	$O_{3^{i}} - C_{2^{i}} = O_{5^{i}} - O_{5^{i}} - O_{1^{i}}$	132 90 (16)
C6-C1-N1-Ca1	-1.6(2)	03-Ca1-05-C11	-15535(17)
$\Omega_1 - \Omega_2 - \Omega_1 - \Omega_1 - \Omega_2$	1.0(2) 171 11 (17)	C1 - N1 - C5 - C4	0.2(3)
O_1^{i} C_{21} N1 C_5	22.00(10)	$C_1 = N_1 = C_2 = C_1$	-175 81 (17)
$O_1 = Ca_1 = N_1 = C_2$	-158.07(14)	$C_1 = N_1 = C_5 = C_7$	175.81(17) 177.82(18)
$O_5 = C_{a1} = N_1 = C_5$	72.20(15)	$C_1 = N_1 = C_2 = C_7$	177.02(10)
NII Cal NI C5	(13)	$Cal_NI = C_J$	1.0(2)
N1 - Cal - N1 - C5	-60.19(14)	C_{3} C_{4} C_{5} C_{7}	0.4(4)
N_2 —Cal—NI—C5	119.81 (14)	$C_{3} = C_{4} = C_{5} = C_{7}$	-1/7.1(2)
03 - Cal - NI - C5	-109.38 (16)	Ca1 - 01 - C6 - 02	162.52 (16)
03—Cal—NI—C5	-4.32 (14)		-19.1 (2)
Ol—Cal—NI—Cl	-4.88 (14)		13.5 (3)
Ol-Cal-NI-Cl	-153.89 (14)	C2-C1-C6-O1	-163.4 (2)
$O5^{1}$ —Cal—Nl—Cl	25.05 (18)	N1—C1—C6—O2	-167.97 (18)
O5—Ca1—N1—C1	-102.78 (15)	C2-C1-C6-O2	15.1 (3)
N1 ⁱ —Ca1—N1—C1	123.83 (16)	Ca1—O3—C7—O4	170.52 (16)
N2—Ca1—N1—C1	-56.17 (16)	Ca1—O3—C7—C5	-9.4 (2)
O3 ⁱ —Ca1—N1—C1	74.64 (15)	N1—C5—C7—O4	-175.02 (18)
O3—Ca1—N1—C1	179.70 (17)	C4—C5—C7—O4	2.6 (3)
Ol ⁱ —Cal—Ol—C6	148.51 (15)	N1—C5—C7—O3	4.9 (3)
O5 ⁱ —Ca1—O1—C6	-145.46 (15)	C4—C5—C7—O3	-177.5 (2)
O5—Ca1—O1—C6	86.33 (15)	C8 ⁱ —N2—C8—C9	-0.29 (15)
N1 ⁱ —Ca1—O1—C6	-94.42 (16)	Ca1—N2—C8—C9	179.71 (15)
N1—Ca1—O1—C6	13.04 (14)	C8 ⁱ —N2—C8—C11	178.57 (19)
N2—Ca1—O1—C6	148.51 (15)	Ca1—N2—C8—C11	-1.43 (19)
O3 ⁱ —Ca1—O1—C6	-70.16 (15)	N2-C8-C9-C10	0.6 (3)
O3—Ca1—O1—C6	18.19 (17)	C11—C8—C9—C10	-178.21 (17)
O1—Ca1—N2—C8 ⁱ	80.76 (10)	C8—C9—C10—C9 ⁱ	-0.27 (14)
O1 ⁱ —Ca1—N2—C8 ⁱ	-99.24 (10)	Ca1—O5—C11—O6	173.48 (15)
$O5^{i}$ —Ca1—N2—C 8^{i}	-0.53 (11)	Ca1—O5—C11—C8	-5.0 (2)
O5—Ca1—N2—C8 ⁱ	179.47 (11)	N2-C8-C11-O6	-174.49 (16)
N1 ⁱ —Ca1—N2—C8 ⁱ	-52.29 (11)	C9—C8—C11—O6	4.4 (3)
N1—Ca1—N2—C8 ⁱ	127.71 (11)	N2—C8—C11—O5	4.1 (3)
$O3^{i}$ —Ca1—N2—C 8^{i}	27.26 (11)	C9—C8—C11—O5	-177.1 (2)
O3—Ca1—N2—C8 ⁱ	-152.74 (11)	C14—N4—C12—N7	-177.40(19)
01-Ca1-N2-C8	-99.24 (10)	C14 - N4 - C12 - N5	1.4 (3)
$O1^{i}$ —Ca1—N2—C8	80.76 (10)	C13 - N5 - C12 - N7	172.95 (19)
05^{i} —Ca1—N2—C8	179.47 (11)	C13 - N5 - C12 - N4	-5.9 (3)
$05 - C_{21} - N2 - C_{8}$	-0.53(11)	$C_{12} = N_5 = C_{12} = N_8$	-1739(2)
05 Cui 112-CO	0.00 (11)	012 113 013-110	113.7 (2)

N1 ⁱ —Ca1—N2—C8	127.71 (11)	C12—N5—C13—N3	4.3 (3)
N1—Ca1—N2—C8	-52.29 (11)	C14—N3—C13—N5	1.3 (3)
O3 ⁱ —Ca1—N2—C8	-152.74 (11)	C14—N3—C13—N8	179.6 (2)
O3—Ca1—N2—C8	27.26 (11)	C12—N4—C14—N6	-174.6 (2)
N1-C1-C2-C3	0.8 (4)	C12—N4—C14—N3	4.7 (3)
C6—C1—C2—C3	177.5 (2)	C13—N3—C14—N6	173.2 (2)
O1—Ca1—O3—C7	2.23 (17)	C13—N3—C14—N4	-6.2 (3)
O1 ⁱ —Ca1—O3—C7	-153.52 (15)	C16—N10—C15—N12	-175.54 (19)
O5 ⁱ —Ca1—O3—C7	145.59 (14)	C16—N10—C15—N9	4.7 (3)
O5—Ca1—O3—C7	-74.48 (15)	C17—N9—C15—N10	-2.6 (3)
N1 ⁱ —Ca1—O3—C7	140.11 (15)	C17—N9—C15—N12	177.67 (18)
N1—Ca1—O3—C7	7.43 (14)	C17—N11—C16—N13	-179.39 (19)
N2—Ca1—O3—C7	-100.42 (14)	C17—N11—C16—N10	0.9 (3)
O3 ⁱ —Ca1—O3—C7	79.58 (14)	C15—N10—C16—N13	176.27 (19)
C1—C2—C3—C4	-0.2 (4)	C15—N10—C16—N11	-4.0 (3)
C2—C3—C4—C5	-0.4 (4)	C16—N11—C17—N14	-177.5 (2)
O1—Ca1—O5—C11	75.17 (16)	C16—N11—C17—N9	1.6 (3)
O1 ⁱ —Ca1—O5—C11	-76.38 (16)	C15—N9—C17—N14	178.31 (19)
O5 ⁱ —Ca1—O5—C11	3.08 (14)	C15—N9—C17—N11	-0.8 (3)
N1 ⁱ —Ca1—O5—C11	-104.08 (16)		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
$\overline{\text{O1}W\text{H1}WB^{}\text{O2}^{\text{ii}}}$	0.84	1.91	2.710 (3)	160	
O1 <i>W</i> —H1 <i>WA</i> ···O6 ⁱⁱⁱ	0.84	1.92	2.751 (3)	170	
$O2W$ — $H2WB$ ···· $N4^{iv}$	0.84	2.26	3.022 (3)	151	
N3—H3 <i>N</i> ···O2	0.88	1.79	2.667 (2)	176	
O2 <i>W</i> —H2 <i>WA</i> ···O5	0.84	2.05	2.888 (3)	175	
O3 <i>W</i> —H3 <i>WB</i> ···O2 <i>W</i> ^v	0.84	2.18	2.963 (3)	154	
O3 <i>W</i> —H3 <i>WA</i> ···N14 ^{vi}	0.84	2.17	3.007 (3)	180	
N6—H6 NA ···O1 W^{ii}	0.88	2.45	3.294 (3)	162	
N6—H6 <i>NB</i> ···O1 <i>W</i>	0.88	1.90	2.740 (3)	160	
N7—H7 <i>NA</i> ···N11 ^{vi}	0.88	2.22	3.103 (3)	176	
N7—H7 NB ····O2 W^{iii}	0.88	2.44	3.205 (3)	146	
N7—H7 <i>NB</i> ····O4 ⁱⁱⁱ	0.88	2.53	3.111 (2)	124	
N8—H8 <i>NA</i> ···O1	0.88	2.07	2.948 (2)	172	
N12—H11A…N10 ^{vii}	0.88	2.23	3.109 (2)	178	
N12—H11 <i>B</i> …O5	0.88	2.32	3.196 (2)	175	
N8—H8 <i>NB</i> ····O3 <i>W</i>	0.88	2.15	2.832 (4)	134	
N9—H9 <i>NA</i> ···O3	0.88	1.89	2.754 (2)	165	
N13—H13A····O4 ^{viii}	0.88	2.08	2.925 (2)	160	
N13—H13 <i>B</i> ···O6 ^{vii}	0.88	1.96	2.790 (2)	157	
N14—H14 <i>A</i> ···O3	0.88	2.39	3.143 (2)	144	

supporting information

N14—H14 B ····N5 ^{ix}	0.88	2.10	2.978 (3)	178	
C4—H4 A ···O2 ^x	0.95	2.55	3.370 (3)	145	

Symmetry codes: (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) *x*, -*y*+1, *z*-1/2; (iv) *x*, -*y*+1, *z*+1/2; (v) -*x*+1/2, *y*+1/2, -*z*+1/2; (vi) -*x*, *y*+1, -*z*+1/2; (vii) -*x*, -*y*+1, -*z*+1; (viii) -*x*, -*y*, -*z*+1; (ix) -*x*, *y*-1, -*z*+1/2; (x) -*x*+1/2, *y*-1/2, -*z*+1/2.