

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Benzylpiperazin-1-ium chloride chloroform solvate

Mihai G. Nema,^a Richard A. Varga,^a* Cristian Silvestru^a and Hans J. Breunig^b

^aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, RO-400028, Clui Napoca, Romania, and ^bInstitut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334 Bremen, Germany Correspondence e-mail: richy@chem.ubbcluj.ro

Received 10 July 2008; accepted 18 July 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 17.0.

The ions of the title chloroform-solvated salt, $C_{11}H_{17}N_2^+$. Cl^{-} ·CHCl₃, are linked by a strong N-H···Cl hydrogen bond; the solvent molecule also interacts with the chloride ion through a C-H···Cl hydrogen bond. Additionally, neighboring cations form weak hydrogen bonds to the anion, resulting in a supramolecular ribbon that runs along the *a* axis.

Related literature

For related literature, see Albinati et al. (1980); Antolini et al. (1981, 1982); Osa et al. (2002); Tanaka et al. (2005).

Experimental

Crystal data

 $C_{11}H_{17}N_2^+ \cdot Cl^- \cdot CHCl_3$ $M_r = 332.08$ Triclinic, $P\overline{1}$ a = 5.6053 (4) Å b = 9.4889 (9) Å c = 15.303 (2) Å $\alpha = 100.980 \ (8)^{\circ}$ $\beta = 90.957 \ (7)^{\circ}$

 $\gamma = 93.219 \ (7)^{\circ}$ V = 797.51 (15) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.73 \text{ mm}^{-1}$ T = 173 (2) K $0.40 \times 0.32 \times 0.30$ mm $R_{\rm int} = 0.015$

3 standard reflections

every 197 reflections

intensity decay: none

Data collection

Siemens P4 diffractometer Absorption correction: none 4013 measured reflections 2967 independent reflections 2811 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.128$	independent and constrained
S = 1.07	refinement
2967 reflections	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
175 parameters	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N\cdots Cl1$	0.85(2)	2.30(2)	3.140 (2)	169 (2)
$N2-H12\cdots Cl1^{i}$	0.89(3) 0.88(2)	2.60 (3) 2.26 (2)	3.401 (2) 3.096 (2)	151 (2) 159 (2)
C10-H10A···Cl1 ⁱⁱ	0.97	2.74	3.684 (2)	165

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z + 1.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

The financial support provided by the Ministry of Education and Research of Romania (Excellency Research Program, project CEx-05-D11-16/2005; grant No. CNCSIS TD-80/2007) is greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2473).

References

- Albinati, A., Meille, S. V., Cariati, F., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1980). Inorg. Chim. Acta, 38, 221-226.
- Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M. & Marcotrigiano, G. (1982). Inorg. Chim. Acta, 58, 193-200.
- Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Marcotrigiano, G. & Porzio, W. (1981). J. Chem. Soc. Dalton Trans. pp. 1753-1759.
- Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Osa, Y., Sato, Y., Hatano, A. & Takayanagi, T. (2002). Anal. Sci. 18, 1069-1070. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tanaka, R., Haramura, M., Tanaka, A. & Hirayama, N. (2005). X-ray Struct. Anal. Online, 21, x3-x4.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1585 [doi:10.1107/S1600536808022587]

4-Benzylpiperazin-1-ium chloride chloroform solvate

Mihai G. Nema, Richard A. Varga, Cristian Silvestru and Hans J. Breunig

S1. Comment

Derivatives of piperazine are useful compounds because of their biological activity (Osa *et al.*, 2002). Trimetazidine is a clinically antianginal agent (Tanaka *et al.*, 2005). A compound of the type (NBzpipzH₂)₂CuCl₆ (NBzpipzH₂ = *N*-benzyl-piperazinium dication) was reported (Antolini *et al.*, 1982) and the preparation of mercury(III) compounds (NbzpipzH)Hg₂X₅ (NbzpipzH = *N*-benzylpiperazinium monocation; X = Cl, Br) is known (Albinati, *et al.*, 1980, Antolini *et al.*, 1981).

The title compound (Fig.1) is formed by $C_{11}H_{17}N_2^+$ cation and Cl^- anion connected through a strong N—H···Cl⁻ hydrogen bond [H1N···Cl1 = 2.30 (2) Å, N2—H1N···Cl1 = 169 (2)°] and crystallizes with a CHCl₃ molecule bonded to the Cl⁻ through a hydrogen bond [H12···Cl1 = 2.60 (3) Å, C12—H12···Cl1 = 151 (2)°]. Intermolecular hydrogen bonds link the Cl⁻ anion to two aditional cations (Table 1) resulting in a double chain-like supramolecular arrangement along the *a* axis. In crystal there are no interactions between the chains (Fig.2).

S2. Experimental

The compound was obtained as a by-product of the reaction between $[2-{HN(CH_2CH_2)_2NCH_2}C_6H_4]Li$ and BiCl₃. Crystals were grown by slow difusion from chloroform / n-hexane (1:5).

¹H NMR (CDCl₃, 200 MHz, 291 K): δ 2.74 (4*H*, *m*, N—CH₂—CH₂—N), 3.20 (4*H*, *m*, N—CH₂—CH₂—N), 3.55 (2*H*, *s*, C₆H₅—CH₂—N), 7.29 (5*H*, *m*, C₆H₅), 8.90 (2*H*, *s*, br, NH₂). ¹³C NMR (CDCl₃, 50 MHz, 291 K): δ 43.59 (*s*, N—CH₂—CH₂—N), 49.47 (*s*, N—CH₂—CH₂—N), 62.39 (*s*, C₆H₅—CH₂—N), 127.53 (*s*, C-p), 128.45 (*s*, C-m), 128.95 (*s*, C-o), 136.89 (*s*, C-i).

S3. Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93-0.97 Å and with U_{iso} = $1.2U_{eq}$ (C) for aryl H and U_{iso} = $1.5U_{eq}$ (C) for the rest. The hydrogen H1N, H2N and H12 atoms bonded to N2 and C12, respectively, were found in a difference map and refined with a restrained N—H distance of 0.85 (2) and 0.88 (2) Å, and C—H distance of 0.89 (3) Å, respectively.

Figure 1

View of the title compound showing the atom-numbering (50% probability thermal ellipsoids).

Figure 2

Crystal packing of the title compound showing the supramolecular arrays (hydrogen bonds as dashes lines).

4-Benzylpiperazin-1-ium chloride chloroform solvate

Crystal data	
Crystal data $C_{11}H_{17}N_2^{+}Cl^{-}CHCl_3$ $M_r = 332.08$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 5.6053 (4) Å b = 9.4889 (9) Å c = 15.303 (2) Å a = 100.980 (8)°	Z = 2 F(000) = 344 $D_x = 1.383 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 44 reflections $\theta = 8.5-25.1^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 173 K
$\beta = 90.957 (7)^{\circ}$ $\gamma = 93.219 (7)^{\circ}$ $V = 797.51 (15) Å^{3}$ Data collection	Block, colorless $0.40 \times 0.32 \times 0.30 \text{ mm}$
Siemens P4 diffractometer Radiation source: sealed tube Graphite monochromator 2θ -/ ω scans 4013 measured reflections 2967 independent reflections 2811 reflections with $I > 2\sigma(I)$	$R_{\text{int}} = 0.015$ $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -6 \rightarrow 2$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$ 3 standard reflections every 197 reflections intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
2967 reflections	and constrained refinement
175 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0804P)^2 + 0.5046P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.72 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl4	1.23828 (12)	0.13191 (10)	0.29039 (5)	0.0610 (2)	
C12	0.9555 (4)	0.1520 (2)	0.24518 (15)	0.0300 (5)	
Cl1	0.70662 (8)	0.21020 (5)	0.44910 (3)	0.02735 (17)	
C12	0.94353 (13)	0.32245 (6)	0.21628 (5)	0.0472 (2)	
C13	0.87877 (13)	0.01645 (7)	0.15238 (4)	0.0450 (2)	
N1	0.3777 (3)	0.37270 (18)	0.71793 (11)	0.0228 (4)	
N2	0.2108 (3)	0.25651 (19)	0.53939 (12)	0.0251 (4)	
C2	0.6514 (4)	0.2552 (3)	0.89764 (16)	0.0353 (5)	
H2	0.7872	0.2308	0.8654	0.042*	
C6	0.2964 (4)	0.3838 (3)	0.91871 (15)	0.0324 (5)	
H6	0.1924	0.4466	0.9010	0.039*	
C11	0.3743 (4)	0.2181 (2)	0.68279 (14)	0.0275 (4)	
H11A	0.3486	0.1659	0.7308	0.033*	
H11B	0.5274	0.1940	0.6572	0.033*	
C1	0.5004 (4)	0.3496 (2)	0.87052 (13)	0.0264 (4)	
C8	0.4281 (4)	0.4505 (2)	0.64568 (14)	0.0260 (4)	
H8A	0.5804	0.4242	0.6202	0.031*	
H8B	0.4386	0.5531	0.6690	0.031*	
С9	0.2325 (4)	0.4145 (2)	0.57441 (14)	0.0273 (4)	
H9A	0.0819	0.4460	0.5991	0.033*	
H9B	0.2689	0.4647	0.5262	0.033*	
C5	0.2475 (4)	0.3245 (3)	0.99313 (16)	0.0380 (5)	
Н5	0.1106	0.3477	1.0249	0.046*	
C10	0.1780 (4)	0.1739 (2)	0.61243 (14)	0.0280 (4)	

H10A	0.1808	0.0718	0.5884	0.034*	
H10B	0.0239	0.1917	0.6389	0.034*	
C4	0.4008 (5)	0.2314 (3)	1.02029 (15)	0.0389 (6)	
H4	0.3681	0.1925	1.0705	0.047*	
C7	0.5559 (4)	0.4164 (2)	0.79057 (14)	0.0286 (5)	
H7A	0.5634	0.5203	0.8085	0.034*	
H7B	0.7117	0.3888	0.7691	0.034*	
C3	0.6033 (5)	0.1962 (3)	0.97243 (17)	0.0415 (6)	
H3	0.7071	0.1332	0.9902	0.050*	
H1N	0.339 (4)	0.232 (3)	0.5127 (17)	0.035 (7)*	
H2N	0.089 (4)	0.235 (3)	0.5012 (16)	0.039 (7)*	
H12	0.848 (5)	0.145 (3)	0.2865 (19)	0.039 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl4	0.0309 (4)	0.0937 (6)	0.0588 (5)	0.0100 (3)	-0.0096 (3)	0.0144 (4)
C12	0.0240 (10)	0.0381 (12)	0.0271 (10)	0.0006 (9)	0.0046 (9)	0.0044 (9)
Cl1	0.0176 (3)	0.0367 (3)	0.0265 (3)	0.0034 (2)	0.00211 (19)	0.0023 (2)
Cl2	0.0565 (4)	0.0326 (3)	0.0527 (4)	0.0009 (3)	0.0136 (3)	0.0079 (3)
Cl3	0.0589 (4)	0.0362 (3)	0.0360 (3)	-0.0047 (3)	-0.0030 (3)	-0.0007 (2)
N1	0.0214 (8)	0.0232 (8)	0.0230 (8)	-0.0007 (6)	0.0010 (7)	0.0032 (6)
N2	0.0167 (8)	0.0323 (9)	0.0248 (9)	0.0026 (7)	0.0004 (7)	0.0014 (7)
C2	0.0256 (11)	0.0460 (13)	0.0335 (12)	0.0042 (9)	-0.0001 (9)	0.0053 (10)
C6	0.0274 (11)	0.0396 (12)	0.0286 (11)	0.0031 (9)	-0.0004 (9)	0.0020 (9)
C11	0.0290 (11)	0.0248 (10)	0.0283 (10)	0.0021 (8)	-0.0002 (8)	0.0043 (8)
C1	0.0231 (10)	0.0306 (10)	0.0226 (10)	-0.0044 (8)	-0.0037 (8)	0.0001 (8)
C8	0.0254 (10)	0.0253 (10)	0.0272 (10)	-0.0021 (8)	0.0027 (8)	0.0056 (8)
C9	0.0264 (10)	0.0274 (10)	0.0291 (10)	0.0035 (8)	0.0008 (8)	0.0074 (8)
C5	0.0335 (12)	0.0491 (14)	0.0282 (11)	-0.0033 (10)	0.0062 (9)	0.0003 (10)
C10	0.0268 (10)	0.0250 (10)	0.0312 (11)	-0.0029 (8)	0.0000 (8)	0.0040 (8)
C4	0.0443 (14)	0.0468 (13)	0.0246 (10)	-0.0096 (11)	-0.0027 (10)	0.0082 (10)
C7	0.0230 (10)	0.0333 (11)	0.0273 (10)	-0.0053 (8)	-0.0017 (8)	0.0023 (9)
C3	0.0418 (14)	0.0471 (14)	0.0380 (13)	0.0035 (11)	-0.0078 (11)	0.0146 (11)

Geometric parameters (Å, °)

Cl4—C12	1.753 (2)	C11—H11A	0.9700	_
C12—Cl3	1.755 (2)	C11—H11B	0.9700	
C12—Cl2	1.761 (2)	C1—C7	1.510 (3)	
С12—Н12	0.89 (3)	C8—C9	1.511 (3)	
N1-C11	1.462 (3)	C8—H8A	0.9700	
N1—C8	1.464 (2)	C8—H8B	0.9700	
N1—C7	1.465 (3)	С9—Н9А	0.9700	
N2—C9	1.490 (3)	С9—Н9В	0.9700	
N2-C10	1.491 (3)	C5—C4	1.381 (4)	
N2—H1N	0.852 (17)	С5—Н5	0.9300	
N2—H2N	0.881 (17)	C10—H10A	0.9700	

C2—C1	1.381 (3)	C10—H10B	0.9700
C2—C3	1.391 (3)	C4—C3	1.383 (4)
С2—Н2	0.9300	C4—H4	0.9300
C6—C5	1.387 (3)	C7—H7A	0.9700
C6—C1	1.391 (3)	С7—Н7В	0.9700
С6—Н6	0.9300	С3—Н3	0.9300
C11—C10	1.511 (3)		
Cl4—C12—Cl3	111.93 (13)	С9—С8—Н8А	109.6
Cl4—C12—Cl2	110.52 (13)	N1—C8—H8B	109.6
Cl3—C12—Cl2	110.17 (12)	C9—C8—H8B	109.6
Cl4—C12—H12	108.1 (19)	H8A—C8—H8B	108.2
Cl3—C12—H12	107.5 (19)	N2—C9—C8	110.19 (16)
Cl2—C12—H12	108.5 (18)	N2—C9—H9A	109.6
C11—N1—C8	109.08 (16)	С8—С9—Н9А	109.6
C11—N1—C7	111.36 (16)	N2—C9—H9B	109.6
C8—N1—C7	110.31 (16)	С8—С9—Н9В	109.6
C9—N2—C10	111.57 (16)	H9A—C9—H9B	108.1
C9—N2—H1N	108.5 (19)	C4—C5—C6	120.4 (2)
C10—N2—H1N	108.6 (18)	С4—С5—Н5	119.8
C9—N2—H2N	109.8 (18)	С6—С5—Н5	119.8
C10—N2—H2N	109.3 (18)	N2-C10-C11	110.24 (17)
H1N—N2—H2N	109 (3)	N2-C10-H10A	109.6
C1—C2—C3	120.9 (2)	C11—C10—H10A	109.6
C1—C2—H2	119.5	N2-C10-H10B	109.6
С3—С2—Н2	119.5	C11—C10—H10B	109.6
C5—C6—C1	120.3 (2)	H10A—C10—H10B	108.1
С5—С6—Н6	119.8	C5—C4—C3	119.6 (2)
С1—С6—Н6	119.8	C5—C4—H4	120.2
N1-C11-C10	110.42 (17)	C3—C4—H4	120.2
N1-C11-H11A	109.6	N1—C7—C1	112.66 (17)
C10-C11-H11A	109.6	N1—C7—H7A	109.1
N1-C11-H11B	109.6	C1—C7—H7A	109.1
C10-C11-H11B	109.6	N1—C7—H7B	109.1
H11A—C11—H11B	108.1	C1—C7—H7B	109.1
C2—C1—C6	118.9 (2)	H7A—C7—H7B	107.8
C2—C1—C7	120.9 (2)	C4—C3—C2	119.8 (2)
C6—C1—C7	120.3 (2)	С4—С3—Н3	120.1
N1—C8—C9	110.12 (16)	С2—С3—Н3	120.1
N1—C8—H8A	109.6		
	(1,0,0)		0.1.(4)
$U_8 - N_1 - C_{11} - C_{10}$	-61.9 (2)	C1 - C6 - C5 - C4	0.1(4)
C/-NI-CII-CI0	1/6.10(16)	C9—N2—C10—C11	-53.5 (2)
C_{3} C_{2} C_{1} C_{5}	-0.8(3)	N1 - C11 - C10 - N2	57.5 (2)
$C_{3} = C_{2} = C_{1} = C_{2}$	1/8.5 (2)	$C_0 - C_3 - C_4 - C_3$	-0.5(4)
$C_{5} = C_{6} = C_{1} = C_{7}^{2}$	0.5(3)	$U_{11} - N_{1} - U_{1} - U_{1}$	-63.9(2)
$C_{2} = C_{2} = C_{1} = C_{1}$	-1/8.8(2)	$C_{N} = C_{N} = C_{N}$	1/4.83 (17)
C11—N1—C8—C9	62.1 (2)	C2—C1—C7—N1	115.9 (2)

supporting information

C7—N1—C8—C9	-175.25 (17)	C6—C1—C7—N1	-64.7 (3)
C10—N2—C9—C8	53.8 (2)	C5—C4—C3—C2	0.2 (4)
N1—C8—C9—N2	-58.0 (2)	C1—C2—C3—C4	0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H1 <i>N</i> …Cl1	0.85 (2)	2.30 (2)	3.140 (2)	169 (2)
C12—H12…Cl1	0.89 (3)	2.60 (3)	3.401 (2)	151 (2)
N2—H2N···Cl1 ⁱ	0.88 (2)	2.26 (2)	3.096 (2)	159 (2)
C10—H10A····Cl1 ⁱⁱ	0.97	2.74	3.684 (2)	165

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) –*x*+1, –*y*, –*z*+1.