metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzoato- $\kappa^2 O, O'$)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N, N', N'', N'''$)nickel(II) perchlorate monohydrate

Guang-Chuan Ou,* Min Zhang and Xian-You Yuan

Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China Correspondence e-mail: ouguangchuan@yahoo.com.cn

Received 28 June 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.036; w*R* factor = 0.121; data-to-parameter ratio = 17.8.

The Ni atom in the title salt, $[Ni(C_7H_5O_2)(C_{16}H_{36}N_4)]$ -ClO₄·H₂O, is in a six-coordinate octahedral geometry. The metal atom is chelated by the carboxylate group, and the macrocyclic ligand adopts a folded configuration. The cation, anion and water molecules engage in hydrogen bonding to form a layer structure.

Related literature

For related literature, see: Jiang et al. (2005); Ou et al. (2008).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{2})(\mathrm{C}_{16}\mathrm{H}_{36}\mathrm{N}_{4})]\mathrm{CIO}_{4}\mathrm{\cdot}\mathrm{H}_{2}\mathrm{O}\\ & M_{r}=581.77\\ & \mathrm{Monoclinic}, \ P_{2_{1}}/c\\ & a=15.1239\ (14)\ \mathrm{\mathring{A}}\\ & b=8.9351\ (8)\ \mathrm{\mathring{A}}\\ & c=20.9918\ (19)\ \mathrm{\mathring{A}}\\ & \beta=102.414\ (2)^{\circ} \end{split}$$

 $V = 2770.4 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.84 \text{ mm}^{-1}$ T = 173 (2) K $0.48 \times 0.40 \times 0.21 \text{ mm}$

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.688, T_{max} = 0.843$

Refinement

$R[F^{2} > 2\sigma(F^{2})] = 0.035$ $vR(F^{2}) = 0.121$	H atoms treated by a mixture of independent and constrained
S = 1.10	refinement
007 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
37 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
restraints	

15892 measured reflections

 $R_{\rm int} = 0.023$

6007 independent reflections

4802 reflections with $I > 2\sigma(I)$

Table 1

N

N N

Selected geometric parameters (Å, °).

Ji1-N4	2.0859 (19)	Ni1-N1	2.1333 (19)
Ji1-N2	2.1053 (18)	Ni1-O1	2.1379 (17)
Ni1-N3	2.117 (2)	Ni1-O2	2.1698 (16)
01-Ni1-O2	61.52 (6)		

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdotsO1W$	0.93	2.16	3.080 (3)	168
$O1W-H1D\cdotsO6$	0.844 (19)	2.12 (3)	2.934 (4)	162 (6)
$O1W-H1E\cdotsO2$	0.86 (2)	2.18 (4)	2.931 (3)	146 (5)

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Foundation for University Key Teachers of the Education Department of Hunan Province, and the Key Subject Construction Project of Hunan Province (grant No. 2006-180).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2469).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jiang, L., Feng, X. L. & Lu, T. B. (2005). Cryst. Growth Des. 5, 1469–1475.
 Ou, G. C., Jiang, L., Feng, X. L. & Lu, T. B. (2008). Inorg. Chem. 47, 2710–2718.
 Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2008). E64, m1010 [doi:10.1107/S1600536808020564]

(Benzoato- $\kappa^2 O, O'$)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N, N', N'', N'''$)nickel(II) perchlorate monohydrate

Guang-Chuan Ou, Min Zhang and Xian-You Yuan

S1. Comment

It's important to control the geometries of ML^{2+} [M = Ni(II), Co(II), Cu(II)] with *cis*- or *trans*-conformation, since they form different structures and show different properties (Jiang *et al.*, 2005). A racemic nickel(II) complex with *cis*conformation can be separated to two enantiomers by the reactions of [Ni(rac-L)]²⁺ with chiral amino acid such as phenylalanine (Ou *et al.*, 2008). Then we employ no chiral benzoic acid as separation reagent, but the result of experiment indicate a racemic complex of [Ni(rac-L)(bz)(ClO₄)]H₂O is obtained instead of two enantiomers. In the asymmetric unit of (I), contains one [Ni(rac-L)(bz)]⁺ cation, one [ClO₄]⁻ anion and one water molecule. As illustrated in Fig.1, The six-coordinated Ni²⁺ of [Ni(rac-L)(bz)]⁺ cation display a distorted octahedral geometry by coordination with four N atoms of macrocyclic ligand L in a folded configuration, and two carboxylate oxygen atoms of benzoic acid in *cis*position. The Ni—N distances ranging from 2.086 (19) to 2.133 (19) Å, are slight shorter than the Ni—O distance [2.138 (17) to 2.170 (16) Å] (Table 1). Neighbouring cations and anions are discrete, connected to each other through two intermolecular hydrogen bond (Table 2), water and oxygen atom of benzoato anion, and water and oxygen atom of [ClO₄]⁻ anion (See Fig. 2).

S2. Experimental

benzoic acid (H₂bz, 0.122 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 ml of water. To this solution was added [Ni(rac-L)](ClO₄)₂ (0.541 g, 1 mmol) dissolved in a minimum amount of CH₃CN. The solution was left to stand at room temperature and blue crystals formed after several weeks(yield 53%).

S3. Refinement

H atoms attached to O (water) atoms were located in difference Fourier maps and condtrained to ride on their carrier atoms, with O—H distances in the range 0.82 Å, and with U_{iso} (H) = 1.5 times U_{eq} (O).

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

Two intermolecular hydrogen bond, O1w and O2 of benzoato anion, and O1w and O6 of [ClO₄]⁻ anion.

(Benzoato- $\kappa^2 O, O'$)(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane- $\kappa^4 N, N', N'', N'''$)nickel(II) perchlorate monohydrate

Crystal data

$[Ni(C_7H_5O_2)(C_{16}H_{36}N_4)]ClO_4 \cdot H_2O$
$M_r = 581.77$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 15.1239 (14) Å
<i>b</i> = 8.9351 (8) Å
c = 20.9918 (19) Å
$\beta = 102.414 \ (2)^{\circ}$
V = 2770.4 (4) Å ³
Z = 4

Data collection

Bruker SMART	15892 measured ret
diffractometer	6007 independent r
Radiation source: fine-focus sealed tube	4802 reflections wi
Graphite monochromator	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\rm max} = 27.1^{\circ}, \theta_{\rm min} =$
Absorption correction: multi-scan	$h = -16 \rightarrow 19$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 11$
$T_{\min} = 0.688, \ T_{\max} = 0.843$	$l = -26 \rightarrow 24$

F(000) = 1240 $D_{\rm x} = 1.395 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 8118 reflections $\theta = 2.7 - 27.1^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 173 KBlock, blue $0.48 \times 0.40 \times 0.21 \text{ mm}$

flections eflections ith $I > 2\sigma(I)$ 1.4°

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
6007 reflections	and constrained refinement
337 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0673P)^2 + 1.378P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nil	0.250097 (18)	0.59158 (3)	0.132452 (13)	0.01980 (10)	
N4	0.15871 (13)	0.4136 (2)	0.11775 (9)	0.0229 (4)	
H4D	0.1685	0.3575	0.1559	0.027*	
01	0.30893 (11)	0.79837 (19)	0.11139 (8)	0.0256 (4)	
O2	0.20094 (11)	0.69355 (18)	0.03764 (8)	0.0256 (4)	
N1	0.16886 (12)	0.7161 (2)	0.18507 (9)	0.0226 (4)	
H1C	0.1839	0.8159	0.1806	0.027*	
N3	0.33157 (13)	0.4525 (2)	0.08693 (9)	0.0237 (4)	
H3A	0.3228	0.4868	0.0442	0.028*	
N2	0.33164 (12)	0.5457 (2)	0.22499 (9)	0.0209 (4)	
H2C	0.3111	0.4562	0.2392	0.025*	
C9	0.20586 (16)	0.6787 (3)	0.25445 (11)	0.0259 (5)	
H9A	0.1799	0.5828	0.2653	0.031*	
H9B	0.1890	0.7577	0.2827	0.031*	
C18	0.27474 (16)	0.9066 (3)	0.00497 (11)	0.0233 (5)	
C17	0.26017 (15)	0.7949 (3)	0.05489 (11)	0.0232 (5)	
C10	0.30721 (16)	0.6661 (3)	0.26643 (12)	0.0277 (5)	
H10A	0.3333	0.7623	0.2560	0.033*	
H10B	0.3321	0.6431	0.3130	0.033*	
C13	0.45580 (16)	0.4159 (3)	0.18539 (12)	0.0273 (5)	
H13A	0.4254	0.3212	0.1924	0.033*	
H13B	0.5218	0.3976	0.1982	0.033*	
C11	0.43209 (15)	0.5309 (3)	0.23209 (11)	0.0249 (5)	
H11	0.4566	0.6300	0.2221	0.030*	

C2	0.18611 (17)	0.3218 (3)	0.06704 (12)	0.0296 (5)
H2A	0.1664	0.3708	0.0240	0.036*
H2B	0.1566	0.2225	0.0650	0.036*
C14	0.43295 (16)	0.4485 (3)	0.11189 (12)	0.0273 (5)
C16	0.47053 (18)	0.5992 (3)	0.09632 (14)	0.0355 (6)
H16A	0.5365	0.5997	0.1117	0.053*
H16B	0.4439	0.6791	0.1182	0.053*
H16C	0.4553	0.6158	0.0491	0.053*
C3	0.06071 (15)	0.4551 (3)	0.10069 (12)	0.0273(5)
H3	0.0499	0.5183	0.0604	0.033*
C8	0.02322(18)	0 7801 (3)	0 21821 (14)	0.0375 (6)
H8A	0.0347	0.7164	0.2571	0.056*
H8B	-0.0422	0.7892	0.2014	0.056*
HSC	0.0422	0.8796	0.22014	0.056*
C5	0.0491 0.03588 (16)	0.5467(3)	0.2270	0.0300 (5)
	-0.0300 (10)	0.5467 (5)	0.13009 (13)	0.0300 (3)
	-0.0309	0.3402	0.1490	0.030*
	0.0000	0.4951	0.19/4	0.030°
U21	0.3060 (2)	1.1047 (3)	-0.08971 (13)	0.0344 (6)
H21	0.3168	1.1/26	-0.1220	0.041*
C23	0.20363 (17)	0.9519 (3)	-0.04531 (13)	0.0318 (6)
H23	0.1443	0.9144	-0.0475	0.038*
C22	0.21979 (19)	1.0518 (3)	-0.09210 (13)	0.0368 (6)
H22	0.1712	1.0839	-0.1259	0.044*
C20	0.37688 (18)	1.0589 (3)	-0.04021 (13)	0.0313 (6)
H20	0.4365	1.0940	-0.0391	0.038*
C1	0.28810 (17)	0.3027 (3)	0.08246 (13)	0.0312 (6)
H1A	0.3076	0.2488	0.1243	0.037*
H1B	0.3066	0.2432	0.0478	0.037*
C7	0.03832 (18)	0.8008 (3)	0.10272 (13)	0.0362 (6)
H7A	0.0533	0.9065	0.1118	0.054*
H7B	-0.0271	0.7904	0.0863	0.054*
H7C	0.0703	0.7638	0.0699	0.054*
C19	0.36099 (16)	0.9624 (3)	0.00744 (12)	0.0278 (5)
H19	0.4094	0.9340	0.0422	0.033*
C12	0.47882 (18)	0.4865 (3)	0.30144 (12)	0.0351 (6)
H12A	0.4629	0.5584	0.3324	0.053*
H12B	0.5446	0.4866	0.3054	0.053*
H12C	0 4 5 9 0	0 3862	0 3110	0.053*
C4	-0.00056(18)	0.3171(3)	0.08730(14)	0.0389(7)
H4A	0.0125	0.2620	0.0500	0.058*
H4R	-0.0641	0.3488	0.0774	0.058*
	0.0041	0.2523	0.1250	0.058*
114C	0.0107 0.06727(15)	0.2323 0.7007 (2)	0.1259	0.038°
C0	0.00727(13) 0.47577(10)	0.7097(3)	0.10554(11) 0.07671(12)	0.0200(3)
	0.4/3//(19)	0.3207 (3)	0.07071 (13)	0.05/3(0)
ПIЭА UISD	0.3419	0.3337	0.0883	0.030*
нізв	0.4550	0.3380	0.0294	0.056*
HISC OTW	0.45/8	0.2279	0.0897	0.000*
UIW	0.2792 (2)	0.5335 (4)	-0.05895 (13)	0.0872 (11)

IIID		0.505 (7)	0.0042 (10)	0.101*
HID	0.246 (3)	0.505 (7)	-0.0943 (18)	0.131*
H1E	0.238 (3)	0.581 (6)	-0.045 (3)	0.131*
Cl1	0.23445 (4)	0.37222 (7)	-0.24307 (3)	0.03201 (16)
O3	0.21061 (14)	0.2166 (2)	-0.24210 (9)	0.0415 (5)
O5	0.19455 (19)	0.4317 (2)	-0.30582 (11)	0.0585 (7)
O4	0.32947 (18)	0.3837 (4)	-0.23043 (17)	0.0865 (10)
O6	0.1992 (2)	0.4479 (3)	-0.19397 (11)	0.0654 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01889 (16)	0.02163 (17)	0.01882 (16)	-0.00185 (11)	0.00392 (11)	0.00090 (11)
N4	0.0240 (10)	0.0251 (10)	0.0189 (9)	-0.0024 (8)	0.0033 (8)	0.0007 (7)
01	0.0255 (8)	0.0277 (9)	0.0232 (8)	-0.0025 (7)	0.0043 (7)	0.0029 (7)
O2	0.0244 (8)	0.0258 (9)	0.0255 (8)	-0.0029 (7)	0.0032 (7)	0.0017 (7)
N1	0.0207 (9)	0.0227 (10)	0.0246 (10)	-0.0001 (8)	0.0057 (8)	0.0002 (8)
N3	0.0209 (9)	0.0282 (11)	0.0224 (10)	-0.0001 (8)	0.0056 (8)	0.0008 (8)
N2	0.0192 (9)	0.0232 (10)	0.0198 (9)	-0.0005 (7)	0.0034 (7)	0.0013 (7)
C9	0.0291 (12)	0.0268 (13)	0.0226 (11)	0.0015 (10)	0.0074 (9)	-0.0020 (9)
C18	0.0246 (11)	0.0233 (12)	0.0235 (11)	0.0021 (9)	0.0083 (9)	0.0006 (9)
C17	0.0201 (11)	0.0244 (12)	0.0256 (11)	0.0035 (9)	0.0063 (9)	0.0003 (9)
C10	0.0284 (13)	0.0283 (13)	0.0245 (12)	0.0003 (10)	0.0012 (10)	-0.0041 (10)
C13	0.0232 (12)	0.0300 (13)	0.0276 (12)	0.0031 (9)	0.0034 (10)	0.0012 (10)
C11	0.0208 (11)	0.0282 (13)	0.0249 (12)	-0.0010 (9)	0.0028 (9)	0.0030 (9)
C2	0.0296 (13)	0.0339 (14)	0.0257 (12)	-0.0074 (10)	0.0067 (10)	-0.0093 (10)
C14	0.0221 (12)	0.0329 (13)	0.0282 (12)	0.0024 (10)	0.0082 (10)	0.0010 (10)
C16	0.0263 (13)	0.0443 (17)	0.0367 (15)	-0.0027 (11)	0.0090 (11)	0.0089 (12)
C3	0.0193 (11)	0.0340 (14)	0.0269 (12)	-0.0038 (10)	0.0015 (9)	-0.0004 (10)
C8	0.0302 (13)	0.0434 (17)	0.0420 (16)	0.0040 (12)	0.0142 (12)	-0.0067 (12)
C5	0.0205 (12)	0.0370 (14)	0.0331 (13)	-0.0047 (10)	0.0073 (10)	-0.0024 (11)
C21	0.0448 (16)	0.0312 (14)	0.0316 (14)	0.0048 (11)	0.0182 (12)	0.0095 (11)
C23	0.0252 (12)	0.0350 (14)	0.0343 (14)	-0.0005 (10)	0.0042 (10)	0.0050 (11)
C22	0.0345 (14)	0.0425 (16)	0.0311 (14)	0.0068 (12)	0.0018 (11)	0.0102 (12)
C20	0.0285 (13)	0.0333 (14)	0.0353 (14)	-0.0006 (11)	0.0138 (11)	0.0035 (11)
C1	0.0333 (14)	0.0250 (13)	0.0377 (14)	-0.0004 (10)	0.0129 (11)	-0.0067 (10)
C7	0.0269 (13)	0.0417 (16)	0.0378 (14)	0.0092 (11)	0.0023 (11)	0.0027 (12)
C19	0.0234 (12)	0.0320 (13)	0.0284 (12)	0.0027 (10)	0.0066 (10)	0.0046 (10)
C12	0.0290 (13)	0.0463 (17)	0.0266 (13)	0.0064 (12)	-0.0017 (10)	0.0001 (12)
C4	0.0270 (13)	0.0446 (17)	0.0444 (16)	-0.0144 (12)	0.0060 (11)	-0.0119 (13)
C6	0.0212 (11)	0.0329 (14)	0.0253 (12)	0.0016 (10)	0.0045 (9)	-0.0017 (10)
C15	0.0332 (14)	0.0447 (17)	0.0371 (15)	0.0087 (12)	0.0134 (11)	0.0004 (12)
O1W	0.108 (3)	0.104 (2)	0.0420 (15)	0.051 (2)	-0.0002 (15)	-0.0162 (15)
Cl1	0.0377 (3)	0.0263 (3)	0.0303 (3)	0.0022 (2)	0.0035 (3)	-0.0017 (2)
O3	0.0604 (13)	0.0272 (10)	0.0369 (10)	-0.0006 (9)	0.0105 (9)	0.0005 (8)
05	0.096 (2)	0.0360 (12)	0.0376 (12)	0.0114 (12)	0.0018 (12)	0.0082 (9)
O4	0.0395 (14)	0.112 (3)	0.104 (2)	-0.0220 (15)	0.0060 (15)	0.0054 (19)
O6	0.097 (2)	0.0534 (15)	0.0436 (13)	0.0220 (14)	0.0098 (13)	-0.0208 (11)

Geometric parameters (Å, °)

Ni1—N4	2.0859 (19)	C16—H16C	0.9800
Ni1—N2	2.1053 (18)	C3—C4	1.532 (3)
Ni1—N3	2.117 (2)	C3—C5	1.533 (4)
Ni1—N1	2.1333 (19)	С3—Н3	1.0000
Ni1-01	2.1379 (17)	C8—C6	1.542 (3)
Ni1—02	2.1698 (16)	C8—H8A	0.9800
N4—C2	1.472 (3)	C8—H8B	0.9800
N4—C3	1.495 (3)	C8—H8C	0.9800
N4—H4D	0.9300	C5—C6	1.531 (4)
O1—C17	1.255 (3)	С5—Н5А	0.9900
O2—C17	1.271 (3)	С5—Н5В	0.9900
N1-C9	1.482 (3)	C21—C22	1.377 (4)
N1—C6	1.504 (3)	C21—C20	1.385 (4)
N1—H1C	0.9300	C21—H21	0.9500
N3—C1	1.485 (3)	C23—C22	1.387 (4)
N3—C14	1.510 (3)	C23—H23	0.9500
N3—H3A	0.9300	C22—H22	0.9500
N2-C10	1.480 (3)	C20—C19	1.380 (3)
N2-C11	1.500 (3)	C20—H20	0.9500
N2—H2C	0.9300	C1—H1A	0.9900
C9—C10	1.503 (3)	C1—H1B	0.9900
С9—Н9А	0.9900	C7—C6	1.531 (4)
С9—Н9В	0.9900	C7—H7A	0.9800
C18—C19	1.387 (3)	С7—Н7В	0.9800
C18—C23	1.395 (3)	C7—H7C	0.9800
C18—C17	1.497 (3)	C19—H19	0.9500
C10—H10A	0.9900	C12—H12A	0.9800
C10—H10B	0.9900	C12—H12B	0.9800
C13—C11	1.515 (3)	C12—H12C	0.9800
C13—C14	1.535 (3)	C4—H4A	0.9800
С13—Н13А	0.9900	C4—H4B	0.9800
C13—H13B	0.9900	C4—H4C	0.9800
C11—C12	1.528 (3)	C15—H15A	0.9800
C11—H11	1.0000	C15—H15B	0.9800
C2—C1	1.516 (3)	C15—H15C	0.9800
C2—H2A	0.9900	O1W—H1D	0.844 (19)
C2—H2B	0.9900	O1W—H1E	0.86 (2)
C14—C16	1.524 (4)	Cl1—O4	1.408 (3)
C14—C15	1.535 (4)	Cl1—O5	1.428 (2)
C16—H16A	0.9800	Cl1—O6	1.428 (2)
C16—H16B	0.9800	Cl1—O3	1.437 (2)
N4—Ni1—N2	103.07 (8)	C16—C14—C15	108.0 (2)
N4—Ni1—N3	85.25 (8)	C13—C14—C15	108.8 (2)
N2—Ni1—N3	91.14 (7)	C14—C16—H16A	109.5
N4—Ni1—N1	92.13 (8)	C14—C16—H16B	109.5

N3—Ni1—N1 174.71 (8) C14—C16—H16C N4—Ni1—O1 156.97 (7) H16A—C16—H16C N2 Ni1 O1 00 80 (7)	109.5 109.5
N4—Ni1—O1 156.97 (7) H16A—C16—H16C	109.5
N2 N:1 O1 $00.90(7)$ U16D C16 U16C	
IN2—INII—UI 99.09(/) HI0B—UI0—HI0U	109.5
N3—Ni1—O1 96.05 (7) N4—C3—C4	111.9 (2)
N1—Ni1—O1 88.16 (7) N4—C3—C5	110.04 (19)
N4—Ni1—O2 95.68 (7) C4—C3—C5	109.4 (2)
N2—Ni1—O2 160.97 (7) N4—C3—H3	108.5
N3—Ni1—O2 87.15 (7) C4—C3—H3	108.5
N1—Ni1—O2 97.70 (7) C5—C3—H3	108.5
O1—Ni1—O2 61.52 (6) C6—C8—H8A	109.5
C2—N4—C3 112.56 (18) C6—C8—H8B	109.5
C2—N4—Ni1 104.54 (14) H8A—C8—H8B	109.5
C3—N4—Ni1 115.95 (15) C6—C8—H8C	109.5
C2—N4—H4D 107.8 H8A—C8—H8C	109.5
C3—N4—H4D 107.8 H8B—C8—H8C	109.5
Ni1—N4—H4D 107.8 C6—C5—C3	119.1 (2)
C17—O1—Ni1 89.32 (14) C6—C5—H5A	107.5
C17—O2—Ni1 87.50 (13) C3—C5—H5A	107.5
C9—N1—C6 114.04 (17) C6—C5—H5B	107.5
C9—N1—Ni1 104.68 (13) C3—C5—H5B	107.5
C6—N1—Ni1 120.50 (14) H5A—C5—H5B	107.0
C9—N1—H1C 105.5 C22—C21—C20	120.0 (2)
C6—N1—H1C 105.5 C22—C21—H21	120.0
Ni1—N1—H1C 105.5 C20—C21—H21	120.0
C1—N3—C14 113.78 (19) C22—C23—C18	119.9 (2)
C1—N3—Ni1 105.34 (14) C22—C23—H23	120.1
C14—N3—Ni1 120.21 (15) C18—C23—H23	120.1
C1—N3—H3A 105.4 C21—C22—C23	120.3 (2)
C14—N3—H3A 105.4 C21—C22—H22	119.9
Ni1—N3—H3A 105.4 C23—C22—H22	119.9
C10—N2—C11 112.42 (18) C19—C20—C21	120.0 (2)
C10—N2—Ni1 103.31 (14) C19—C20—H20	120.0
C11—N2—Ni1 119.26 (14) C21—C20—H20	120.0
C10—N2—H2C 107.1 N3—C1—C2	109.2 (2)
C11—N2—H2C 107.1 N3—C1—H1A	109.8
Ni1—N2—H2C 107.1 C2—C1—H1A	109.8
N1—C9—C10 109.72 (18) N3—C1—H1B	109.8
N1—C9—H9A 109.7 C2—C1—H1B	109.8
С10—С9—Н9А 109.7 Н1А—С1—Н1В	108.3
N1—C9—H9B 109.7 C6—C7—H7A	109.5
С10—С9—Н9В 109.7 С6—С7—Н7В	109.5
Н9А—С9—Н9В 108.2 Н7А—С7—Н7В	109.5
C19—C18—C23 119.3 (2) C6—C7—H7C	109.5
C19—C18—C17 119.5 (2) H7A—C7—H7C	109.5
C23—C18—C17 121.1 (2) H7B—C7—H7C	109.5
O1—C17—O2 121.4 (2) C20—C19—C18	120.4 (2)
O1—C17—C18 120.0 (2) C20—C19—H19	119.8

O2—C17—C18	118.5 (2)	C18—C19—H19	119.8
O1—C17—Ni1	60.09 (12)	C11—C12—H12A	109.5
O2—C17—Ni1	61.52 (12)	C11—C12—H12B	109.5
C18—C17—Ni1	172.92 (16)	H12A—C12—H12B	109.5
N2—C10—C9	109.31 (19)	C11—C12—H12C	109.5
N2—C10—H10A	109.8	H12A—C12—H12C	109.5
C9—C10—H10A	109.8	H12B—C12—H12C	109.5
N2—C10—H10B	109.8	C3—C4—H4A	109.5
C9—C10—H10B	109.8	C3—C4—H4B	109.5
H10A-C10-H10B	108.3	H4A—C4—H4B	109.5
C11—C13—C14	119.2 (2)	C3—C4—H4C	109.5
C11—C13—H13A	107.5	H4A—C4—H4C	109.5
C14—C13—H13A	107.5	H4B—C4—H4C	109.5
C11—C13—H13B	107.5	N1—C6—C7	107.51 (19)
C14—C13—H13B	107.5	N1—C6—C5	109.96 (19)
H13A—C13—H13B	107.0	C7—C6—C5	111.7 (2)
N2—C11—C13	111.78 (19)	N1	111.26 (19)
N2—C11—C12	111.64 (19)	C7—C6—C8	108.2 (2)
C13—C11—C12	108.4 (2)	C5—C6—C8	108.1 (2)
N2—C11—H11	108.3	C14—C15—H15A	109.5
C13—C11—H11	108.3	C14—C15—H15B	109.5
C12—C11—H11	108.3	H15A—C15—H15B	109.5
N4—C2—C1	109.87 (19)	C14—C15—H15C	109.5
N4—C2—H2A	109.7	H15A—C15—H15C	109.5
C1—C2—H2A	109.7	H15B—C15—H15C	109.5
N4—C2—H2B	109.7	H1D—O1W—H1E	96 (5)
C1—C2—H2B	109.7	O4—Cl1—O5	110.99 (19)
H2A—C2—H2B	108.2	O4—Cl1—O6	110.70 (19)
N3—C14—C16	107.6 (2)	O5—Cl1—O6	109.89 (15)
N3—C14—C13	110.23 (19)	O4—Cl1—O3	108.47 (17)
C16—C14—C13	111.7 (2)	O5—Cl1—O3	108.38 (13)
N3—C14—C15	110.6 (2)	O6—C11—O3	108.32 (15)
N2—Ni1—N4—C2	-108.67 (15)	C19—C18—C17—O2	-145.7 (2)
N3—Ni1—N4—C2	-18.60 (15)	C23—C18—C17—O2	32.2 (3)
N1—Ni1—N4—C2	166.01 (15)	N4—Ni1—C17—O1	174.52 (12)
O1—Ni1—N4—C2	75.7 (2)	N2—Ni1—C17—O1	-9.01 (17)
O2—Ni1—N4—C2	68.05 (15)	N3—Ni1—C17—O1	-100.98 (13)
C17—Ni1—N4—C2	68.56 (17)	N1—Ni1—C17—O1	78.34 (14)
N2—Ni1—N4—C3	126.78 (15)	O2—Ni1—C17—O1	175.5 (2)
N3—Ni1—N4—C3	-143.15 (16)	N4—Ni1—C17—O2	-0.99 (17)
N1—Ni1—N4—C3	41.46 (16)	N2—Ni1—C17—O2	175.48 (12)
O1—Ni1—N4—C3	-48.8 (3)	N3—Ni1—C17—O2	83.51 (13)
O2—Ni1—N4—C3	-56.50 (16)	N1—Ni1—C17—O2	-97.16 (13)
C17—Ni1—N4—C3	-55.99 (18)	O1—Ni1—C17—O2	-175.5 (2)
N4—Ni1—O1—C17	-11.3 (3)	C11—N2—C10—C9	177.47 (19)
N2-Ni1-01-C17	173.02 (13)	Ni1—N2—C10—C9	47.6 (2)
N3—Ni1—O1—C17	80.80 (14)	N1—C9—C10—N2	-60.6 (3)

N1—Ni1—O1—C17	-102.42 (14)	C10—N2—C11—C13	-175.36 (19)
O2—Ni1—O1—C17	-2.63 (13)	Ni1—N2—C11—C13	-54.3 (2)
N4—Ni1—O2—C17	179.21 (13)	C10-N2-C11-C12	63.1 (3)
N2—Ni1—O2—C17	-10.6 (3)	Ni1—N2—C11—C12	-175.85 (17)
N3—Ni1—O2—C17	-95.85 (14)	C14—C13—C11—N2	68.1 (3)
N1—Ni1—O2—C17	86.27 (14)	C14—C13—C11—C12	-168.4 (2)
O1—Ni1—O2—C17	2.60 (12)	C3—N4—C2—C1	171.8 (2)
N4—Ni1—N1—C9	93.70 (15)	Ni1—N4—C2—C1	45.1 (2)
N2—Ni1—N1—C9	-9.24 (14)	C1—N3—C14—C16	164.6 (2)
O1—Ni1—N1—C9	-109.34 (14)	Ni1—N3—C14—C16	-69.1 (2)
O2—Ni1—N1—C9	-170.27 (14)	C1—N3—C14—C13	-73.3 (2)
C17—Ni1—N1—C9	-139.25 (14)	Ni1—N3—C14—C13	52.9 (2)
N4—Ni1—N1—C6	-36.32 (17)	C1—N3—C14—C15	47.0 (3)
N2—Ni1—N1—C6	-139.26 (17)	Ni1—N3—C14—C15	173.21 (16)
O1—Ni1—N1—C6	120.64 (17)	C11—C13—C14—N3	-66.7 (3)
O2—Ni1—N1—C6	59.71 (17)	C11—C13—C14—C16	52.9 (3)
C17—Ni1—N1—C6	90.73 (17)	C11—C13—C14—C15	171.9 (2)
N4—Ni1—N3—C1	-10.58 (15)	C2—N4—C3—C4	56.6 (3)
N2—Ni1—N3—C1	92.45 (15)	Ni1—N4—C3—C4	176.92 (17)
O1—Ni1—N3—C1	-167.48 (15)	C2—N4—C3—C5	178.5 (2)
O2—Ni1—N3—C1	-106.52 (15)	Ni1—N4—C3—C5	-61.2 (2)
C17—Ni1—N3—C1	-137.33 (15)	N4—C3—C5—C6	74.1 (3)
N4—Ni1—N3—C14	-140.64 (17)	C4—C3—C5—C6	-162.6 (2)
N2—Ni1—N3—C14	-37.62 (17)	C19—C18—C23—C22	0.0 (4)
O1—Ni1—N3—C14	62.45 (17)	C17—C18—C23—C22	-177.9 (2)
O2—Ni1—N3—C14	123.41 (17)	C20—C21—C22—C23	-0.4 (4)
N4—Ni1—N2—C10	-111.54 (15)	C18—C23—C22—C21	1.0 (4)
N3—Ni1—N2—C10	163.07 (15)	C22—C21—C20—C19	-1.2 (4)
N1—Ni1—N2—C10	-20.52 (14)	C14—N3—C1—C2	171.41 (19)
O1—Ni1—N2—C10	66.73 (15)	Ni1—N3—C1—C2	37.7 (2)
O2—Ni1—N2—C10	78.5 (3)	N4-C2-C1-N3	-58.1 (3)
C17—Ni1—N2—C10	71.37 (17)	C21-C20-C19-C18	2.2 (4)
N4—Ni1—N2—C11	122.90 (17)	C23—C18—C19—C20	-1.6 (4)
N3—Ni1—N2—C11	37.51 (17)	C17—C18—C19—C20	176.3 (2)
N1—Ni1—N2—C11	-146.08 (17)	C9—N1—C6—C7	160.6 (2)
O1—Ni1—N2—C11	-58.84 (17)	Ni1—N1—C6—C7	-73.6 (2)
O2—Ni1—N2—C11	-47.1 (3)	C9—N1—C6—C5	-77.6 (2)
C6—N1—C9—C10	171.69 (19)	Ni1—N1—C6—C5	48.2 (2)
Ni1—N1—C9—C10	38.0 (2)	C9—N1—C6—C8	42.2 (3)
Ni1—O1—C17—O2	4.6 (2)	Ni1—N1—C6—C8	168.01 (17)
Ni1-01-C17-C18	-171.82 (19)	C3—C5—C6—N1	-65.4 (3)
Ni1—O2—C17—O1	-4.6 (2)	C3—C5—C6—C7	53.9 (3)
C19—C18—C17—O1	30.9 (3)	C3—C5—C6—C8	172.9 (2)
C23—C18—C17—O1	-151.3 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>A</i> ···O1 <i>W</i>	0.93	2.16	3.080 (3)	168
O1 <i>W</i> —H1 <i>D</i> ···O6	0.84 (2)	2.12 (3)	2.934 (4)	162 (6)
O1 <i>W</i> —H1 <i>E</i> ···O2	0.86 (2)	2.18 (4)	2.931 (3)	146 (5)