

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,6-Dioxo-1,10-phenanthrolin-1-ium trifluoromethanesulfonate

Jonathan Onuegbu, Ray J. Butcher,* Charles Hosten, Uche Charles Udeochu and Oladapo Bakare

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 9 January 2008; accepted 30 May 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.077; data-to-parameter ratio = 18.3.

In the structure of the title salt, $C_{12}H_7N_2O_2^+ \cdot CF_3SO_3^-$, the cation participates in hydrogen bonding with the dione group of an adjacent cation as well as with the trifluoromethane-sulfonate anion. In addition, there is an extensive network of $C-H \cdot \cdot \cdot O$ interactions between the cations and anions. There are two formula units per asymmetric unit. The crystal studied exhibits inversion twinning.

Related literature

For literature on the coordinating ability of phendione, see: Calderazzo *et al.* (1999, 2002); Calucci *et al.* (2006); Fox *et al.* (1991); Galet *et al.* (2005); Lei *et al.* (1996); Okamura *et al.* (2006); Paw & Eisenberg (1997); Ruiz *et al.* (1999); Shavaleev *et al.* (2003*a,b*); Ma *et al.* (2002). For our own reports on phendione, see: Onuegbu *et al.* (2007); Udeochu *et al.* (2007).

Experimental

Crystal data $C_{12}H_7N_2O_2^+ \cdot CF_3O_3S^-M_r = 360.27$ Monoclinic, $P2_1$ a = 6.4896 (2) Å b = 16.3963 (5) Å c = 13.2430 (3) Å $\beta = 94.393$ (2)°

 $V = 1404.99 (7) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 200 (2) K $0.51 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Oxford Diffraction Gemini R diffractometer Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007)

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.076$ S = 0.947960 reflections 434 parameters 1 restraint $T_{\min} = 0.897, T_{\max} = 1.000$ (expected range = 0.850–0.948) 13319 measured reflections 7960 independent reflections 5208 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

H-atom parameters constrained $\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 2713 Friedel pairs Flack parameter: 0.40 (5)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1AB \cdots O22$ $N1B - H1BB \cdots O12$	0.88 0.88	2.01 2.02	2.830 (2) 2.835 (2)	154 154

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2417).

References

- Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). Dalton Trans. pp. 4389–4396.
- Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). *Inorg. Chim. Acta*, 330, 136–142.
- Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). *Inorg. Chim. Acta*, **359**, 3911–3920.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). *Inorg. Chem.* 30, 2895– 2899.
- Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985–1987.
- Lei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem. 35, 3044–3049.
- Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307-1314.
- Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). *Bull. Chem. Soc. Jpn*, **79**, 106–112.
- Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). *Acta Cryst.* E63, m2309–m2310.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK. Oxford Diffraction Ltd, Abingdon, England.
- Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.
- Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). *Inorg. Chem. Commun.* 2, 521–523.
- Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). *Chem. Commun.* pp. 1134–1135.
- Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). *Chem. Eur. J.* 9, 5283–5291.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Udeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409–3415.

supporting information

Acta Cryst. (2008). E64, o1543 [doi:10.1107/S1600536808016632]

5,6-Dioxo-1,10-phenanthrolin-1-ium trifluoromethanesulfonate

Jonathan Onuegbu, Ray J. Butcher, Charles Hosten, Uche Charles Udeochu and Oladapo Bakare

S1. Comment

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties (Ma *et al.*, 2002; Calderazzo *et al.*, 1999, 2002; Calucci *et al.*, 2006; Galet *et al.*, 2005; Lei *et al.*, 1996; Okamura *et al.*, 2006). This well known ligand posssesses both the α-diimine and orthoquinone moieties. While phendione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Calderazzo *et al.*, 1999; Fox *et al.*, 1991; Shavaleev *et al.*, 2003*a,b*; Ruiz *et al.*, 1999; Paw & Eisenberg, 1997). In this paper as part of our study of phendione chemistry (Udeochu *et al.*, 2007; Onuegbu *et al.*, 2007) we report the synthesis and characterization of the trifluoromethanesulfonate salt of mono-protonated 1,10-phenanthroline-5,6-dione.

The structure consists of a mono-protonated phendione cation and a trifluoromethanesulfonate (CF_3SO_3) anion. The C=O bond lengths in the phendione cation (1.208 (2), 1.209 (2) and the metrical parameters involving the phendione N atoms are comparable in value to those found in neutral 1,10-phenanthroline-5,6-dione.

The N—H protons participate in hydrogen bonds with adjoining phendione cations. In addition there is an extensive network of weak C—H \cdots O interactions to both phendione O and trifluoromethanesulfonate O atoms.

S2. Experimental

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 ml) was added in small portions, followed by drop wise addition of concentrated nitric acid (10 ml). The resulting solution was heated for 2 h at 80–85° C and cooled to room temperature. The solution was then poured into 400 ml water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol–water mixture.

The title compound was synthesized in an atmosphere saturated with N_2 . To a solution of silver trifluoromethanesulfonate (0.079 g) in 10 ml CH₃CN (acidified to pH 2 using concentrated triflic acid), was added a solution (10 ml) of CH₃CN containing 0.065 g of phendione (acidified to pH 2 using triflic acid). The final yellowish solution was filtered and allowed to slowly evaporate yield reddish brown crystals of the title compound.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms attached to N in the phendione cation were idealized with an N —H distance of 0.88 Å.

Figure 1

View of the two formula units in the asymmetric unit showing the atom-labeling scheme. Dotted lines indicate the hydrogen bonding interactions. Displacement ellipsoids are drawn at the 20% probability level.

Figure 2

The molecular packing of (I) viewed approximately along the b axis. Dotted lines indicate the hydrogen bonding interactions.

5,6-Dioxo-1,10-phenanthrolin-1-ium trifluoromethanesulfonate

F(000) = 728
$D_{\rm x} = 1.703 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5857 reflections
$\theta = 4.7 - 32.5^{\circ}$
$\mu = 0.30 \text{ mm}^{-1}$
T = 200 K
Needle, yellow-orange
$0.51 \times 0.22 \times 0.18 \text{ mm}$

Absorption correction: multi-scan

Diffraction, 2007)] $T_{\min} = 0.897, T_{\max} = 1.000$

 $\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 4.7^{\circ}$

 $R_{\rm int} = 0.023$

 $h = -9 \rightarrow 7$ $k = -24 \rightarrow 21$ $l = -19 \rightarrow 19$

13319 measured reflections 7960 independent reflections 5208 reflections with $I > 2\sigma(I)$

harmonics, implemented in SCALE3

ABSPACK scaling algorithm (Oxford

[Empirical absorption correction using spherical

Data collection

Oxford Diffraction Gemini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ φ and ω scans

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.034$ H-atom parameters constrained $wR(F^2) = 0.077$ $w = 1/[\sigma^2(F_0^2) + (0.0394P)^2]$ S = 0.94where $P = (F_0^2 + 2F_c^2)/3$ 7960 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 434 parameters $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), with 2713 direct methods Friedel pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.40(5)map

Special details

Experimental. The data were measured to a 2θ limit of 50 °, but the low completeness was caused by Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
S1	0.64118 (7)	0.25922 (3)	0.84492 (4)	0.02642 (11)	
S2	0.86022 (7)	0.38484 (3)	0.23321 (3)	0.02618 (11)	
F11	0.7237 (3)	0.10424 (9)	0.86156 (13)	0.0732 (5)	
F12	0.9730 (2)	0.17770 (11)	0.81474 (14)	0.0735 (5)	
F13	0.7153 (2)	0.14825 (10)	0.70995 (11)	0.0604 (4)	
F21	0.7945 (2)	0.49049 (10)	0.37563 (11)	0.0648 (4)	
F22	0.7727 (3)	0.54033 (10)	0.22511 (15)	0.0759 (5)	
F23	0.5298 (2)	0.46511 (10)	0.27365 (13)	0.0636 (4)	
011	0.7135 (2)	0.26580 (11)	0.94979 (10)	0.0419 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\tilde{A}^2)

O12	0.7202 (2)	0.32177 (10)	0.78073 (11)	0.0340 (3)
O13	0.4246 (2)	0.24330 (10)	0.82584 (11)	0.0376 (4)
O21	1.0772 (2)	0.40075 (10)	0.25085 (11)	0.0390 (4)
O22	0.7848 (2)	0.32033 (9)	0.29570 (11)	0.0346 (4)
O23	0.7822 (2)	0.38146 (11)	0.12885 (10)	0.0422 (4)
O1A	-0.2484 (2)	0.12049 (10)	0.20079 (13)	0.0400 (4)
O2A	-0.2548 (2)	0.12362 (10)	0.40583 (13)	0.0457 (4)
O1B	1.7556 (2)	0.51876 (9)	0.87690 (12)	0.0386 (4)
O2B	1.7531 (2)	0.52437 (10)	0.67146 (12)	0.0431 (4)
N1A	0.4031 (2)	0.24850 (11)	0.22669 (12)	0.0254 (4)
H1AB	0.5045	0.2692	0.2666	0.030*
N2A	0.4147 (3)	0.24527 (12)	0.42945 (13)	0.0319 (4)
N1B	1.1004 (2)	0.39478 (11)	0.85110 (12)	0.0258 (4)
H1BB	1.0012	0.3723	0.8115	0.031*
N2B	1.0923 (3)	0.39406 (12)	0.64828 (13)	0.0327 (4)
C1	0.7697 (4)	0.16729 (15)	0.80584 (17)	0.0387 (6)
C2	0.7337 (4)	0.47486 (15)	0.27958 (18)	0.0402 (6)
C1A	0.4191 (3)	0.25021 (14)	0.12634 (15)	0.0314 (5)
H1AA	0.5384	0.2729	0.0999	0.038*
C2A	0.2629 (3)	0.21907 (14)	0.06179 (17)	0.0322 (5)
H2AA	0.2737	0.2197	-0.0093	0.039*
C3A	0.0900 (3)	0.18683 (13)	0.10145 (17)	0.0301 (5)
H3AA	-0.0202	0.1658	0.0577	0.036*
C4A	0.0781 (3)	0.18525 (12)	0.20630 (15)	0.0241 (4)
C5A	-0.1030 (3)	0.14900 (13)	0.25125 (17)	0.0289 (5)
C6A	-0.1038 (3)	0.14924 (13)	0.36802 (17)	0.0315 (5)
C7A	0.0806 (3)	0.18109 (13)	0.42748 (16)	0.0288 (5)
C8A	0.0996 (4)	0.17678 (15)	0.53295 (16)	0.0389 (5)
H8AA	-0.0078	0.1535	0.5684	0.047*
C9A	0.2741 (4)	0.20637 (15)	0.58490 (18)	0.0444 (6)
H9AA	0.2901	0.2038	0.6567	0.053*
C10A	0.4267 (4)	0.23999 (16)	0.53074 (17)	0.0432 (6)
H10B	0.5472	0.2606	0.5674	0.052*
C11A	0.2440 (3)	0.21495 (12)	0.37991 (15)	0.0246 (4)
C12A	0.2397 (3)	0.21671 (12)	0.26908 (15)	0.0216 (4)
C1B	1.0812 (3)	0.39649 (13)	0.95094 (14)	0.0286 (4)
H1BA	0.9613	0.3742	0.9774	0.034*
C2B	1.2347 (3)	0.43041 (13)	1.01586 (15)	0.0318 (5)
H2BA	1.2203	0.4329	1.0866	0.038*
C3B	1.4085 (3)	0.46050 (13)	0.97591 (15)	0.0305 (5)
H3BA	1.5180	0.4824	1.0194	0.037*
C4B	1.4242 (3)	0.45896 (12)	0.87118 (15)	0.0245 (4)
C5B	1.6077 (3)	0.49192 (13)	0.82586 (16)	0.0284 (5)
C6B	1.6070 (3)	0.49306 (13)	0.70872 (16)	0.0303 (5)
C7B	1.4283 (3)	0.45768 (13)	0.65019 (15)	0.0289 (5)
C8B	1.4144 (4)	0.45842 (15)	0.54424 (17)	0.0393 (6)
H8BA	1.5239	0.4797	0.5085	0.047*
C9B	1.2398 (4)	0.42780 (16)	0.49305 (17)	0.0463 (7)

supporting information

H9BA	1.2255	0.4283	0.4211	0.056*
C10B	1.0845 (4)	0.39614 (16)	0.54748 (17)	0.0400 (6)
H10A	0.9652	0.3746	0.5108	0.048*
C11B	1.2622 (3)	0.42491 (13)	0.69772 (16)	0.0271 (5)
C12B	1.2647 (3)	0.42594 (12)	0.80881 (15)	0.0240 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0252 (2)	0.0305 (3)	0.0237 (2)	-0.0019 (2)	0.00264 (19)	-0.0019 (2)
S2	0.0248 (2)	0.0314 (3)	0.0226 (2)	-0.0042 (2)	0.00331 (18)	-0.0024 (2)
F11	0.1143 (14)	0.0318 (9)	0.0735 (11)	0.0060 (8)	0.0075 (10)	0.0159 (8)
F12	0.0368 (8)	0.0750 (12)	0.1081 (14)	0.0217 (7)	0.0024 (9)	-0.0140 (11)
F13	0.0798 (11)	0.0579 (11)	0.0435 (8)	0.0118 (8)	0.0049 (8)	-0.0213 (8)
F21	0.0776 (10)	0.0674 (11)	0.0500 (9)	0.0049 (8)	0.0100 (8)	-0.0305 (8)
F22	0.0961 (13)	0.0334 (9)	0.1013 (14)	0.0024 (8)	0.0285 (10)	0.0186 (9)
F23	0.0363 (8)	0.0633 (11)	0.0922 (12)	0.0136 (7)	0.0116 (8)	0.0001 (9)
011	0.0484 (9)	0.0540 (10)	0.0229 (7)	-0.0107 (8)	-0.0002 (6)	-0.0049 (8)
O12	0.0317 (8)	0.0321 (8)	0.0381 (9)	-0.0046 (6)	0.0024 (6)	0.0069 (7)
013	0.0217 (7)	0.0516 (11)	0.0399 (8)	-0.0076 (6)	0.0049 (6)	-0.0031 (7)
O21	0.0282 (8)	0.0530 (11)	0.0364 (8)	-0.0054 (7)	0.0052 (6)	-0.0039 (8)
O22	0.0327 (8)	0.0309 (8)	0.0404 (9)	-0.0049 (6)	0.0029 (7)	0.0057 (7)
O23	0.0457 (9)	0.0574 (11)	0.0230 (7)	-0.0121 (8)	0.0003 (6)	-0.0062 (8)
O1A	0.0307 (9)	0.0350 (9)	0.0533 (10)	-0.0088 (7)	-0.0043 (8)	-0.0005 (8)
O2A	0.0434 (9)	0.0411 (10)	0.0555 (10)	-0.0126 (7)	0.0222 (8)	-0.0002 (8)
O1B	0.0320 (8)	0.0346 (9)	0.0485 (9)	-0.0093 (7)	-0.0009 (7)	0.0006 (8)
O2B	0.0392 (9)	0.0411 (10)	0.0517 (10)	-0.0075 (7)	0.0203 (8)	0.0029 (8)
N1A	0.0210 (8)	0.0285 (10)	0.0262 (9)	-0.0027 (7)	-0.0010 (7)	-0.0005 (8)
N2A	0.0312 (9)	0.0345 (11)	0.0293 (9)	0.0017 (8)	-0.0032 (7)	-0.0019 (8)
N1B	0.0229 (8)	0.0292 (10)	0.0253 (8)	-0.0002 (7)	0.0029 (7)	0.0010 (8)
N2B	0.0330 (9)	0.0372 (11)	0.0271 (9)	0.0027 (8)	-0.0025 (7)	-0.0025 (9)
C1	0.0394 (13)	0.0381 (15)	0.0387 (13)	0.0038 (10)	0.0031 (10)	-0.0039 (11)
C2	0.0443 (14)	0.0356 (14)	0.0419 (14)	0.0010 (10)	0.0107 (11)	0.0003 (11)
C1A	0.0306 (11)	0.0344 (13)	0.0300 (11)	-0.0026 (9)	0.0079 (9)	0.0066 (11)
C2A	0.0375 (13)	0.0355 (13)	0.0238 (11)	0.0049 (9)	0.0041 (9)	0.0040 (10)
C3A	0.0310 (11)	0.0265 (12)	0.0319 (12)	0.0017 (8)	-0.0045 (10)	0.0019 (9)
C4A	0.0271 (11)	0.0184 (10)	0.0266 (10)	0.0017 (8)	0.0019 (9)	0.0005 (8)
C5A	0.0258 (11)	0.0200 (11)	0.0417 (13)	0.0024 (8)	0.0073 (9)	0.0004 (10)
C6A	0.0356 (12)	0.0199 (11)	0.0403 (12)	0.0027 (9)	0.0101 (9)	-0.0012 (9)
C7A	0.0334 (11)	0.0234 (11)	0.0302 (11)	0.0021 (8)	0.0058 (9)	-0.0007 (9)
C8A	0.0489 (14)	0.0395 (13)	0.0301 (12)	0.0058 (11)	0.0155 (10)	0.0058 (10)
C9A	0.0619 (17)	0.0460 (16)	0.0253 (11)	0.0075 (12)	0.0035 (11)	0.0035 (11)
C10A	0.0506 (14)	0.0438 (16)	0.0331 (12)	0.0044 (11)	-0.0100 (11)	-0.0022 (11)
C11A	0.0258 (10)	0.0240 (11)	0.0240 (10)	0.0009 (8)	0.0027 (8)	-0.0020 (9)
C12A	0.0198 (10)	0.0210 (11)	0.0247 (10)	0.0019 (7)	0.0063 (8)	0.0006 (9)
C1B	0.0270 (10)	0.0299 (12)	0.0297 (10)	0.0019 (8)	0.0070 (8)	0.0036 (10)
C2B	0.0400 (12)	0.0339 (12)	0.0215 (10)	-0.0014 (9)	0.0024 (9)	0.0033 (9)
C3B	0.0341 (11)	0.0292 (12)	0.0271 (11)	-0.0014 (8)	-0.0056 (9)	-0.0014 (9)

supporting information

C4B	0.0253 (10)	0.0209 (10)	0.0272 (11)	0.0042 (8)	0.0009 (9)	0.0025 (9)
C5B	0.0277 (11)	0.0211 (11)	0.0361 (11)	0.0032 (8)	0.0011 (9)	0.0037 (9)
C6B	0.0322 (12)	0.0242 (12)	0.0357 (12)	0.0060 (9)	0.0106 (9)	0.0037 (10)
C7B	0.0350 (12)	0.0272 (11)	0.0253 (10)	0.0061 (8)	0.0078 (9)	0.0045 (9)
C8B	0.0535 (15)	0.0378 (13)	0.0282 (12)	0.0080 (11)	0.0137 (11)	0.0028 (11)
C9B	0.0656 (18)	0.0520 (16)	0.0208 (11)	0.0117 (13)	0.0006 (12)	-0.0013 (11)
C10B	0.0466 (13)	0.0407 (15)	0.0312 (12)	0.0047 (11)	-0.0072 (10)	-0.0047 (11)
C11B	0.0315 (11)	0.0258 (11)	0.0243 (10)	0.0066 (9)	0.0033 (9)	0.0019 (9)
C12B	0.0241 (10)	0.0209 (11)	0.0270 (10)	0.0053 (8)	0.0008 (8)	0.0033 (9)

Geometric parameters (Å, °)

S1—O13	1.4330 (14)	C3A—C4A	1.397 (3)
S1—O11	1.4355 (15)	СЗА—НЗАА	0.9500
S1—O12	1.4507 (16)	C4A—C12A	1.387 (3)
S1—C1	1.817 (2)	C4A—C5A	1.482 (3)
S2—O21	1.4337 (14)	C5A—C6A	1.547 (3)
S2—O23	1.4362 (14)	C6A—C7A	1.477 (3)
S2—O22	1.4509 (16)	C7A—C11A	1.390 (3)
S2—C2	1.819 (2)	C7A—C8A	1.394 (3)
F11—C1	1.318 (3)	C8A—C9A	1.369 (3)
F12—C1	1.327 (3)	C8A—H8AA	0.9500
F13—C1	1.329 (3)	C9A—C10A	1.381 (4)
F21—C2	1.328 (3)	С9А—Н9АА	0.9500
F22—C2	1.328 (3)	C10A—H10B	0.9500
F23—C2	1.329 (3)	C11A—C12A	1.466 (3)
O1A—C5A	1.208 (2)	C1B—C2B	1.382 (3)
O2A—C6A	1.209 (2)	C1B—H1BA	0.9500
O1B—C5B	1.214 (2)	C2B—C3B	1.374 (3)
O2B—C6B	1.216 (2)	C2B—H2BA	0.9500
N1A—C1A	1.341 (3)	C3B—C4B	1.399 (3)
N1A—C12A	1.343 (2)	СЗВ—НЗВА	0.9500
N1A—H1AB	0.8800	C4B—C12B	1.384 (3)
N2A—C11A	1.339 (2)	C4B—C5B	1.476 (3)
N2A—C10A	1.340 (3)	C5B—C6B	1.551 (3)
N1B—C1B	1.338 (2)	C6B—C7B	1.464 (3)
N1B—C12B	1.343 (3)	C7B—C11B	1.396 (3)
N1B—H1BB	0.8800	C7B—C8B	1.399 (3)
N2B-C10B	1.332 (3)	C8B—C9B	1.371 (3)
N2B—C11B	1.338 (3)	C8B—H8BA	0.9500
C1A—C2A	1.373 (3)	C9B—C10B	1.384 (3)
C1A—H1AA	0.9500	С9В—Н9ВА	0.9500
C2A—C3A	1.380 (3)	C10B—H10A	0.9500
С2А—Н2АА	0.9500	C11B—C12B	1.470 (3)
013-\$1-011	115 34 (9)	C8AC7AC6A	121 5 (2)
013 - 51 - 012	114 30 (9)	$C_{0} = C_{0} = C_{0}$	121.3(2) 1195(2)
013 - 31 - 012	114.30 (3)	C_{A} C_{A} C_{A} H_{A}	119.3 (2)
011-31-012	114.19 (9)	UIA-UOA-NOAA	120.3

O13—S1—C1	105.30 (10)	С7А—С8А—Н8АА	120.3
O11—S1—C1	102.40 (10)	C8A-C9A-C10A	118.6 (2)
O12—S1—C1	103.23 (10)	С8А—С9А—Н9АА	120.7
O21—S2—O23	115.69 (9)	С10А—С9А—Н9АА	120.7
O21—S2—O22	114.19 (9)	N2A—C10A—C9A	123.8 (2)
O23—S2—O22	114.28 (9)	N2A—C10A—H10B	118.1
O21—S2—C2	105.11 (11)	C9A—C10A—H10B	118.1
O23—S2—C2	102.77 (11)	N2A—C11A—C7A	123.88 (19)
O22—S2—C2	102.61 (10)	N2A—C11A—C12A	115.77 (18)
C1A—N1A—C12A	123.07 (17)	C7A—C11A—C12A	120.33 (17)
C1A—N1A—H1AB	118.5	N1A—C12A—C4A	118.63 (17)
C12A—N1A—H1AB	118.5	N1A—C12A—C11A	118.10 (16)
C11A—N2A—C10A	116.7 (2)	C4A—C12A—C11A	123.25 (17)
C1B—N1B—C12B	122.78 (17)	N1B—C1B—C2B	120.40 (18)
C1B—N1B—H1BB	118.6	N1B—C1B—H1BA	119.8
C12B—N1B—H1BB	118.6	C2B—C1B—H1BA	119.8
C10B—N2B—C11B	116.6 (2)	C3B—C2B—C1B	118.62 (19)
F11—C1—F12	108.5 (2)	C3B—C2B—H2BA	120.7
F11—C1—F13	107.22 (19)	C1B—C2B—H2BA	120.7
F12—C1—F13	107.7 (2)	C2B—C3B—C4B	119.98 (19)
F11—C1—S1	111.27 (16)	С2В—С3В—Н3ВА	120.0
F12—C1—S1	110.05 (16)	C4B—C3B—H3BA	120.0
F13—C1—S1	111.92 (16)	C12B—C4B—C3B	119.40 (19)
F21—C2—F22	108.0 (2)	C12B—C4B—C5B	119.35 (18)
F21—C2—F23	107.5 (2)	C3B—C4B—C5B	121.25 (18)
F22—C2—F23	107.18 (19)	O1B—C5B—C4B	122.31 (19)
F21—C2—S2	111.81 (17)	O1B—C5B—C6B	119.62 (18)
F22—C2—S2	111.26 (16)	C4B—C5B—C6B	118.06 (17)
F23—C2—S2	110.84 (16)	O2B—C6B—C7B	124.3 (2)
N1A—C1A—C2A	119.98 (19)	O2B—C6B—C5B	117.92 (19)
N1A—C1A—H1AA	120.0	C7B—C6B—C5B	117.79 (18)
C2A—C1A—H1AA	120.0	C11B—C7B—C8B	117.6 (2)
C1A—C2A—C3A	119.2 (2)	C11B—C7B—C6B	121.40 (19)
C1A—C2A—H2AA	120.4	C8B—C7B—C6B	121.0 (2)
C3A—C2A—H2AA	120.4	C9B—C8B—C7B	118.7 (2)
C2A—C3A—C4A	119.6 (2)	C9B—C8B—H8BA	120.7
С2А—С3А—НЗАА	120.2	C7B—C8B—H8BA	120.7
С4А—С3А—НЗАА	120.2	C8B-C9B-C10B	119.2 (2)
C12A—C4A—C3A	119.47 (18)	C8B—C9B—H9BA	120.4
C12A—C4A—C5A	119.66 (18)	C10B—C9B—H9BA	120.4
C3A—C4A—C5A	120.85 (19)	N2B—C10B—C9B	123.9 (2)
O1A—C5A—C4A	122.9 (2)	N2B-C10B-H10A	118.0
O1A—C5A—C6A	119.47 (19)	C9B—C10B—H10A	118.0
C4A—C5A—C6A	117.65 (18)	N2B—C11B—C7B	124.1 (2)
O2A—C6A—C7A	123.4 (2)	N2B—C11B—C12B	116.08 (19)
O2A—C6A—C5A	118.55 (19)	C7B—C11B—C12B	119.79 (18)
C7A—C6A—C5A	118.00 (18)	N1B—C12B—C4B	118.77 (18)
C11A—C7A—C8A	117.5 (2)	N1B—C12B—C11B	117.69 (17)

C11A—C7A—C6A	120.98 (19)	C4B—C12B—C11B	123.52 (18)
O13—S1—C1—F11	-63.50 (18)	C1A—N1A—C12A—C11A	177.25 (18)
O11—S1—C1—F11	57.46 (18)	C3A—C4A—C12A—N1A	0.5 (3)
O12—S1—C1—F11	176.32 (16)	C5A—C4A—C12A—N1A	179.33 (19)
O13—S1—C1—F12	176.18 (16)	C3A—C4A—C12A—C11A	-177.69 (18)
O11—S1—C1—F12	-62.86 (19)	C5A—C4A—C12A—C11A	1.1 (3)
O12—S1—C1—F12	56.00 (19)	N2A—C11A—C12A—N1A	-0.5(3)
O13—S1—C1—F13	56.44 (19)	C7A—C11A—C12A—N1A	-178.6(2)
O11—S1—C1—F13	177.40 (16)	N2A—C11A—C12A—C4A	177.71 (19)
O12—S1—C1—F13	-63.74 (19)	C7A—C11A—C12A—C4A	-0.4 (3)
O21—S2—C2—F21	-55.78 (19)	C12B—N1B—C1B—C2B	-0.7 (3)
O23—S2—C2—F21	-177.22 (16)	N1B—C1B—C2B—C3B	-1.4 (3)
O22—S2—C2—F21	63.91 (19)	C1B—C2B—C3B—C4B	2.2 (3)
O21—S2—C2—F22	65.10 (18)	C2B-C3B-C4B-C12B	-0.9 (3)
O23—S2—C2—F22	-56.34 (18)	C2B—C3B—C4B—C5B	179.1 (2)
O22—S2—C2—F22	-175.21 (16)	C12B—C4B—C5B—O1B	-177.13 (19)
O21—S2—C2—F23	-175.74 (16)	C3B-C4B-C5B-01B	2.9 (3)
O23—S2—C2—F23	62.82 (18)	C12B—C4B—C5B—C6B	3.9 (3)
O22—S2—C2—F23	-56.05 (18)	C3B—C4B—C5B—C6B	-176.08 (17)
C12A—N1A—C1A—C2A	0.5 (3)	O1B-C5B-C6B-O2B	-3.0 (3)
N1A—C1A—C2A—C3A	0.5 (3)	C4B—C5B—C6B—O2B	176.0 (2)
C1A—C2A—C3A—C4A	-1.0 (3)	O1B-C5B-C6B-C7B	178.08 (19)
C2A—C3A—C4A—C12A	0.5 (3)	C4B—C5B—C6B—C7B	-2.9 (3)
C2A—C3A—C4A—C5A	-178.3 (2)	O2B—C6B—C7B—C11B	-177.9 (2)
C12A—C4A—C5A—O1A	-179.9 (2)	C5B—C6B—C7B—C11B	0.9 (3)
C3A—C4A—C5A—O1A	-1.0 (3)	O2B—C6B—C7B—C8B	-0.5 (3)
C12A—C4A—C5A—C6A	0.9 (3)	C5B—C6B—C7B—C8B	178.34 (19)
C3A—C4A—C5A—C6A	179.67 (18)	C11B—C7B—C8B—C9B	0.5 (3)
O1A—C5A—C6A—O2A	-2.9 (3)	C6B—C7B—C8B—C9B	-177.1 (2)
C4A—C5A—C6A—O2A	176.4 (2)	C7B-C8B-C9B-C10B	-0.9 (4)
O1A—C5A—C6A—C7A	177.2 (2)	C11B—N2B—C10B—C9B	0.0 (4)
C4A—C5A—C6A—C7A	-3.5 (3)	C8B—C9B—C10B—N2B	0.7 (4)
O2A—C6A—C7A—C11A	-175.5 (2)	C10B—N2B—C11B—C7B	-0.6 (3)
C5A—C6A—C7A—C11A	4.3 (3)	C10B—N2B—C11B—C12B	177.13 (18)
O2A—C6A—C7A—C8A	5.9 (3)	C8B—C7B—C11B—N2B	0.3 (3)
C5A—C6A—C7A—C8A	-174.27 (19)	C6B—C7B—C11B—N2B	177.9 (2)
C11A—C7A—C8A—C9A	0.7 (3)	C8B—C7B—C11B—C12B	-177.29 (18)
C6A—C7A—C8A—C9A	179.4 (2)	C6B—C7B—C11B—C12B	0.3 (3)
C7A—C8A—C9A—C10A	0.2 (4)	C1B—N1B—C12B—C4B	2.1 (3)
C11A—N2A—C10A—C9A	-0.7 (4)	C1B—N1B—C12B—C11B	-176.33 (18)
C8A—C9A—C10A—N2A	-0.2 (4)	C3B—C4B—C12B—N1B	-1.3 (3)
C10A—N2A—C11A—C7A	1.7 (3)	C5B—C4B—C12B—N1B	178.77 (18)
C10A—N2A—C11A—C12A	-176.33 (18)	C3B—C4B—C12B—C11B	177.07 (17)
C8A—C7A—C11A—N2A	-1.8 (3)	C5B—C4B—C12B—C11B	-2.9 (3)
C6A—C7A—C11A—N2A	179.60 (19)	N2B—C11B—C12B—N1B	1.3 (3)
C8A—C7A—C11A—C12A	176.19 (18)	C7B—C11B—C12B—N1B	179.1 (2)
C6A—C7A—C11A—C12A	-2.4 (3)	N2B—C11B—C12B—C4B	-177.06 (19)

C1A—N1A—C12A—C4A	-1.0 (3)	C7B—C11B—	C12B—C4B	0.7 (3)			
Hydrogen-bond geometry (Å, °)							
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A			
N1 <i>A</i> —H1 <i>AB</i> ···O22	0.88	2.01	2.830 (2)	154			
N1 <i>B</i> —H1 <i>BB</i> ····O12	0.88	2.02	2.835 (2)	154			
C1A— $H1AA$ ···O11 ⁱ	0.95	2.37	3.141 (3)	138			
C1 <i>A</i> —H1 <i>AA</i> ···O23	0.95	2.39	3.190 (3)	141			
C1 <i>B</i> —H1 <i>BA</i> ···O11	0.95	2.41	3.206 (3)	142			
C1 <i>B</i> —H1 <i>BA</i> ···O23 ⁱⁱ	0.95	2.40	3.175 (2)	139			
C2A—H2AA…O13 ⁱ	0.95	2.49	3.395 (3)	159			
С9А—Н9АА…О13	0.95	2.43	3.320 (3)	156			
C2 <i>B</i> —H2 <i>BA</i> ···O21 ⁱⁱ	0.95	2.49	3.384 (3)	158			
C9 <i>B</i> —H9 <i>BA</i> ···O21	0.95	2.43	3.328 (3)	159			

Symmetry codes: (i) *x*, *y*, *z*–1; (ii) *x*, *y*, *z*+1.