addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-1-(4-methylphenyl)-3-phenylprop-2-en-1-one. Corrigendum

Hoong-Kun Fun,^a* Samuel Robinson Jebas,^a P. S. Patil,^b M. S. Karthikeyan^c and S. M. Dharmaprakash^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cSyngene International Pvt Limited, Plot Nos. 2 and 3 C, Unit-II, Bommansandra, Industrial Area, Banglore 560 099, India

Correspondence e-mail: hkfun@usm.my

Received 28 October 2008; accepted 29 October 2008

The chemical name in the title and the scheme of the paper by Fun, Jebas, Patil, Karthikeyan & Dharmaprakash [*Acta Cryst.* (2008), E**64**, o1559] are corrected.

In the paper by Fun, Jebas, Patil, Karthikeyan & Dharmaprakash [*Acta Cryst.* (2008), E**64**, o1559], the chemical name in the title and the scheme are incorrect. The correct title should be '2-Bromo-3-(4-methylphenyl)-1-phenylprop-2-en-1-one' and the correct scheme is shown below.

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-1-(4-methylphenyl)-3-phenylprop-2-en-1-one

Hoong-Kun Fun,^a* Samuel Robinson Jebas,^a‡ P. S. Patil,^b M. S. Karthikeyan^c and S. M. Dharmaprakash^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cSyngene International Pvt Limited, Plot Nos. 2 and 3 C, Unit-II, Bommansandra, Industrial Area, Banglore 560 099, India

Correspondence e-mail: hkfun@usm.my

Received 14 July 2008; accepted 16 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.091; data-to-parameter ratio = 23.7.

In the crystal structure of the title compound, $C_{16}H_{13}BrO$, the two benzene rings are twisted from each other with a dihedral angle of 52.55 (9)°. Both an intramolecular $C-H\cdots Br$ hydrogen bond, which generates an S(6) ring motif, and a short $Br\cdots O$ contact [2.9907 (19) Å] may influence the conformation of the molecule. The crystal packing is stabilized by weak intermolecular $C-H\cdots O$ interactions.

Related literature

For related literature on chalcone derivatives, see: Fun *et al.* (2008); Patil *et al.* (2006, 2007). For related literature on experimental preparation, see: Shivarama Holla *et al.* (2006). For standard bond-length data, see: Allen *et al.* (1987). For graph-set analysis of hydrogen bonding, see: Bernstein *et al.* (1995).

‡ Permanent address: Department of Physics, Karunya University, Karunya

Experimental

Crystal data $C_{16}H_{13}BrO$ $M_r = 301.17$

Orthorhombic, *Pbca* a = 8.7192 (2) Å b = 11.5819 (2) Å c = 26.4769 (6) Å $V = 2673.77 (10) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.556, T_{max} = 0.715$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.090$ S = 1.003893 reflections

		0	
Hydrogen-bond	geometry	(Δ	°)
riyurogen-bonu	geometry	(<i>n</i> ,	<i>.</i>

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots O1^{i}$	0.93	2.54	3.163 (3)	124
$C11-H11A\cdots Br1$	0.93	2.69	3.377 (3)	131
C	. 1 1			

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2662).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Jebas, S. R., Razak, I. A., Karthikeyan, M. S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1039.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
- Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 02497–02498.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). *Eur. J. Med. Chem.* **41**, 657–663.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Mo $K\alpha$ radiation $\mu = 3.06 \text{ mm}^{-1}$

T = 100.0 (1) K

 $R_{\rm int} = 0.070$

164 parameters

 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

 $0.20 \times 0.20 \times 0.11 \text{ mm}$

14370 measured reflections

3893 independent reflections

2462 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Nagar, Coimbatore 641 114, India.

supporting information

Acta Cryst. (2008). E64, o1559 [doi:10.1107/S1600536808022289]

2-Bromo-1-(4-methylphenyl)-3-phenylprop-2-en-1-one

Hoong-Kun Fun, Samuel Robinson Jebas, P. S. Patil, M. S. Karthikeyan and S. M. Dharmaprakash

S1. Comment

As part of our crystallographic studies on chalcone derivatives (Fun *et al.*, 2008; Patil *et al.*, 2006,2007) the title compound (I) was synthesized and its crystal structure is reported here.

In the crystal structure of the title compound (I), the bond lengths have have normal values (Allen *et al.*, 1987). The two benzene rings (C1—C6 & C10—C15) are twisted from each other with the dihedral angle of 52.55 (9)°.

Both an intramolecular C—H··· Br hydrogen bond, which generates an S(6) ring motif, and a short Br···O =2.9907 (19)Å contact may influence the conformation of the molecule. The crystal packing is stabilized by weak C—H···O intermolecular interactions.

S2. Experimental

1-(4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) was prepared by a literature procedure (Shivarama Holla *et al.*, 2006). To a solution of 1- (4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) in chloroform (25 ml), bromine (1 mmol) was added slowly with stirring. After the completion of addition of bromine (1 mmol), the reaction mixture was stirred for 24 h. Excess of chloroform was distilled off and the precipitated 2,3- dibromo-1-(4- methylphenyl)-3-phenyl-propan-1-one was filtered off and dried. A mixture of dibromopropanone (1 mmol) and triethylamine(1 mmol) in dry benzene (30 ml) was added and the resultant mixture was stirred for 24 h. The excess of solvent when removed under reduced pressure gave the title compound which crystallized from acetone by slow evaporation.

S3. Refinement

H atoms were positioned geometrically [C—H = 0.93Å and CH₃=0.96Å] and refined using a riding-model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5_{eq}(C_{methyl})$. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Figure 2

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds and Br…O short contacts are shown as dashed lines.

(I)

Crystal data

C₁₆H₁₃BrO $M_r = 301.17$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 8.7192 (2) Å b = 11.5819 (2) Å c = 26.4769 (6) Å V = 2673.77 (10) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.556, T_{\max} = 0.715$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wP(F^2) = 0.000$	neighbouring sites
S = 1.00	H-atom parameters constrained
3893 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0317P)^2]$
164 parameters	where $P = (F_o^2 + 2F_o^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.54 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.13862 (3)	0.42397 (2)	0.062535 (10)	0.02216 (9)	
01	0.3082 (2)	0.38663 (17)	0.15935 (7)	0.0253 (5)	
C1	0.4236 (3)	0.6775 (2)	0.16809 (10)	0.0177 (6)	
H1A	0.3563	0.7084	0.1444	0.021*	

F(000) = 1216 $D_x = 1.496 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1664 reflections $\theta = 2.8-23.7^{\circ}$ $\mu = 3.06 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.20 \times 0.20 \times 0.11 \text{ mm}$

14370 measured reflections 3893 independent reflections 2462 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -12 \rightarrow 9$ $k = -16 \rightarrow 12$ $l = -36 \rightarrow 16$

C2	0.4991 (4)	0.7501 (3)	0.20151 (10)	0.0228 (7)
H2A	0.4813	0.8292	0.2005	0.027*
C3	0.6008 (4)	0.7049 (3)	0.23638 (10)	0.0262 (7)
H3A	0.6512	0.7537	0.2588	0.031*
C4	0.6275 (4)	0.5867 (3)	0.23785 (10)	0.0266 (7)
H4A	0.6977	0.5565	0.2608	0.032*
C5	0.5499 (3)	0.5141 (3)	0.20533 (10)	0.0214 (6)
H5A	0.5657	0.4348	0.2071	0.026*
C6	0.4477 (3)	0.5591 (2)	0.16967 (9)	0.0158 (6)
C7	0.3529 (3)	0.4759 (2)	0.13968 (9)	0.0159 (6)
C8	0.3122 (3)	0.5048 (2)	0.08629 (9)	0.0144 (6)
C9	0.3995 (3)	0.5748 (2)	0.05796 (9)	0.0143 (5)
H9A	0.4848	0.6018	0.0754	0.017*
C10	0.3931 (3)	0.6191 (2)	0.00603 (9)	0.0150 (6)
C11	0.2836 (3)	0.5907 (2)	-0.03059 (10)	0.0188 (6)
H11A	0.2098	0.5348	-0.0238	0.023*
C12	0.2854 (3)	0.6461 (3)	-0.07730 (10)	0.0214 (6)
H12A	0.2119	0.6268	-0.1013	0.026*
C13	0.3942 (3)	0.7295 (2)	-0.08878 (9)	0.0198 (6)
C14	0.5065 (4)	0.7535 (2)	-0.05306 (9)	0.0208 (6)
H14A	0.5829	0.8070	-0.0605	0.025*
C15	0.5059 (3)	0.6990 (2)	-0.00666 (9)	0.0176 (6)
H15A	0.5825	0.7160	0.0166	0.021*
C16	0.3901 (4)	0.7951 (3)	-0.13811 (10)	0.0304 (8)
H16A	0.3307	0.7526	-0.1624	0.046*
H16B	0.4928	0.8047	-0.1506	0.046*
H16C	0.3444	0.8694	-0.1328	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02062 (15)	0.02191 (16)	0.02395 (15)	-0.00743 (14)	-0.00516 (12)	0.00364 (12)
O1	0.0315 (13)	0.0193 (11)	0.0252 (11)	-0.0079 (10)	-0.0037 (9)	0.0057 (9)
C1	0.0193 (15)	0.0186 (15)	0.0152 (13)	0.0013 (13)	0.0009 (11)	0.0003 (11)
C2	0.0271 (17)	0.0233 (16)	0.0180 (13)	-0.0026 (14)	0.0031 (12)	-0.0054 (12)
C3	0.0308 (19)	0.0347 (19)	0.0130 (13)	-0.0064 (16)	-0.0013 (12)	-0.0074 (12)
C4	0.0237 (16)	0.039 (2)	0.0169 (13)	-0.0012 (17)	-0.0041 (12)	0.0032 (12)
C5	0.0280 (17)	0.0193 (16)	0.0170 (13)	0.0043 (14)	0.0008 (13)	0.0025 (11)
C6	0.0167 (14)	0.0197 (16)	0.0110 (12)	0.0007 (12)	0.0033 (10)	0.0019 (10)
C7	0.0152 (14)	0.0149 (14)	0.0177 (13)	0.0020 (12)	0.0008 (11)	0.0013 (11)
C8	0.0141 (13)	0.0136 (14)	0.0155 (13)	-0.0018 (11)	-0.0013 (11)	-0.0022 (10)
C9	0.0121 (13)	0.0138 (13)	0.0168 (12)	0.0022 (12)	-0.0004 (10)	-0.0039 (11)
C10	0.0198 (16)	0.0109 (13)	0.0142 (12)	0.0038 (12)	-0.0001 (11)	-0.0029 (10)
C11	0.0184 (15)	0.0199 (16)	0.0181 (13)	0.0010 (13)	0.0005 (11)	-0.0011 (11)
C12	0.0199 (16)	0.0273 (17)	0.0171 (13)	0.0038 (14)	-0.0025 (11)	-0.0013 (12)
C13	0.0250 (17)	0.0218 (15)	0.0125 (13)	0.0074 (13)	0.0041 (11)	0.0027 (11)
C14	0.0274 (17)	0.0174 (15)	0.0177 (13)	-0.0021 (13)	0.0047 (12)	0.0022 (11)
C15	0.0214 (15)	0.0157 (15)	0.0157 (13)	-0.0024 (13)	-0.0004 (11)	-0.0033 (11)

C16	0.036 (2)	0.0352 (19)	0.0198 (14)	0.0072 (16)	-0.0008 (13)	0.0096 (13)
Geome	etric parameters	(Å, °)				
Br1—	C8	1.888 (3)		C9—C10	1.4	469 (3)
01-0	27	1.221 (3)		С9—Н9А	0.9	9300
С1—С	22	1.386 (4)		C10—C15	1.	391 (4)
С1—С	6	1.388 (4)		C10-C11	1.4	400 (4)
С1—Н	[1A	0.9300		C11—C12	1.1	394 (4)
С2—С	23	1.383 (4)		C11—H11A	0.9	9300
С2—Н	I2A	0.9300		C12—C13	1.	387 (4)
С3—С	24	1.390 (4)		C12—H12A	0.9	9300
С3—Н	I3A	0.9300		C13—C14	1.	389 (4)
C4—C	25	1.381 (4)		C13—C16	1.:	511 (4)
C4—H	[4A	0.9300		C14—C15	1.	382 (3)
С5—С	26	1.399 (4)		C14—H14A	0.9	9300
С5—Н	[5A	0.9300		C15—H15A	0.9	9300
С6—С	27	1.497 (4)		C16—H16A	0.9	9600
С7—С	28	1.496 (3)		C16—H16B	0.9	9600
С8—С	9	1.341 (4)		C16—H16C	0.9	9600
С2—С	C1—C6	120.5 (3)		С10—С9—Н9А	11	2.3
С2—С	C1—H1A	119.7		C15—C10—C11	11	8.1 (2)
С6—С	C1—H1A	119.7		С15—С10—С9	11	5.5 (2)
С3—С	C2—C1	120.1 (3)		С11—С10—С9	12	6.3 (3)
С3—С	2—H2A	120.0		C12—C11—C10	11	9.9 (3)
C1—C	2—H2A	120.0		C12—C11—H11A	12	0.1
С2—С	C3—C4	119.9 (3)		C10-C11-H11A	12	0.1
С2—С	23—НЗА	120.0		C13—C12—C11	12	1.5 (3)
C4—C	23—НЗА	120.0		C13—C12—H12A	11	9.2
С5—С	C4—C3	120.0 (3)		C11—C12—H12A	11	9.2
С5—С	24—H4A	120.0		C12—C13—C14	11	8.2 (2)
С3—С	24—H4A	120.0		C12—C13—C16	12	1.5 (3)
C4—C	С5—С6	120.4 (3)		C14—C13—C16	12	0.3 (3)
С4—С	C5—H5A	119.8		C15—C14—C13	12	0.7 (3)
С6—С	25—H5A	119.8		C15—C14—H14A	11	9.6
C1—C	C6—C5	119.0 (3)		C13—C14—H14A	11	9.6
C1—C	С6—С7	122.4 (2)		C14—C15—C10	12	1.4 (3)
С5—С	С6—С7	118.0 (2)		C14—C15—H15A	11	9.3
01-0	С7—С8	121.1 (2)		C10-C15-H15A	11	9.3
01—0	С7—С6	119.7 (2)		C13—C16—H16A	10	9.5
С8—С	С7—С6	119.2 (2)		C13—C16—H16B	10	9.5
С9—С	С8—С7	122.0 (2)		H16A—C16—H16B	10	9.5
С9—С	28—Br1	124.7 (2)		C13—C16—H16C	10	9.5
С7—С	28—Br1	113.19 (1	9)	H16A—C16—H16C	10	9.5
С8—С	C10	135.5 (3)		H16B—C16—H16C	10	9.5
С8—С	C9—H9A	112.3				

supporting information

C6—C1—C2—C3	0.8 (4)	C6—C7—C8—Br1	-158.5 (2)
C1—C2—C3—C4	0.1 (4)	C7—C8—C9—C10	179.8 (3)
C2—C3—C4—C5	-1.5 (4)	Br1-C8-C9-C10	5.1 (5)
C3—C4—C5—C6	2.0 (4)	C8—C9—C10—C15	175.3 (3)
C2-C1-C6-C5	-0.3 (4)	C8—C9—C10—C11	-3.2 (5)
C2-C1-C6-C7	171.0 (3)	C15-C10-C11-C12	-3.1 (4)
C4—C5—C6—C1	-1.1 (4)	C9-C10-C11-C12	175.3 (3)
C4—C5—C6—C7	-172.8 (3)	C10-C11-C12-C13	0.3 (4)
C1—C6—C7—O1	-136.9 (3)	C11—C12—C13—C14	2.5 (4)
C5-C6-C7-O1	34.5 (4)	C11—C12—C13—C16	-176.0 (3)
C1—C6—C7—C8	42.0 (4)	C12-C13-C14-C15	-2.4 (4)
C5—C6—C7—C8	-146.6 (3)	C16—C13—C14—C15	176.1 (3)
O1—C7—C8—C9	-154.8 (3)	C13—C14—C15—C10	-0.5 (4)
C6—C7—C8—C9	26.3 (4)	C11—C10—C15—C14	3.2 (4)
O1C7C8Br1	20.4 (3)	C9-C10-C15-C14	-175.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C1—H1A···O1 ⁱ	0.93	2.54	3.163 (3)	124
C11—H11A····Br1	0.93	2.69	3.377 (3)	131

Symmetry code: (i) -x+1/2, y+1/2, z.