

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Deoxy-D-galactitol (L-fucitol)

Sarah F. Jenkinson,^a K. Victoria Booth,^a* Akihide Yoshihara,^b Kenji Morimoto,^b George W. J. Fleet,^a Ken Izumori^b and David I. Watkin^c

^aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ^bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and ^cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: victoria.booth@chem.ox.ac.uk

Received 25 June 2008; accepted 2 July 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.111; data-to-parameter ratio = 10.0.

1-Deoxy-D-galactitol, C₆H₁₄O₅, exists in the crystalline form as hydrogen-bonded layers of molecules running parallel to the ac plane, with each molecule acting as a donor and acceptor of five hydrogen bonds.

Related literature

For related literature, see: Yoshihara et al. (2008); Jones et al. (2007); Görbitz (1999); Izumori (2002, 2006); Prince (1982); Watkin (1994).

Experimental

Crystal data

C₆H₁₄O₅ $M_r = 166.17$ Monoclinic, P2 a = 4.8486 (3) Å b = 4.8827 (3) Å c = 16.8354 (13) Å $\beta = 92.856 \ (2)^{\circ}$

V = 398.07 (5) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^-$ T = 150 K $0.15 \times 0.15 \times 0.05 \ \mathrm{mm}$ 2786 measured reflections

 $R_{\rm int} = 0.038$

998 independent reflections

804 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DÊNZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.81, T_{\rm max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	1 restraint
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 0.88	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
998 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
100 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H1\cdots O6^{i}$	0.83	1.91	2.691 (4)	155
O9−H3···O4 ⁱⁱ	0.83	1.97	2.753 (4)	156
O6−H4···O1 ⁱⁱⁱ	0.81	2.10	2.758 (4)	138
O1−H9···O9 ^{iv}	0.85	1.85	2.684 (4)	166
$O11 - H10 \cdots O11^{v}$	0.84	2.01	2.828 (4)	163

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) $-x+2, y+\frac{1}{2}, -z+2.$

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

This work was supported in part by the Programme for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2653).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098
- Izumori, K. J. (2002). Naturwissenschaften, 89, 120-124.
- Izumori, K. J. (2006). Biotechnology, 124, 717-722.
- Jones, N. A., Jenkinson, S. F., Soengas, R., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. C63, 07-010.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.

supporting information

Acta Cryst. (2008). E64, o1429 [doi:10.1107/S1600536808020345]

1-Deoxy-D-galactitol (L-fucitol)

Sarah F. Jenkinson, K. Victoria Booth, Akihide Yoshihara, Kenji Morimoto, George W. J. Fleet, Ken Izumori and David J. Watkin

S1. Comment

The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara *et al.*, 2008). This methodology could allow access to rare monosaccharides in water in large amounts. An example of this is the subsequent formation of 1-deoxy-D-galactitol **2** by hydrogenation of L-fucose **1** (Fig. 1) which subsequently could be oxidized enzymatically to 1-deoxy-D-tagatose (Jones *et al.*, 2007) **3**.

If the terminal hydroxyl group and H atoms are ignored there is a pseudo centre of symmetry between C2 and C3 (Fig. 2). The crystal structure exists of hydrogen-bonded layers of molecules running parallel to the *c*-axis (Fig. 3). Each molecule acts as a donor and acceptor of 5 hydrogen bonds, all intra-molecular hydrogen bonds have been omitted.

S2. Experimental

The title compound was recrystallized from methanol: m.p. 420-422K; $[\alpha]_D^{21}$ +1.6 (*c*, 1.13 in H₂O) [Lit. (Yoshihara *et al.*, 2008) for enantiomer $[\alpha]_D^{20}$ -1.9 (*c*, 1.0 in H₂O)].

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22 reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Figure 3

The packing diagram for the title compound projected along the *b*-axis. Hydrogen bonds are shown as dotted lines.

1-Deoxy-D-galactitol

Crystal data $C_6H_{14}O_5$ $M_r = 166.17$ Monoclinic, $P2_1$ a = 4.8486 (3) Å b = 4.8827 (3) Å c = 16.8354 (13) Å $\beta = 92.856$ (2)° V = 398.07 (5) Å³ Z = 2

F(000) = 180 $D_x = 1.386 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 844 reflections $\theta = 5-27^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.15 \times 0.15 \times 0.05 \text{ mm}$ Data collection

Nonius KappaCCD	2786 measured reflections
diffractometer	998 independent reflections
Graphite monochromator	804 reflections with $I > 2\sigma(I)$
ω scans	$R_{int} = 0.038$
Absorption correction: multi-scan	$\theta_{max} = 27.4^{\circ}, \ \theta_{min} = 5.4^{\circ}$
(<i>DENZO/SCALEPACK</i> ; Otwinowski & Minor,	$h = -6 \rightarrow 6$
1997)	$k = -5 \rightarrow 6$
$T_{\min} = 0.81, T_{\max} = 0.99$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	Method, part 1, Chebychev polynomial,
$R[F^2 > 2\sigma(F^2)] = 0.040$	(Watkin, 1994; Prince, 1982) [weight] =
$wR(F^2) = 0.111$	1.0/[A_0*T_0(x) + A_1*T_1(x) ··· + A_{n-1}]*T_{n-1}(x)]
S = 0.88	where A _i are the Chebychev coefficients listed
998 reflections	below and x = F /Fmax Method = Robust
100 parameters	Weighting (Prince, 1982) W = [weight] *
1 restraint	[1-(deltaF/6*sigmaF) ²] ² A _i are: 17.0 25.0 12.0
Primary atom site location: structure-invariant	3.16
direct methods	(Δ/σ) _{max} = 0.000240
Hydrogen site location: inferred from	$\Delta\rho_{max} = 0.34$ e Å ⁻³
neighbouring sites	$\Delta\rho_{min} = -0.31$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4779 (4)	0.0226 (5)	0.76245 (11)	0.0217	
C2	0.6328 (6)	0.2631 (7)	0.78168 (17)	0.0186	
C3	0.7866 (6)	0.3389 (7)	0.70769 (17)	0.0189	
04	0.9430 (4)	0.5805 (5)	0.72728 (12)	0.0227	
C5	0.5946 (6)	0.3936 (7)	0.63490 (17)	0.0207	
06	0.4117 (4)	0.6179 (5)	0.64879 (12)	0.0238	
C7	0.7550 (7)	0.4471 (9)	0.56067 (18)	0.0330	
C8	0.8283 (6)	0.2108 (7)	0.85426 (17)	0.0190	
09	1.0094 (4)	-0.0141 (5)	0.84026 (12)	0.0222	
C10	0.6698 (6)	0.1572 (7)	0.92859 (17)	0.0236	
011	0.8526 (4)	0.1176 (5)	0.99759 (12)	0.0260	
H21	0.5071	0.4100	0.7945	0.0249*	
H31	0.9082	0.1875	0.6971	0.0263*	
H51	0.4763	0.2307	0.6253	0.0282*	
H71	0.6272	0.4510	0.5138	0.0515*	
H72	0.8900	0.3047	0.5550	0.0518*	
H73	0.8493	0.6223	0.5674	0.0506*	
H81	0.9485	0.3709	0.8670	0.0243*	
H101	0.5642	-0.0123	0.9193	0.0325*	
H102	0.5415	0.3107	0.9363	0.0333*	
H1	1.0737	0.5438	0.6989	0.0372*	
H3	0.9415	-0.1296	0.8087	0.0364*	
H4	0.5121	0.7060	0.6789	0.0402*	
H9	0.3277	0.0397	0.7859	0.0353*	

supporting information

H10	0.9076	0.2	813	0.9992	0.0410*		
Atomic	Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0179 (9)	0.0228 (13)	0.0249 (10)	-0.0051 (9)	0.0048 (8)	-0.0061 (10)	
C2	0.0180 (13)	0.0189 (15)	0.0189 (13)	-0.0011 (11)	0.0010 (10)	0.0011 (12)	
C3	0.0196 (13)	0.0173 (15)	0.0202 (13)	-0.0016 (12)	0.0031 (11)	-0.0029 (12)	
04	0.0212 (10)	0.0235 (13)	0.0237 (9)	-0.0059 (10)	0.0057 (8)	-0.0040 (10)	
C5	0.0210 (14)	0.0218 (17)	0.0196 (13)	0.0007 (13)	0.0029 (11)	-0.0017 (12)	
06	0.0188 (9)	0.0271 (13)	0.0254 (10)	0.0014 (10)	0.0003 (8)	-0.0008 (11)	
C7	0.0320 (17)	0.048 (2)	0.0192 (14)	0.0027 (17)	0.0047 (12)	0.0033 (16)	
C8	0.0166 (13)	0.0198 (15)	0.0204 (13)	0.0021 (12)	0.0006 (10)	-0.0004 (12)	
09	0.0206 (10)	0.0227 (12)	0.0233 (10)	0.0015 (10)	0.0011 (8)	-0.0047 (10)	
C10	0.0223 (14)	0.031 (2)	0.0179 (13)	0.0020 (13)	0.0023 (11)	-0.0001 (13)	
011	0.0323 (11)	0.0248 (11)	0.0206 (9)	-0.0028 (11)	-0.0024 (8)	0.0022 (10)	

Geometric parameters (Å, °)

01—C2	1.423 (4)	O6—H4	0.809
O1—H9	0.849	C7—H71	0.979
C2—C3	1.529 (4)	C7—H72	0.963
C2—C8	1.530 (4)	С7—Н73	0.974
C2—H21	0.972	C8—O9	1.433 (4)
C3—O4	1.432 (4)	C8—C10	1.523 (4)
C3—C5	1.525 (4)	C8—H81	0.992
С3—Н31	0.968	O9—H3	0.832
O4—H1	0.832	C10—O11	1.439 (4)
C5—O6	1.436 (4)	C10—H101	0.982
С5—С7	1.527 (4)	C10—H102	0.987
С5—Н51	0.989	O11—H10	0.843
С2—О1—Н9	105.6	C5—C7—H71	109.6
O1—C2—C3	106.7 (2)	С5—С7—Н72	109.6
O1—C2—C8	110.0 (3)	H71—C7—H72	109.9
C3—C2—C8	112.6 (2)	С5—С7—Н73	108.1
O1—C2—H21	109.2	H71—C7—H73	110.5
C3—C2—H21	109.8	Н72—С7—Н73	109.1
C8—C2—H21	108.5	C2—C8—O9	110.9 (2)
C2—C3—O4	106.6 (2)	C2—C8—C10	111.5 (2)
C2—C3—C5	113.2 (2)	O9—C8—C10	110.0 (3)
O4—C3—C5	109.6 (3)	C2—C8—H81	112.0
C2—C3—H31	106.9	O9—C8—H81	106.3
O4—C3—H31	110.6	C10-C8-H81	105.8
С5—С3—Н31	109.8	С8—О9—Н3	113.5
C3—O4—H1	95.8	C8—C10—O11	111.8 (2)
C3—C5—O6	111.1 (2)	C8—C10—H101	107.1
C3—C5—C7	111.9 (2)	O11—C10—H101	108.1

supporting information

O6—C5—C7	110.3 (3)	C8—C10—H102	108.9
С3—С5—Н51	108.5	O11—C10—H102	111.3
O6—C5—H51	106.4	H101—C10—H102	109.5
С7—С5—Н51	108.6	C10—O11—H10	94.6
С5—О6—Н4	98.7		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
04—H1…O6 ⁱ	0.83	1.91	2.691 (4)	155
O9—H3…O4 ⁱⁱ	0.83	1.97	2.753 (4)	156
O6—H4···O1 ⁱⁱⁱ	0.81	2.10	2.758 (4)	138
O6—H4…O4	0.81	2.29	2.842 (4)	126
O1—H9…O9 ^{iv}	0.85	1.85	2.684 (4)	166
O11—H10…O11 ^v	0.84	2.01	2.828 (4)	163

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*-1, *y*, *z*; (v) -*x*+2, *y*+1/2, -*z*+2.