

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Deoxy-α-L-talopyranose

K. Victoria Booth,^a* Sarah F. Jenkinson,^a George W. J. Fleet,^a Pushpakiran Gullapalli,^b Akihide Yoshihara,^b Ken Izumori^b and David J. Watkin^c

^aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England, ^bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and ^cDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England Correspondence e-mail: victoria.booth@chem.ox.ac.uk

Received 25 June 2008; accepted 27 June 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.073; data-to-parameter ratio = 9.7.

X-ray crystallography showed that the title compound, $C_6H_{12}O_5$, crystallizes in the α -pyranose form with the sixmembered ring in a chair conformation. The crystal structure exists as a three-dimensional hydrogen-bonded network of molecules with each molecule acting as a donor and aceptor for four hydrogen bonds. The absolute configuration was determined by the use of L-fucose as starting material.

Related literature

For related literature, see: Beadle *et al.* (1992); Izumori (2002, 2006); Granstrom *et al.* (2004); Yoshihara *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{12}O_5} \\ M_r = 164.16 \\ {\rm Orthorhombic, $P2_12_12_1$} \\ a = 6.4939 \ (3) \ {\rm \AA} \\ b = 7.4874 \ (4) \ {\rm \AA} \\ c = 14.8382 \ (8) \ {\rm \AA} \end{array}$

V = 721.47 (6) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.13 \text{ mm}^{-1}$
T = 150 K
$0.25 \times 0.25 \times 0.02$ mm

4390 measured reflections

 $R_{\rm int} = 0.037$

968 independent reflections

863 reflections with $I > 2.0\sigma(I)$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan DENZO/SCALEPACK(Otwinowski & Minor, 1997) $T_{min} = 0.97, T_{max} = 1.00$ (expected range = 0.967–0.997)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 100 parameters $wR(F^2) = 0.072$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 968 reflections $\Delta \rho_{min} = -0.21$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O9-H7\cdotsO1^{i}$	0.81	2.04	2.818 (2)	162
O1−H8···O10	0.82	1.98	2.740 (2)	156
O10−H10· · ·O9 ⁱ	0.84	1.85	2.686 (2)	177
$O11-H1\cdots O4^{ii}$	0.87	1.94	2.812 (2)	177

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: *COLLECT* (Nonius, 1997–2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

We gratefully acknowledge the Oxford University Chemical Crystallography service for use of the instruments. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2652).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.
- Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J.
- (2003). J. Appl. Cryst. **36**, 1487. Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. **97**, 89–94.
- Izumori, K. (2002). Naturwissenschaften, 89, 120-124.
- Izumori, K. (2006). J. Biotech. 124, 717-722.
- Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). *Tetrahedron Asymmetry*, **19**, 739–745.

supporting information

Acta Cryst. (2008). E64, o1385 [doi:10.1107/S1600536808019582]

6-Deoxy-*α*-L-talopyranose

K. Victoria Booth, Sarah F. Jenkinson, George W. J. Fleet, Pushpakiran Gullapalli, Akihide Yoshihara, Ken Izumori and David J. Watkin

S1. Comment

The range of rare sugars that are now readily available has increased in recent years due to both chemical (Beadle *et al.*, 1992) and biotechnological (Izumori, 2006; Izumori, 2002; Granstrom *et al.*, 2004) advances. The methodology developed by Izumori *et al.* for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara *et al.*, 2008) in large amounts in water.

The Izumoring method is demonstrated here with the synthesis of 6-deoxy-*L*-talose **3** from *L*-fucose **1**(Fig. 1) by a series of isomerizations. Firstly, using D-arabinose isomerase, *L*-fucose was isomerized to 6-deoxy-*L*-tagatose **2** and then using *L*-rhamnose isomerase this was further isomerized to give 6-deoxy-*L*-talose **3**.

6-Deoxy-*L*-talose crystallizes solely in the α -pyranose form (Fig. 2). The absolute configuration was determined from the starting material. The crystal exists as an hydrogen bonded network with each molecule acting as a donor and acceptor for 4 hydrogen bonds. Non-conventional hydrogen bonds have been ignored.

S2. Experimental

The title compound was recrystallized from methanol: m.p. 120–123°C; $[\alpha]_D^{20}$ -18.6 (*c*, 0.94 in H₂O).

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

Synthetic scheme.

Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 3

Packing diagram of the title compound projected along the *a*-axis.

(I)

Crystal data

 $C_6H_{12}O_5$ $M_r = 164.16$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.4939 (3) Å b = 7.4874 (4) Å c = 14.8382 (8) Å V = 721.47 (6) Å³ Z = 4

Data collection

Nonius KappaCCD	4390 measured reflections
diffractometer	968 independent reflections
Graphite monochromator	863 reflections with $I > 2.0\sigma(I)$
ω scans	$R_{\rm int} = 0.037$
Absorption correction: multi-scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$
DENZO/SCALEPACK (Otwinowski & Minor,	$h = -8 \rightarrow 8$
1997)	$k = -9 \longrightarrow 9$
$T_{\min} = 0.97, \ T_{\max} = 1.00$	$l = -19 \rightarrow 19$
Refinement	

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.029$ H-atom parameters constrained $wR(F^2) = 0.072$ Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + ($ S = 1.03 $(0.04P)^2 + (0.04P)$, where $P = (\max(F_o^2, 0) + 2F_c^2)/3$ 968 reflections 100 parameters $(\Delta/\sigma)_{\rm max} = 0.000184$ $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

F(000) = 352

 $\theta = 5-27^{\circ}$

 $\mu = 0.13 \text{ mm}^{-1}$ T = 150 K

Plate. colourless

 $0.25 \times 0.25 \times 0.02 \text{ mm}$

 $D_{\rm x} = 1.511 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 890 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.95002 (16)	0.08900 (18)	0.35376 (7)	0.0210
C2	0.7416 (2)	0.1250 (2)	0.32982 (10)	0.0175
C3	0.6113 (3)	0.1509 (3)	0.41551 (10)	0.0188
O4	0.65011 (17)	0.31964 (16)	0.45740 (7)	0.0183
C5	0.6150 (2)	0.4717 (2)	0.39897 (10)	0.0194
C6	0.6412 (3)	0.6382 (3)	0.45454 (12)	0.0271
C7	0.7657 (2)	0.4593 (2)	0.32003 (10)	0.0187
C8	0.7208 (2)	0.2889 (3)	0.26846 (10)	0.0186
09	0.85143 (18)	0.26675 (18)	0.19178 (7)	0.0243
O10	0.97297 (17)	0.45445 (18)	0.35319 (8)	0.0232
011	0.40458 (18)	0.1333 (2)	0.39115 (8)	0.0254
H21	0.6937	0.0193	0.2985	0.0197*
H31	0.6474	0.0567	0.4621	0.0197*
H51	0.4756	0.4675	0.3773	0.0236*

supporting information

H61	0.6179	0.7441	0.4188	0.0406*	
H62	0.5480	0.6346	0.5057	0.0398*	
H63	0.7791	0.6452	0.4743	0.0401*	
H71	0.7508	0.5628	0.2786	0.0214*	
H81	0.5761	0.2938	0.2475	0.0221*	
H7	0.8826	0.3664	0.1753	0.0374*	
H8	0.9866	0.1914	0.3632	0.0333*	
H10	1.0243	0.5538	0.3399	0.0350*	
H1	0.3258	0.1436	0.4383	0.0408*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0198 (5)	0 0204 (7)	0.0229 (6)	0.0030 (5)	-0.0010 (5)	-0.0005 (5)
C2	0.0184 (7)	0.0188 (9)	0.0153 (7)	-0.0001(8)	-0.0013(6)	-0.0015(6)
C3	0.0209 (8)	0.0186 (9)	0.0169 (7)	-0.0037 (7)	0.0005 (6)	-0.0021 (7)
O4	0.0223 (5)	0.0178 (7)	0.0150 (5)	-0.0008 (5)	-0.0006 (5)	0.0007 (5)
C5	0.0220 (8)	0.0184 (9)	0.0179 (7)	0.0019 (8)	-0.0015 (7)	0.0002 (7)
C6	0.0378 (10)	0.0202 (10)	0.0232 (8)	0.0022 (9)	0.0025 (9)	-0.0040 (7)
C7	0.0183 (7)	0.0202 (9)	0.0176 (7)	0.0031 (7)	0.0006 (7)	0.0029 (7)
C8	0.0197 (7)	0.0212 (10)	0.0149 (7)	0.0011 (7)	0.0013 (6)	-0.0005 (7)
09	0.0335 (6)	0.0213 (7)	0.0180 (5)	0.0043 (6)	0.0087 (5)	0.0025 (5)
O10	0.0195 (5)	0.0195 (7)	0.0306 (6)	-0.0026 (5)	-0.0015 (5)	0.0023 (6)
011	0.0199 (5)	0.0331 (8)	0.0233 (5)	-0.0074 (6)	0.0028 (5)	-0.0047 (6)

Geometric parameters (Å, °)

01—C2	1.4250 (19)	С6—Н61	0.966
O1—H8	0.815	C6—H62	0.971
С2—С3	1.540 (2)	С6—Н63	0.944
С2—С8	1.534 (2)	С7—С8	1.516 (2)
C2—H21	0.969	C7—O10	1.4334 (19)
С3—О4	1.430 (2)	C7—H71	0.994
C3—O11	1.3965 (19)	C8—O9	1.4288 (18)
С3—Н31	1.015	C8—H81	0.990
O4—C5	1.449 (2)	O9—H7	0.811
С5—С6	1.504 (2)	O10—H10	0.839
С5—С7	1.529 (2)	O11—H1	0.870
С5—Н51	0.962		
С2—О1—Н8	98.1	С5—С6—Н62	109.6
O1—C2—C3	109.88 (12)	H61—C6—H62	110.8
O1—C2—C8	112.50 (13)	С5—С6—Н63	108.9
C3—C2—C8	109.93 (14)	H61—C6—H63	105.9
O1—C2—H21	105.7	H62—C6—H63	110.5
C3—C2—H21	108.8	C5—C7—C8	108.34 (14)
C8—C2—H21	109.9	C5—C7—O10	109.84 (12)
C2—C3—O4	111.93 (14)	C8—C7—O10	109.43 (14)

C2—C3—O11	107.62 (12)	С5—С7—Н71	111.3
O4—C3—O11	111.43 (15)	C8—C7—H71	109.0
С2—С3—Н31	110.4	O10—C7—H71	108.9
O4—C3—H31	106.1	C2—C8—C7	110.89 (12)
O11—C3—H31	109.4	C2—C8—O9	109.12 (13)
C3—O4—C5	113.97 (11)	C7—C8—O9	112.67 (13)
O4—C5—C6	107.79 (12)	C2C8H81	107.4
O4—C5—C7	108.05 (13)	C7—C8—H81	108.0
C6—C5—C7	113.45 (14)	O9—C8—H81	108.5
O4—C5—H51	108.8	С8—О9—Н7	106.4
С6—С5—Н51	108.5	C7—O10—H10	105.7
С7—С5—Н51	110.1	C3—O11—H1	110.4
С5—С6—Н61	111.2		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O9—H7…O1 ⁱ	0.81	2.04	2.818 (2)	162
O1—H8…C7	0.82	2.55	3.061 (2)	122
O1—H8…O10	0.82	1.98	2.740 (2)	156
O10—H10····O9 ⁱ	0.84	1.85	2.686 (2)	177
011—H1····O4 ⁱⁱ	0.87	1.94	2.812 (2)	177

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) x-1/2, -y+1/2, -z+1.