metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis[1-(2-hydroxyethyl)-1Htetrazole- κN^4]copper(II)]-di- μ -chlorido]: a powder study

Ludmila S. Ivashkevich,* Alexander S. Lyakhov, Tatiyana V. Serebryanskaya and Pavel N. Gaponik

Research Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus Correspondence e-mail: iva@bsu.by

Received 20 June 2008; accepted 15 July 2008

Key indicators: powder X-ray study; T = 295 K; mean σ (Cu–N) = 0.010 Å; disorder in main residue; R factor = 0.042; wR factor = 0.067.

The crystal structure of the title polymeric complex, $[CuCl_2(C_3H_6N_4O)_2]_n$, was obtained by the Rietveld refinement from laboratory X-ray powder diffraction data collected at room temperature. The unique Cu^{II} ion lies on an inversion center and is in a slightly distorted octahedral coordination environment. In the hydroxyethyl group, all H atoms, the O atom and its attached C atom are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4. The OH group is involved in an intramolecular O-H···N hydrogen bond.

Related literature

For related literature, see: Ivashkevich et al. (2001); Ivashkevich, Lyakhov et al. (2005); Ivashkevich, Voitekhovich & Lyakhov (2005); Stassen et al. (2002); Werner et al. (1985); Allen (2002); Virovets et al. (1995, 1996).

Cu -Cl -Cu CI----

n

Crystal data

-	
$[CuCl_2(C_3H_6N_4O)_2]$	Z = 2
$M_r = 362.69$	Cu $K\alpha$ radiation
Monoclinic, $P2_1/c$	T = 295 (2) K
a = 13.3349 (11) Å	Specimen shape: flat sheet
b = 6.7406 (6) Å	$30 \times 30 \times 1 \text{ mm}$
c = 7.3419 (5) Å	Specimen prepared at 100 kPa
$\beta = 105.450 \ (8)^{\circ}$	Specimen prepared at 295(2) K
$V = 636.08 (9) \text{ Å}^3$	Particle morphology: plate, green
Data collection	
HZG-4A (Carl Zeiss, Jena)	Specimen mounted in reflection

HZG-4A (Carl Zeiss, Jena)	Specimen mounted in refle
diffractometer	mode
Specimen mounting: packed powder	Scan method: step
pellet	$2\theta_{\min} = 5.0, 2\theta_{\max} = 100.0^{\circ}$
	Increment in $2\theta = 0.02^{\circ}$

Refinement

$R_{\rm p} = 0.042$	Profile function: pseudo-Voigt
$R_{wp} = 0.067$	785 reflections
$R_{\rm exp} = 0.086$	48 parameters
$R_{\rm B} = 0.029$	21 restraints
S = 0.78	H-atom parameters constrained
Wavelength of incident radiation:	Preferred orientation correction:
1.5418 Å	Marsh-Dollase function (Marsh
Excluded region(s): none	1932; Dollase, 1986)

Table 1

Selected geometric parameters (Å, °).

Cu—Cl	2.234 (7)	Cu-Cl ⁱ	3.008 (7)
Cu—N4	1.979 (10)	Cu-Cu ⁱⁱ	4.9835 (4)
CI - Cu - N4 $CI - Cu - Cl^{i}$ $CI - Cu - Cl^{iii}$ $CI - Cu - N4^{iii}$ $CI - Cu - Cl^{iv}$	89.8 (7) 90.8 (2) 180 90.2 (7) 89.2 (2)	$\begin{array}{l} Cl^i-Cu-N4\\ N4-Cu-N4^{iii}\\ Cl^{iv}-Cu-N4\\ Cu-Cl-Cu^{ii} \end{array}$	92.6 (5) 180 87.4 (5) 143.5 (2)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y, -z + 1; (iv) $x_{1}^{2} - v_{1}^{2} + \frac{1}{2}, z_{1}^{2} + \frac{1}{2}$

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H1···N2	0.82	2.35	3.08 (3)	149
$C2-H2\cdots N2$ $C5-H5\cdots Cl^{ii}$	0.82	2.46 2.72	3.02 (3) 3.34 (2)	126

Symmetry code: (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: local program; cell refinement: FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF and PLATON.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2648).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ivashkevich, D. O., Lyakhov, A. S., Gaponik, P. N., Bogatikov, A. N. & Govorova, A. A. (2001). Acta Cryst. E57, m335–m337.
- Ivashkevich, L. S., Lyakhov, A. S., Ivashkevich, D. O., Degtyarik, M. M. & Gaponik, P. N. (2005). Russ. J. Inorg. Chem. 50, 78–82.
- Ivashkevich, D. O., Voitekhovich, S. V. & Lyakhov, A. S. (2005). XXII International Chugaev Conference on Coordination Chemistry, Kishinev, 2005. Book of Abstracts, p. 371.
- Marsh, A. (1932). Z. Kristallogr. 81, 285-297.
- Rodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stassen, A. F., Kooijman, H., Spek, A. L., Jos de Jongh, L., Haasnoot, J. G. & Reedijk, J. (2002). *Inorg. Chem.* 41, 6468–6473.
- Virovets, A. V., Baidina, I. A., Alekseev, V. I., Podberezskaya, N. V. & Lavrenova, L. G. (1996). *Zh. Strukt. Khim.* **37**, 330–336.
- Virovets, A. V., Podberezskaya, N. V., Lavrenova, L. G. & Bikzhanova, G. A. (1995). Acta Cryst. C51, 1084–1087.
- Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.

supporting information

Acta Cryst. (2008). E64, m1044-m1045 [doi:10.1107/S1600536808022137]

catena-Poly[[bis[1-(2-hydroxyethyl)-1*H*-tetrazole- κN^4]copper(II)]-di- μ -chlorido]: a powder study

Ludmila S. Ivashkevich, Alexander S. Lyakhov, Tatiyana V. Serebryanskaya and Pavel N. Gaponik

S1. Comment

Complexes of copper(II) chloride with substituted tetrazoles attract attention because of their magnetic bahaviour at low temperatures. Among them, there are layered coordination polymers with square grids of only Cu and Cl atoms, of the composition $CuCl_2L_2$, where L = 1-ethyltetrazole (Virovets *et al.*, 1995), 1-allyltetrazole (Virovets *et al.*, 1996), 1-(2-azidoethyl)terazole (Ivashkevich *et al.*, 2001), 1-(2-chloroethyl)tetrazole (Stassen *et al.*, 2002), 1-benzyltetrazole (Ivashkevich, Voitekhovich & Lyakhov, 2005), and 1-methyltetrazole (Ivashkevich, Lyakhov, Ivashkevich, Degtyarik & Gaponik, 2005). These compounds crystallize in the space group $P2_1/c$ and are isotypic. Here, we present another example, poly[[bis(1-(2-hydroxyethyl)tetrazole- N^4)copper(II)]-di- μ -chloro], (I), (Fig. 1). As it is difficult to obtain single crystals for structural analysis, the compound (I) was investigated by X-ray powder diffraction.

The Cu atom lies on inversion center and shows a slightly distorted octahedral coordination environment. Equatorial sites are occupied by two *trans* positioned N atoms and two Cl atoms; Cl atoms lying in axial positions are essentially more distant from the Cu atom (Table 1). Each Cl atom is a bridge between the neighbouring Cu atoms, forming two different in length Cu—Cl bonds, with Cu—Cl—Cu angle of 143.4 (2)°. These bonds are responsible for the formation of polymeric layers parallel to the yz plane (Fig. 2). Within a layer, the shortest Cu…Cu distance is 4.9835 (4) Å, whereas between two neighbouring layers, the closest Cu centers are separated by cell dimension a. Only van der Waals interactions are between the layers.

The 2-hydroxyethyl substituent at the tetrazole ring atom N1 was found to be disordered over two positions, with almost equal occupancies of 0.562 (12) for C71—O1 and 0.438 (12) for C72—O2 (Fig. 1). For both positions, OH groups are involved in intramolecular hydrogen bonds O—H···N. There are also hydrogen bonds C—H···Cl (Table 2).

S2. Experimental

A solution, containing 2.13 g (0.0125 mol) of CuCl₂.2H₂O in 75 ml of ethanol, was added to a slightly heated solution of 1-(2-hydroxyethyl)tetrazole (2.85 g, 0.025 mol) in a solvent mixture (45 ml of ethanol and 30 ml of n-buthanol), with stirring at room temperature. After stirring the reaction mixture for 10 min, the obtained green crystals of (I) were filtered off, air dried and recrystallized from (ethanol—n-buthanol) mixture (v/v = 4:1) [3.55 g, yield 78.3%]. Calc.(%): Cu 17.52, Cl 19.59. Found (%): Cu 18.2, Cl 20.1.

S3. Refinement

The monoclinic unit-cell dimensions of (I) were determined with the indexing program TREOR90 (Werner *et al.*, 1985). The obtained values indicated isotypism of (I) with layered coordination polymers CuCl_2L_2 (L = 1-alkyltetrazole) that crystallize in the monoclinic space group $P2_1/c$. This space group and the atomic coordinates of CuCl_2L_2 with L = 1-ethyltetrazole (Virovets *et al.*, 1995) were used as starting parameters for the Rietveld refinement with the FULLPROF

program (Rodríguez-Carvajal, 2001). Background intensity was found by Fourier filtering technique as implemented in the FULLPROF program, under visual inspection of the resulting background curve. Correction for profile asymmetry was made for reflections up to 2θ =30°. A Marsh-Dollase correction of intensities for [100] preferred orientation of plate-like grains in the sample (Marsh, 1932; Dollase, 1986) was applied.

The Rietveld refinement, performed primarily by using individual isotropic displacement parameters for non-H atoms, revealed rather high values of B_{iso} for atoms of C—O fragment. From this fact an assumption was made that C—O fragment was disordered over two positions. It was confirmed in subsequent refinement by introducing disorder positions for the above C and O atoms. In final refinement, all non-H atoms were refined with overall B_{iso} parameter.

All H atoms were placed in geometrically calculated positions, using the program *SHELXL97* (Sheldrick, 2008), with displacement parameter $B_{iso}(H)=1.2B_{iso}(C)$ for H atom at C5 tetrazole ring atom and $B_{iso}(H)=1.5B_{iso}(C,O)$ for the methylene and hydroxyl groups.

Soft restraints on some interatomic distances and bond angles of ligand molecule, based on a geometric analysis of a large number of 1-substituted tetrazoles (Cambridge Structural Database, version 5.29 of November 2007; Allen, 2002), were used in the Rietved refinement. Observed, calculated and difference diffraction patterns are shown in Fig. 3.

Figure 1

The asymmetric unit of (I) with the atomic numbering scheme. 2-hydroxyethyl substituent is shown as disordered over two positions.

Figure 2

Layered structure of (I), viewed along the b axis. Disordered 2-hydroxyethyl substituent is shown only in position with occupancy factor of 0.562 (12).

Figure 3

The Rietveld plot, showing the observed (circles), calculated (line) and difference patterns for (I). The reflection positions are shown above the difference pattern.

catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole-κN⁴]copper(II)]- di-μ-chlorido]

Crystal data

[CuCl₂(C₃H₆N₄O)₂] $M_r = 362.69$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.3349 (11) Å b = 6.7406 (6) Å c = 7.3419 (5) Å $\beta = 105.450$ (8)° V = 636.08 (9) Å³ Z = 2

Data collection

HZG-4A (Carl Zeiss, Jena)
diffractometer
Radiation source: fine-focus sealed X-ray tube,
BSV-29
Ni filtered monochromator

Refinement

Refinement on <i>I</i> _{net}	Profile function: psevdo-Voigt
Least-squares matrix: full with fixed elements	48 parameters
per cycle	21 restraints
$R_{\rm p} = 0.042$	0 constraints
$R_{wp} = 0.067$	H-atom parameters constrained
$R_{\rm exp} = 0.086$	Weighting scheme based on measured s.u.'s
$R_{\text{Bragg}} = 0.029$	$(\Delta/\sigma)_{\rm max} = 0.02$
$\chi^2 = 0.608$	Background function: Fourier filtering
4751 data points	Preferred orientation correction: Marsh-Dollase
Excluded region(s): none	function (Marsh, 1932; Dollase, 1986)

F(000) = 366.0

T = 295 K

100 kPa

Scan method: step

green

 $D_{\rm x} = 1.894 {\rm Mg} {\rm m}^{-3}$

Cu K α radiation, $\lambda = 1.5418$ Å

Specimen preparation: Prepared at 295 K and

Specimen mounting: packed powder pellet

 $2\theta_{\min} = 5.000^{\circ}, 2\theta_{\max} = 100.000^{\circ}, 2\theta_{step} = 0.020^{\circ}$

Data collection mode: reflection

Particle morphology: plate

flat sheet, 30×30 mm

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu	0.00000	0.00000	0.50000	0.0309 (10)*	
Cl	-0.0624 (4)	0.2048 (11)	0.2569 (10)	0.0309 (10)*	
N1	0.24708 (16)	0.3706 (2)	0.583 (4)	0.0309 (10)*	
N2	0.2982 (2)	0.19676 (13)	0.595 (3)	0.0309 (10)*	
N3	0.2308 (2)	0.05581 (18)	0.577 (3)	0.0309 (10)*	
N4	0.1358 (4)	0.1377 (3)	0.553 (4)	0.0309 (10)*	
C5	0.14654 (16)	0.3314 (4)	0.545 (5)	0.0309 (10)*	
Н5	0.09292	0.42403	0.51621	0.0309 (10)*	
C6	0.3006 (6)	0.5643 (10)	0.5973 (16)	0.0309 (10)*	
H61A	0.24602	0.66346	0.56434	0.0309 (10)*	0.562 (12)
H61B	0.33551	0.56618	0.49731	0.0309 (10)*	0.562 (12)
C71	0.3778 (18)	0.641 (2)	0.768 (3)	0.0309 (10)*	0.562 (12)
H71A	0.41791	0.74586	0.73283	0.0309 (10)*	0.562 (12)
H71B	0.34071	0.69633	0.85467	0.0309 (10)*	0.562 (12)
01	0.4451 (15)	0.489 (3)	0.862 (5)	0.0309 (10)*	0.562 (12)
H1	0.42627	0.38207	0.81168	0.0309 (10)*	0.562 (12)

supporting information

H62A	0.31564	0.60902	0.72756	0.0309 (10)*	0.438 (12)
H62B	0.25331	0.65967	0.52039	0.0309 (10)*	0.438 (12)
C72	0.3987 (12)	0.565 (7)	0.539 (4)	0.0309 (10)*	0.438 (12)
H72A	0.38957	0.48960	0.42321	0.0309 (10)*	0.438 (12)
H72B	0.41727	0.69967	0.51599	0.0309 (10)*	0.438 (12)
O2	0.479 (2)	0.480 (6)	0.684 (5)	0.0309 (10)*	0.438 (12)
H2	0.46854	0.35907	0.68929	0.0309 (10)*	0.438 (12)

Geometric parameters (Å, °)

Cu—Cl	2.234 (7)	N3—N4	1.350 (11)
Cu—N4	1.979 (10)	N4C5	1.316 (4)
Cu—Cl ⁱ	3.008 (7)	C6—C71	1.49 (2)
Cu—Cl ⁱⁱ	2.234 (7)	C6—C72	1.48 (2)
Cu—N4 ⁱⁱ	1.979 (10)	С5—Н5	0.9300
Cu—Cl ⁱⁱⁱ	3.008 (7)	C6—H61B	0.9700
O1—C71	1.41 (3)	C6—H62A	0.9700
O2—C72	1.42 (5)	C6—H61A	0.9700
O1—H1	0.8200	C6—H62B	0.9700
O2—H2	0.8200	C71—H71A	0.9700
N1—N2	1.346 (6)	C71—H71B	0.9700
N1—C5	1.321 (15)	С72—Н72А	0.9700
N1—C6	1.478 (8)	С72—Н72В	0.9700
N2—N3	1.291 (7)	Cu—Cu ^{iv}	4.9835 (4)
Cl—Cu—N4	89.8 (7)	N1—C6—C72	115 (2)
Cl—Cu—Cl ⁱ	90.8 (2)	N1—C6—C71	125.5 (14)
Cl—Cu—Cl ⁱⁱ	180	O1—C71—C6	111.5 (15)
Cl—Cu—N4 ⁱⁱ	90.2 (7)	O2—C72—C6	110 (2)
Cl—Cu—Cl ⁱⁱⁱ	89.2 (2)	N1—C5—H5	126.00
Cl ⁱ —Cu—N4	92.6 (5)	N4—C5—H5	126.00
Cl ⁱⁱ —Cu—N4	90.2 (7)	N1—C6—H61B	106.00
N4—Cu—N4 ⁱⁱ	180	N1—C6—H62A	108.00
Cl ⁱⁱⁱ —Cu—N4	87.4 (5)	N1—C6—H62B	108.00
Cl ⁱ —Cu—Cl ⁱⁱ	89.2 (2)	C71—C6—H61A	106.00
Cl ⁱ —Cu—N4 ⁱⁱ	87.4 (5)	C71—C6—H61B	106.00
Cl ⁱ —Cu—Cl ⁱⁱⁱ	180.00	H61A—C6—H61B	106.00
Cl ⁱⁱ —Cu—N4 ⁱⁱ	89.8 (7)	С72—С6—Н62А	109.00
Cl ⁱⁱ —Cu—Cl ⁱⁱⁱ	90.8 (2)	С72—С6—Н62В	109.00
Cl ⁱⁱⁱ —Cu—N4 ⁱⁱ	92.6 (5)	H62A—C6—H62B	107.00
Cu—Cl—Cu ^{iv}	143.5 (2)	N1—C6—H61A	106.00
C71—O1—H1	109.00	O1—C71—H71A	109.00
С72—О2—Н2	109.00	O1—C71—H71B	109.00
N2—N1—C6	122.6 (7)	C6—C71—H71B	109.00
C5—N1—C6	129.4 (6)	H71A—C71—H71B	108.00
N2—N1—C5	107.9 (5)	C6—C71—H71A	109.00
N1—N2—N3	107.9 (6)	С6—С72—Н72А	110.00
N2—N3—N4	108.4 (3)	С6—С72—Н72В	110.00

Cu—N4—N3	127.6 (3)	O2—C72—H72A	110.00
N3—N4—C5	107.5 (8)	O2—C72—H72B	109.00
Cu—N4—C5	124.1 (9)	H72A—C72—H72B	108.00
N1—C5—N4	107.8 (9)		

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x, -y, -z+1; (iii) x, -y+1/2, z+1/2; (iv) -x, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N2	0.8200	2.3500	3.08 (3)	149.00
O2—H2…N2	0.8200	2.4600	3.02 (3)	126.00
C5—H5…Cl ^{iv}	0.9300	2.7200	3.34 (2)	126.00

Symmetry code: (iv) -x, y+1/2, -z+1/2.