metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis(pyridine- κN)nickel(II)]- μ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$]

Zhen-Yu Xuan,* Yong Che and Yong-Chun Huang

Department of Laboratory and Equipment Management, Yanbian University, Yanbian 133002, People's Republic of China Correspondence e-mail: zyxuanchem@yahoo.cn

Received 6 July 2008; accepted 12 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.103; data-to-parameter ratio = 17.5.

The title compound, $[Ni(C_2O_4)(C_5H_5N)_2]_n$, was synthesized under hydro(solvo)thermal conditions. The Ni^{II} atom, lying on a twofold rotation axis, has an octahedral coordination geometry involving two N atoms from two pyridine ligands and four O atoms from two oxalate ligands. The Ni atoms are connected by the tetradentate bridging oxalate ligands into a one-dimensional zigzag chain.

Related literature

For related literature, see: Lu et al. (1999); Vaidhyanathan et al. (2002); Wang et al. (2007); Yao et al. (2007).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ni}(\text{C}_2\text{O}_4)(\text{C}_5\text{H}_5\text{N})_2 \end{bmatrix} & V = 1343.5 \text{ (5)} \text{ Å}^3 \\ M_r = 304.93 & Z = 4 \\ \text{Monoclinic, } C2/c & \text{Mo } K\alpha \text{ radiation} \\ a = 14.357 \text{ (3)} \text{ Å} & \mu = 1.45 \text{ mm}^{-1} \\ b = 10.801 \text{ (2)} \text{ Å} & T = 293 \text{ (2)} \text{ K} \\ c = 8.6669 \text{ (17)} \text{ Å} & 0.26 \times 0.24 \times 0.22 \text{ mm} \\ \beta = 91.52 \text{ (3)}^{\circ} \end{array}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.640, T_{max} = 0.726$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	87 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
1519 reflections	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

6433 measured reflections

 $R_{\rm int} = 0.041$

1519 independent reflections

1297 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ni1—O2 ⁱ Ni1—O1	2.046 (2) 2.0716 (18)	Ni1-N1	2.081 (2)
$\begin{array}{l} D2^{i} - Ni1 - O2^{ii} \\ D2^{i} - Ni1 - O1 \\ D2^{ii} - Ni1 - O1 \\ D1 - Ni1 - O1^{iii} \\ D2^{i} - Ni1 - N1 \end{array}$	168.78 (10) 89.88 (7) 81.96 (7) 86.81 (11) 94.02 (8)	02^{ii} -Ni1-N1 01-Ni1-N1 01 ⁱⁱⁱ -Ni1-N1 N1-Ni1-N1 ⁱⁱⁱ	93.66 (9) 89.92 (9) 174.81 (8) 93.61 (13)

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$, (ii) -x + 1, -y + 1, -z; (iii) $-x + 1, y, -z + \frac{1}{2}$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Yanbian University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2144).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Lu, J.-Y., Lawandy, M.-A. & Li, J. (1999). Inorg. Chem. 38, 2695-2704.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 4496–4501.

Wang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289– m291.

Yao, H.-G., Ji, M., Ji, S.-H. & An, Y.-L. (2007). Acta Cryst. E63, m1349-m1350.

supporting information

Acta Cryst. (2008). E64, m1040 [doi:10.1107/S1600536808021703]

catena-Poly[[bis(pyridine- κN)nickel(II)]- μ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$]

Zhen-Yu Xuan, Yong Che and Yong-Chun Huang

S1. Comment

Much research work has been done on metal–oxalate compounds, in the context of studies of molecular-based magnets and open framework structures (Lu *et al.*, 1999; Yao *et al.*, 2007). The geometrical coordination mode and strength of this ligand provide both rigidity and preferred coordination specificity for metal centers (Vaidhyanathan *et al.*, 2002; Wang *et al.*, 2007). In this paper, we report the hydro(solvo)thermal synthesis and structure of a new one-dimensional nickelous oxalate coordination polymer.

The title compound consists of one Ni^{II} atom lying on a twofold rotation axis, an oxalate ligand and two coordinated pyridine molecules (Fig. 1). The Ni^{II} atom exhibits a distorted octahedral geometry, defined by four O atoms of two oxalate ligands and two pyridine N atoms in a *cis* arrangement. The Ni—O distances are 2.046 (2) and 2.0716 (18) Å, while the O—Ni—O angles show distortions particularly as a result of chelation (Table 1). The tetradentate oxalate ligands link adjacent Ni atoms into a one-dimensional zigzag chain.

S2. Experimental

A mixture of $K_2C_2O_4$. H_2O (0.037 g, 0.2 mmol), H_3BO_3 (0.013 g, 0.2 mmol), NiCl₂.2 H_2O (0.033 g, 0.2 mmol), KOH (0.012 g, 0.2 mmol), pyridine (4 ml) and water (8 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 393 K in 2 h and maintained at 393 K for 72 h. After the mixture was cooled to 298 K, blue crystals of the title compound were obtained.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, 1-y, 1/2+z; (ii) 1-x, 1-y, -z; (iii) 1-x, y, 1/2-z.]

F(000) = 624

 $\theta = 3.3 - 27.5^{\circ}$

 $\mu = 1.45 \text{ mm}^{-1}$

T = 293 K

Block, blue

 $D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$

 $0.26 \times 0.24 \times 0.22 \text{ mm}$

Mo Ka radiation, $\lambda = 0.71073$ Å

Cell parameters from 1532 reflections

catena-Poly[[bis(pyridine- κ N)nickel(II)]- μ -oxalato- $\kappa^4O^1, O^2:O^1, O^2'$]

Crystal data [Ni(C₂O₄)(C₅H₅N)₂] $M_r = 304.93$ Monoclinic, C2/c Hall symbol: -C 2yc a = 14.357 (3) Å b = 10.801 (2) Å c = 8.6669 (17) Å $\beta = 91.52$ (3)° V = 1343.5 (5) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID	6433 measured reflections
diffractometer	1519 independent reflections
Radiation source: rotating anode	1297 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(ABSCOR; Higashi, 1995)	$l = -11 \rightarrow 10$
$T_{\min} = 0.640, \ T_{\max} = 0.726$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.04	H-atom parameters constrained
1519 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 1.5041P]$
87 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.73 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.5000	0.35667 (4)	0.2500	0.04167 (19)	
01	0.57949 (11)	0.49601 (17)	0.1553 (2)	0.0468 (4)	
O2	0.57299 (12)	0.62481 (16)	-0.0453 (2)	0.0465 (4)	
N1	0.59041 (14)	0.2248 (2)	0.1633 (3)	0.0491 (5)	
C1	0.5679 (2)	0.1569 (3)	0.0391 (5)	0.0726 (10)	
H1	0.5088	0.1664	-0.0059	0.090*	
C2	0.6274 (3)	0.0743 (4)	-0.0251 (6)	0.0911 (13)	
H2	0.6085	0.0290	-0.1116	0.090*	
C3	0.7145 (3)	0.0584 (3)	0.0378 (5)	0.0790 (11)	
Н3	0.7558	0.0019	-0.0040	0.090*	
C4	0.7395 (2)	0.1274 (4)	0.1630 (5)	0.0725 (10)	
H4	0.7986	0.1190	0.2083	0.090*	
C5	0.6764 (2)	0.2103 (3)	0.2231 (4)	0.0592 (8)	
Н5	0.6946	0.2577	0.3083	0.090*	
C6	0.54390 (16)	0.5345 (2)	0.0324 (3)	0.0405 (5)	

Atomic	displ	lacement	parameters	(\AA^2)
--------	-------	----------	------------	-----------

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Ni1	0.0290 (2)	0.0460 (3)	0.0499 (3)	0.000	-0.00167 (18)	0.000
01	0.0341 (9)	0.0554 (11)	0.0503 (11)	-0.0087 (7)	-0.0082 (8)	0.0032 (8)
02	0.0358 (9)	0.0508 (10)	0.0527 (11)	-0.0083 (7)	-0.0047 (8)	0.0002 (8)
N1	0.0351 (11)	0.0486 (12)	0.0637 (15)	0.0030 (9)	0.0034 (10)	0.0006 (10)
C1	0.0480 (17)	0.074 (2)	0.096 (3)	0.0063 (15)	-0.0007 (17)	-0.0296 (19)
C2	0.067 (2)	0.089 (3)	0.118 (3)	0.007 (2)	0.011 (2)	-0.043 (3)
C3	0.060 (2)	0.068 (2)	0.110 (3)	0.0157 (17)	0.025 (2)	-0.009 (2)
C4	0.0438 (16)	0.086 (2)	0.088 (3)	0.0185 (15)	0.0097 (16)	0.021 (2)
C5	0.0401 (14)	0.070(2)	0.067 (2)	0.0114 (13)	0.0028 (13)	0.0074 (15)
C6	0.0293 (11)	0.0451 (13)	0.0470 (14)	-0.0015 (10)	0.0014 (10)	-0.0054 (11)

Geometric parameters (Å, °)

Ni1—O2 ⁱ	2.046 (2)	C1—C2	1.364 (5)
Ni1—O2 ⁱⁱ	2.046 (2)	C1—H1	0.9300

supporting information

NF1 01	0.071((10)	G0 G0	1.2(2.(())
N11—O1	2.0/16 (18)	C2 - C3	1.362 (6)
Ni1—O1 ⁱⁱⁱ	2.0716 (18)	С2—Н2	0.9300
Nil—N1	2.081 (2)	C3—C4	1.357 (6)
Ni1—N1 ⁱⁱⁱ	2.081 (2)	С3—Н3	0.9300
O1—C6	1.240 (3)	C4—C5	1.385 (5)
O2—C6	1.263 (3)	C4—H4	0.9300
O2—Ni1 ⁱⁱ	2.046 (2)	С5—Н5	0.9300
N1—C1	1.335 (4)	C6—C6 ⁱⁱ	1.556 (4)
N1—C5	1.336 (3)		
O2 ⁱ —Ni1—O2 ⁱⁱ	168.78 (10)	C5—N1—Ni1	121.3 (2)
O2 ⁱ —Ni1—O1	89.88 (7)	N1-C1-C2	123.1 (3)
O2 ⁱⁱ —Ni1—O1	81.96 (7)	N1—C1—H1	118.4
O2 ⁱ —Ni1—O1 ⁱⁱⁱ	81.96 (7)	C2—C1—H1	118.4
O2 ⁱⁱ —Ni1—O1 ⁱⁱⁱ	89.88 (7)	C3—C2—C1	119.9 (4)
O1—Ni1—O1 ⁱⁱⁱ	86.81 (11)	С3—С2—Н2	120.1
O2 ⁱ —Ni1—N1	94.02 (8)	C1—C2—H2	120.1
O2 ⁱⁱ —Ni1—N1	93.66 (9)	C4—C3—C2	118.1 (3)
O1—Ni1—N1	89.92 (9)	С4—С3—Н3	121.0
O1 ⁱⁱⁱ —Ni1—N1	174.81 (8)	С2—С3—Н3	121.0
O2 ⁱ —Ni1—N1 ⁱⁱⁱ	93.66 (9)	C3—C4—C5	119.7 (3)
O2 ⁱⁱ —Ni1—N1 ⁱⁱⁱ	94.02 (8)	C3—C4—H4	120.2
O1—Ni1—N1 ⁱⁱⁱ	174.81 (8)	С5—С4—Н4	120.2
O1 ⁱⁱⁱ —Ni1—N1 ⁱⁱⁱ	89.92 (9)	N1-C5-C4	122.4 (3)
N1—Ni1—N1 ⁱⁱⁱ	93.61 (13)	N1—C5—H5	118.8
C6—O1—Ni1	111.39 (15)	С4—С5—Н5	118.8
C6—O2—Ni1 ⁱⁱ	111.64 (15)	O1—C6—O2	125.6 (2)
C1—N1—C5	116.8 (3)	O1—C6—C6 ⁱⁱ	117.5 (3)
C1—N1—Ni1	121.8 (2)	O2—C6—C6 ⁱⁱ	116.9 (3)

Symmetry codes: (i) x, -y+1, z+1/2; (ii) -x+1, -y+1, -z; (iii) -x+1, y, -z+1/2.