# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 3,3'-Bis(3,4,5-trimethoxybenzoyl)-1,1'-(o-phenylene)dithiourea ethanol solvate

#### Hai-Tang Du<sup>a</sup>\* and Hai-Jun Du<sup>b</sup>

<sup>a</sup>Institute of Natural Products, Research Center for Eco-Environmental Sciences, Guiyang College, Guiyang 550005, People's Republic of China, and <sup>b</sup>School of Chemistry and Environmental Science, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China Correspondence e-mail: haitangdu@gz139.com.cn

Received 24 July 2008; accepted 25 July 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.116; data-to-parameter ratio = 15.8.

In the molecule of the title compound,  $C_{28}H_{30}N_4O_8S_2 \cdot C_2H_6O_1$ the benzene ring is oriented at dihedral angles of 38.50 (6) and 5.68 (5) $^{\circ}$  with respect to the trimethoxyphenyl rings, while the two trimethoxyphenyl rings are oriented at a dihedral angle of 44.18 (5)°. Intramolecular N-H···O and N-H···S hydrogen bonds result in the formation of non-planar six-, seven- and eight-membered rings. The twisting modes of the two side arms are different [C-N-C-O and C-N-C-N torsion angles = 0.1 (3) and 11.8 (3)°, respectively, in one arm, and 4.6 (3) and -11.5 (3)° in the other]. In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds link the molecules.

#### **Related literature**

For a related structure, see: Thiam et al. (2008). For ring conformation puckering parameters, see: Cremer & Pople (1975).



 $\gamma = 78.210 \ (12)^{\circ}$ 

Z = 2

V = 1556.9 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.14 \times 0.12 \times 0.10 \text{ mm}$ 

18692 measured reflections

6824 independent reflections

5694 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.23 \text{ mm}^-$ 

T = 113 (2) K

 $R_{\rm int}=0.046$ 

#### **Experimental**

Crystal data

 $C_{28}H_{30}N_4O_8S_2 \cdot C_2H_6O$  $M_r = 660.75$ Triclinic,  $P\overline{1}$ a = 7.7619 (15) Åb = 14.473 (3) Å c = 15.810 (3) Å  $\alpha = 67.113 (10)^{\circ}$  $\beta = 73.069 (9)^{\circ}$ 

#### Data collection

Rigaku Saturn CCD area-detector diffractometer Absorption correction: multi-scan

(CrystalClear; Rigaku/MSC, 2005)  $T_{\min} = 0.968, \ T_{\max} = 0.977$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.115$               | independent and constrained                               |
| S = 1.07                        | refinement                                                |
| 6824 reflections                | $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 433 parameters                  | $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$  |

#### Table 1

Hydrogen-bond geometry (Å, °).

| D-H      | $H \cdot \cdot \cdot A$                                                             | $D \cdots A$                                                                                                                                                                                                    | $D - \mathbf{H} \cdot \cdot \cdot A$                                                                                                                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.90 (2) | 2.51 (2)                                                                            | 3.403 (2)                                                                                                                                                                                                       | 173 (2)                                                                                                                                                                                                                                                                         |
| 0.88(2)  | 2.69 (2)                                                                            | 3.3527 (19)                                                                                                                                                                                                     | 133.0 (18)                                                                                                                                                                                                                                                                      |
| 0.88 (2) | 1.97 (2)                                                                            | 2.677 (2)                                                                                                                                                                                                       | 136 (2)                                                                                                                                                                                                                                                                         |
| 0.89 (2) | 1.90 (2)                                                                            | 2.621 (2)                                                                                                                                                                                                       | 137 (2)                                                                                                                                                                                                                                                                         |
| 0.84(2)  | 2.23 (2)                                                                            | 2.949 (2)                                                                                                                                                                                                       | 145 (2)                                                                                                                                                                                                                                                                         |
| 0.80 (3) | 2.13 (3)                                                                            | 2.905 (2)                                                                                                                                                                                                       | 163 (3)                                                                                                                                                                                                                                                                         |
|          | <i>D</i> -H<br>0.90 (2)<br>0.88 (2)<br>0.88 (2)<br>0.89 (2)<br>0.84 (2)<br>0.80 (3) | $\begin{array}{c cccc} D-H & H \cdots A \\ \hline 0.90 (2) & 2.51 (2) \\ 0.88 (2) & 2.69 (2) \\ 0.88 (2) & 1.97 (2) \\ 0.89 (2) & 1.90 (2) \\ 0.84 (2) & 2.23 (2) \\ 0.80 (3) & 2.13 (3) \\ \hline \end{array}$ | $D-H$ $H\cdots A$ $D\cdots A$ $0.90$ $(2)$ $2.51$ $(2)$ $3.403$ $(2)$ $0.88$ $(2)$ $2.69$ $(2)$ $3.3527$ $(19)$ $0.88$ $(2)$ $1.97$ $(2)$ $2.677$ $(2)$ $0.89$ $(2)$ $1.90$ $(2)$ $2.621$ $(2)$ $0.84$ $(2)$ $2.23$ $(2)$ $2.949$ $(2)$ $0.80$ $(3)$ $2.13$ $(3)$ $2.905$ $(2)$ |

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Guiyang College for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2504).

#### References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, 0776.

# supporting information

Acta Cryst. (2008). E64, o1632-o1633 [doi:10.1107/S1600536808023556]

## 3,3'-Bis(3,4,5-trimethoxybenzoyl)-1,1'-(o-phenylene)dithiourea ethanol solvate

## Hai-Tang Du and Hai-Jun Du

#### S1. Comment

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C1-C6), B (C9-C14) and C (C17-C22) are, of course, planar, and the dihedral angles between them are A/B = 38.50 (6)°, A/C = 5.68 (5)° and B/C = 44.18 (5)°.

The intramolecular N-H···O and N-H···S hydrogen bonds (Table 1) result in the formation of non-planar six-, seven- and eight-membered rings: D (O1/N1/N3/C7/C8/H1), E (O2/N2/N4/C15/C16/H2), F (S1/N1/N2/C1/C2/C7/H2) and G (S1/O2/O9/N3/C7/H2/H3A/H9). Rings D and E adopt flattened-boat [ $\varphi$  = 171.38 (2)°,  $\theta$  = 109.10 (3)° (for ring D) and  $\varphi$  = -20.28 (3)°,  $\theta$  = 96.87 (3)° (for ring E)] conformations, while rings F and G adopt highly twisted conformations having total puckering amplitudes, Q<sub>T</sub>, of 0.160 (3), 0.109 (3), 2.486 (4) and 2.064 (4) Å, respectively (Cremer & Pople, 1975). The two side arms are not twisted in the same way, as evidenced by the torsion angles: C7-N3-C8-O1 [0.1 (3)°], C8-N3-C7-N1 [11.8 (3)°] and C15-N4-C16-O2 [4.6 (3)°], C16-N4-C15-N2 [-11.5 (3)°], as in 1,2-bis(N'-benzoylthioureido)-benzene (Thiam *et al.*, 2008).

In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

#### **S2.** Experimental

For the preparation of the title compound, ammonium thiocyanate (30 mmol), 3,4,5-trimethoxylbenzoyl chloride (20 mmol), PEG-400 (0.2 mmol) and acetone (50 mL) were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 h, then benzene-1,2-diamine (9.5 mmol) was added, and the mixture was stirred for 2 h. The mixture was poured into water (20 ml). The resulting solid was filtered, washed with water, and then dried. Crystals suitable for X-ray analysis were obtained by the recrystallization of the solid residue from a mixture of N,N-dimethyl- formamide/ethanol (1:1) by slow evaporation at room temperature.

#### **S3. Refinement**

H1, H2, H3A, H4A (for NH) and H9 (for OH) atoms were located in difference syntheses and refined isotropically [N-H = 0.84 (2)-0.90 (2) Å and  $U_{iso}(H) = 0.026$  (6)-0.036 (7) Å<sup>2</sup>; O-H = 0.80 (3) Å and  $U_{iso}(H) = 0.043$  Å<sup>2</sup>]. The remaining H atoms were positioned geometrically, with C-H = 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene H, respectively, and constrained to ride on their parent atoms with  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl H and x = 1.2 for all other H atoms.



## Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.



### Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

#### 3,3'-Bis(3,4,5-trimethoxybenzoyl)-1,1'-(o-phenylene)dithiourea ethanol solvate

Crystal data

 $C_{28}H_{30}N_4O_8S_2 \cdot C_2H_6O$   $M_r = 660.75$ Triclinic, *P*I Hall symbol: -P 1 a = 7.7619 (15) Å b = 14.473 (3) Å c = 15.810 (3) Å  $a = 67.113 (10)^{\circ}$   $\beta = 73.069 (9)^{\circ}$   $\gamma = 78.210 (12)^{\circ}$  $V = 1556.9 (5) \text{ Å}^3$ 

#### Data collection

| Rigaku Saturn CCD area-detector                    |
|----------------------------------------------------|
| diffractometer                                     |
| Radiation source: rotating anode                   |
| Confocal monochromator                             |
| Detector resolution: 14.63 pixels mm <sup>-1</sup> |
| $\omega$ scans                                     |
| Absorption correction: multi-scan                  |
| (CrystalClear; Rigaku/MSC, 2005)                   |
| $T_{\min} = 0.968, \ T_{\max} = 0.977$             |

Z = 2 F(000) = 696  $D_x = 1.409 \text{ Mg m}^{-3}$ Melting point: 475 K Mo K\alpha radiation, \lambda = 0.71070 \mathbf{A} Cell parameters from 4542 reflections  $\theta = 2.4-27.2^{\circ}$   $\mu = 0.23 \text{ mm}^{-1}$  T = 113 KBlock, colorless  $0.14 \times 0.12 \times 0.10 \text{ mm}$ 

18692 measured reflections 6824 independent reflections 5694 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.046$  $\theta_{max} = 27.2^{\circ}, \theta_{min} = 2.5^{\circ}$  $h = -9 \rightarrow 9$  $k = -18 \rightarrow 18$  $l = -20 \rightarrow 20$  Refinement

| Refinement on $F^2$                              | Hydrogen site location: inferred from                          |
|--------------------------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full                       | neighbouring sites                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                  | H atoms treated by a mixture of independent                    |
| $wR(F^2) = 0.115$                                | and constrained refinement                                     |
| S = 1.07                                         | $w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.4672P]$              |
| 6824 reflections                                 | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| 433 parameters                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                            |
| 0 restraints                                     | $\Delta  ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$          |
| Primary atom site location: structure-invariant  | $\Delta \rho_{\rm min} = -0.32  \mathrm{e}  \mathrm{\AA}^{-3}$ |
| direct methods                                   | Extinction correction: SHELXL97 (Sheldrick,                    |
| Secondary atom site location: difference Fourier | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| map                                              | Extinction coefficient: 0.0140 (12)                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Ι</b> Τ Ψ/ <b>Ι</b> Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x            | У                                                                                                                                                                                                                                                                                  | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $U_{\rm iso}$ */ $U_{\rm eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.47072 (7)  | 0.74462 (4)                                                                                                                                                                                                                                                                        | 0.51329 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02065 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.93034 (8)  | 0.44117 (4)                                                                                                                                                                                                                                                                        | 0.34131 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02578 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.02467 (19) | 0.81993 (11)                                                                                                                                                                                                                                                                       | 0.48592 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0250 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.6648 (2)   | 0.51201 (10)                                                                                                                                                                                                                                                                       | 0.60921 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0274 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.2473 (2)   | 0.92569 (11)                                                                                                                                                                                                                                                                       | 0.70183 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0286 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0727 (2)   | 0.82041 (11)                                                                                                                                                                                                                                                                       | 0.87598 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0278 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7886 (2)   | 0.72356 (11)                                                                                                                                                                                                                                                                       | 0.90656 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0287 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7859 (2)   | 0.27652 (10)                                                                                                                                                                                                                                                                       | 0.93150 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0243 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7307 (2)   | 0.09337 (10)                                                                                                                                                                                                                                                                       | 0.94217 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0244 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.6871 (2)   | 0.06352 (10)                                                                                                                                                                                                                                                                       | 0.79539 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0229 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.5525 (2)   | 0.62076 (12)                                                                                                                                                                                                                                                                       | 0.74010 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0285 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.568 (4)    | 0.582 (2)                                                                                                                                                                                                                                                                          | 0.7125 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.043*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.8159 (2)   | 0.76073 (12)                                                                                                                                                                                                                                                                       | 0.41701 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0177 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.923 (3)    | 0.7772 (17)                                                                                                                                                                                                                                                                        | 0.4133 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7346 (2)   | 0.57673 (12)                                                                                                                                                                                                                                                                       | 0.42050 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0200 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.685 (3)    | 0.5885 (17)                                                                                                                                                                                                                                                                        | 0.4737 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.028 (6)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7451 (2)   | 0.76939 (12)                                                                                                                                                                                                                                                                       | 0.56722 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0184 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.673 (3)    | 0.7516 (17)                                                                                                                                                                                                                                                                        | 0.6201 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.026 (6)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7865 (2)   | 0.41196 (12)                                                                                                                                                                                                                                                                       | 0.52015 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0198 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.830 (3)    | 0.3486 (19)                                                                                                                                                                                                                                                                        | 0.5237 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.036 (7)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7839 (3)   | 0.75352 (14)                                                                                                                                                                                                                                                                       | 0.33508 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0175 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7479 (3)   | 0.66254 (14)                                                                                                                                                                                                                                                                       | 0.33554 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0176 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7222 (3)   | 0.65850 (15)                                                                                                                                                                                                                                                                       | 0.25351 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0207 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | x $0.47072$ (7) $0.93034$ (8) $1.02467$ (19) $0.6648$ (2) $1.2473$ (2) $1.0727$ (2) $0.7859$ (2) $0.7307$ (2) $0.6871$ (2) $0.5525$ (2) $0.568$ (4) $0.8159$ (2) $0.7346$ (2) $0.685$ (3) $0.7451$ (2) $0.673$ (3) $0.7865$ (2) $0.830$ (3) $0.7839$ (3) $0.7479$ (3) $0.7222$ (3) | xy $0.47072 (7)$ $0.74462 (4)$ $0.93034 (8)$ $0.44117 (4)$ $1.02467 (19)$ $0.81993 (11)$ $0.6648 (2)$ $0.51201 (10)$ $1.2473 (2)$ $0.92569 (11)$ $1.0727 (2)$ $0.82041 (11)$ $0.7886 (2)$ $0.72356 (11)$ $0.7886 (2)$ $0.27652 (10)$ $0.7307 (2)$ $0.09337 (10)$ $0.66871 (2)$ $0.62076 (12)$ $0.5525 (2)$ $0.62076 (12)$ $0.568 (4)$ $0.582 (2)$ $0.8159 (2)$ $0.76073 (12)$ $0.923 (3)$ $0.7772 (17)$ $0.7346 (2)$ $0.57673 (12)$ $0.673 (3)$ $0.7516 (17)$ $0.7865 (2)$ $0.41196 (12)$ $0.830 (3)$ $0.3486 (19)$ $0.7839 (3)$ $0.75352 (14)$ $0.7479 (3)$ $0.66254 (14)$ $0.7222 (3)$ $0.6784 (15)$ | xyz $0.47072 (7)$ $0.74462 (4)$ $0.51329 (3)$ $0.93034 (8)$ $0.44117 (4)$ $0.34131 (4)$ $1.02467 (19)$ $0.81993 (11)$ $0.48592 (9)$ $0.6648 (2)$ $0.51201 (10)$ $0.60921 (10)$ $1.2473 (2)$ $0.92569 (11)$ $0.70183 (10)$ $1.0727 (2)$ $0.82041 (11)$ $0.87598 (10)$ $0.7886 (2)$ $0.72356 (11)$ $0.90656 (10)$ $0.7886 (2)$ $0.72356 (11)$ $0.90656 (10)$ $0.7859 (2)$ $0.27652 (10)$ $0.93150 (10)$ $0.7307 (2)$ $0.09337 (10)$ $0.94217 (9)$ $0.6871 (2)$ $0.62076 (12)$ $0.74010 (11)$ $0.568 (4)$ $0.582 (2)$ $0.7125 (19)$ $0.8159 (2)$ $0.76073 (12)$ $0.41701 (11)$ $0.923 (3)$ $0.7772 (17)$ $0.4133 (16)$ $0.7346 (2)$ $0.57673 (12)$ $0.42050 (12)$ $0.685 (3)$ $0.5885 (17)$ $0.4737 (17)$ $0.7451 (2)$ $0.76939 (12)$ $0.52015 (11)$ $0.830 (3)$ $0.3486 (19)$ $0.5237 (17)$ $0.7839 (3)$ $0.75352 (14)$ $0.33508 (13)$ $0.7479 (3)$ $0.66254 (14)$ $0.33554 (13)$ $0.7222 (3)$ $0.65850 (15)$ $0.25351 (14)$ |

| H3           | 0.6911     | 0.5981                     | 0.2539                     | 0.025*                 |
|--------------|------------|----------------------------|----------------------------|------------------------|
| C4           | 0.7419 (3) | 0.74278 (16)               | 0.17098 (14)               | 0.0238 (5)             |
| H4           | 0.7272     | 0.7392                     | 0.1148                     | 0.029*                 |
| C5           | 0.7829 (3) | 0.83206 (16)               | 0.17021 (14)               | 0.0249 (5)             |
| Н5           | 0.7987     | 0.8890                     | 0.1134                     | 0.030*                 |
| C6           | 0.8006 (3) | 0.83775 (15)               | 0.25285 (14)               | 0.0213 (4)             |
| H6           | 0.8242     | 0.8995                     | 0.2532                     | 0.026*                 |
| C7           | 0.6875 (3) | 0.75825 (13)               | 0.49576 (13)               | 0.0167 (4)             |
| C8           | 0.9074 (3) | 0.79901 (14)               | 0.56059 (14)               | 0.0193 (4)             |
| С9           | 0.9324 (3) | 0.80961 (14)               | 0.64638 (14)               | 0.0191 (4)             |
| C10          | 1.0706 (3) | 0.86638 (14)               | 0.63139 (14)               | 0.0199 (4)             |
| H10          | 1.1358     | 0.9001                     | 0.5690                     | 0.024*                 |
| C11          | 1 1123 (3) | 0.87340 (15)               | 0 70806 (14)               | 0.0207(4)              |
| C12          | 1.0173(3)  | 0.87339(15)                | 0.80012(14)                | 0.0207(1)<br>0.0217(4) |
| C13          | 0.8750(3)  | 0.76923 (15)               | 0.81379(13)                | 0.0217(1)              |
| C14          | 0.8750(3)  | 0.76151 (15)               | 0.01375(13)<br>0.73745(14) | 0.0210(4)<br>0.0210(4) |
| U14          | 0.0320 (5) | 0.70151 (15)               | 0.73743(14)                | 0.0217 (4)             |
| C15          | 0.7370     | 0.7240<br>0.48263(14)      | 0.7471<br>0.42740(14)      | $0.020^{\circ}$        |
| C15          | 0.0105(3)  | 0.40203(14)<br>0.42760(15) | 0.42749(14)<br>0.60517(14) | 0.0109(4)              |
| C10          | 0.7223(3)  | 0.42700(13)                | 0.00317(14)                | 0.0197(4)              |
| C1/          | 0.7314(3)  | 0.33652(14)                | 0.69148 (13)               | 0.0180(4)              |
|              | 0.7536(3)  | 0.35253 (15)               | 0.76900 (14)               | 0.0200 (4)             |
| HI8          | 0.7662     | 0.4182                     | 0.7647                     | 0.024*                 |
| C19          | 0.7570 (3) | 0.27097 (15)               | 0.85280 (13)               | 0.0193 (4)             |
| C20          | 0.7301 (3) | 0.17510 (14)               | 0.86015 (13)               | 0.0187 (4)             |
| C21          | 0.7114 (3) | 0.16009 (14)               | 0.78097 (14)               | 0.0187 (4)             |
| C22          | 0.7134 (3) | 0.24057 (14)               | 0.69593 (13)               | 0.0172 (4)             |
| H22          | 0.7026     | 0.2304                     | 0.6419                     | 0.021*                 |
| C23          | 1.3530 (3) | 0.97237 (17)               | 0.60921 (16)               | 0.0301 (5)             |
| H23A         | 1.4118     | 0.9209                     | 0.5812                     | 0.045*                 |
| H23B         | 1.4455     | 1.0069                     | 0.6127                     | 0.045*                 |
| H23C         | 1.2744     | 1.0214                     | 0.5701                     | 0.045*                 |
| C24          | 0.9843 (3) | 0.89960 (16)               | 0.91201 (15)               | 0.0274 (5)             |
| H24A         | 1.0110     | 0.9651                     | 0.8628                     | 0.041*                 |
| H24B         | 1.0285     | 0.8918                     | 0.9667                     | 0.041*                 |
| H24C         | 0.8532     | 0.8958                     | 0.9311                     | 0.041*                 |
| C25          | 0.6375 (3) | 0.67215 (18)               | 0.92291 (16)               | 0.0349 (6)             |
| H25A         | 0.5474     | 0.7192                     | 0.8903                     | 0.052*                 |
| H25B         | 0.5834     | 0.6455                     | 0.9909                     | 0.052*                 |
| H25C         | 0 6777     | 0.6164                     | 0.8988                     | 0.052*                 |
| C26          | 0.8306 (3) | 0.37088 (16)               | 0.92470(15)                | 0.022                  |
| H26A         | 0.0300 (5) | 0.3926                     | 0.8709                     | 0.042*                 |
| H26R         | 0.8624     | 0.3620                     | 0.0820                     | 0.042*                 |
| H26C         | 0.7262     | 0.3029                     | 0.9829                     | 0.042                  |
| C27          | 0.7202     | 0.7217<br>0.00050 (17)     | 1 02140 (16)               | 0.072                  |
| U27          | 0.3033 (3) | 0.09950 (17)               | 1.02149 (10)               | 0.052*                 |
| П2/А<br>Ц27Р | 0.0219     | 0.1337                     | 1.0332                     | 0.052*                 |
| H2/B         | 0.33/3     | 0.0314                     | 1.0043                     | 0.052*                 |
| H2/C         | 0.4///     | 0.13/6                     | 0.9989                     | 0.052*                 |
| C28          | 0.6740 (3) | 0.04397 (15)               | 0.71577 (14)               | 0.0249 (5)             |

# supporting information

| H28A | 0.5684     | 0.0849       | 0.6929       | 0.037*     |  |
|------|------------|--------------|--------------|------------|--|
| H28B | 0.6608     | -0.0276      | 0.7343       | 0.037*     |  |
| H28C | 0.7839     | 0.0613       | 0.6654       | 0.037*     |  |
| C29  | 0.3609 (3) | 0.63770 (18) | 0.77554 (16) | 0.0312 (5) |  |
| H29A | 0.2987     | 0.6509       | 0.7249       | 0.037*     |  |
| H29B | 0.3343     | 0.6983       | 0.7937       | 0.037*     |  |
| C30  | 0.2880 (4) | 0.5489 (2)   | 0.85986 (17) | 0.0428 (7) |  |
| H30A | 0.3103     | 0.4893       | 0.8416       | 0.064*     |  |
| H30B | 0.1575     | 0.5639       | 0.8824       | 0.064*     |  |
| H30C | 0.3489     | 0.5358       | 0.9103       | 0.064*     |  |
|      |            |              |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|---------------|-------------|-------------|
| S1  | 0.0181 (3)  | 0.0241 (3)  | 0.0211 (3)  | -0.00133 (19) | -0.0054 (2) | -0.0093 (2) |
| S2  | 0.0320 (3)  | 0.0201 (3)  | 0.0198 (3)  | 0.0011 (2)    | -0.0011 (2) | -0.0068 (2) |
| 01  | 0.0240 (8)  | 0.0343 (8)  | 0.0179 (7)  | -0.0081 (6)   | -0.0015 (6) | -0.0103 (6) |
| O2  | 0.0436 (10) | 0.0171 (7)  | 0.0200 (8)  | 0.0031 (6)    | -0.0090 (7) | -0.0070 (6) |
| O3  | 0.0308 (9)  | 0.0363 (9)  | 0.0256 (8)  | -0.0101 (7)   | -0.0086 (7) | -0.0137 (7) |
| O4  | 0.0350 (9)  | 0.0317 (8)  | 0.0237 (8)  | 0.0064 (6)    | -0.0154 (7) | -0.0160 (7) |
| 05  | 0.0367 (9)  | 0.0332 (8)  | 0.0156 (7)  | -0.0084 (7)   | -0.0045 (6) | -0.0069 (6) |
| O6  | 0.0353 (9)  | 0.0211 (7)  | 0.0203 (7)  | -0.0044 (6)   | -0.0106 (6) | -0.0076 (6) |
| O7  | 0.0329 (9)  | 0.0187 (7)  | 0.0160 (7)  | 0.0021 (6)    | -0.0059 (6) | -0.0024 (6) |
| 08  | 0.0356 (9)  | 0.0149 (7)  | 0.0202 (7)  | -0.0050 (6)   | -0.0100 (6) | -0.0046 (6) |
| 09  | 0.0278 (9)  | 0.0318 (9)  | 0.0286 (9)  | -0.0028 (7)   | -0.0046 (7) | -0.0149 (7) |
| N1  | 0.0187 (9)  | 0.0202 (8)  | 0.0159 (8)  | -0.0019 (6)   | -0.0051 (7) | -0.0073 (7) |
| N2  | 0.0280 (10) | 0.0165 (8)  | 0.0142 (8)  | -0.0005 (7)   | -0.0056 (7) | -0.0045 (7) |
| N3  | 0.0199 (9)  | 0.0227 (9)  | 0.0134 (8)  | -0.0030(7)    | -0.0032 (7) | -0.0074 (7) |
| N4  | 0.0268 (10) | 0.0137 (8)  | 0.0165 (8)  | -0.0013 (7)   | -0.0036 (7) | -0.0041 (7) |
| C1  | 0.0152 (10) | 0.0219 (10) | 0.0155 (9)  | 0.0005 (7)    | -0.0032 (7) | -0.0084 (8) |
| C2  | 0.0171 (10) | 0.0183 (9)  | 0.0158 (9)  | 0.0013 (7)    | -0.0035 (8) | -0.0061 (8) |
| C3  | 0.0218 (11) | 0.0214 (10) | 0.0202 (10) | 0.0017 (8)    | -0.0066 (8) | -0.0094 (8) |
| C4  | 0.0252 (11) | 0.0293 (11) | 0.0184 (10) | 0.0045 (8)    | -0.0084 (8) | -0.0112 (9) |
| C5  | 0.0285 (12) | 0.0248 (11) | 0.0155 (10) | 0.0012 (8)    | -0.0048 (9) | -0.0031 (8) |
| C6  | 0.0229 (11) | 0.0174 (10) | 0.0197 (10) | -0.0010 (8)   | -0.0031 (8) | -0.0043 (8) |
| C7  | 0.0219 (10) | 0.0131 (9)  | 0.0151 (9)  | 0.0000 (7)    | -0.0069 (8) | -0.0039 (7) |
| C8  | 0.0206 (10) | 0.0176 (9)  | 0.0205 (10) | -0.0003 (7)   | -0.0067 (8) | -0.0071 (8) |
| C9  | 0.0209 (10) | 0.0194 (10) | 0.0195 (10) | 0.0019 (8)    | -0.0069 (8) | -0.0098 (8) |
| C10 | 0.0201 (10) | 0.0198 (10) | 0.0190 (10) | 0.0009 (8)    | -0.0057 (8) | -0.0066 (8) |
| C11 | 0.0210 (11) | 0.0215 (10) | 0.0234 (10) | 0.0007 (8)    | -0.0072 (8) | -0.0117 (8) |
| C12 | 0.0263 (11) | 0.0229 (10) | 0.0208 (10) | 0.0051 (8)    | -0.0121 (9) | -0.0119 (8) |
| C13 | 0.0254 (11) | 0.0217 (10) | 0.0151 (10) | 0.0019 (8)    | -0.0055 (8) | -0.0056 (8) |
| C14 | 0.0241 (11) | 0.0213 (10) | 0.0212 (10) | -0.0013 (8)   | -0.0063 (8) | -0.0083 (8) |
| C15 | 0.0197 (10) | 0.0178 (9)  | 0.0201 (10) | -0.0032 (7)   | -0.0058 (8) | -0.0061 (8) |
| C16 | 0.0222 (10) | 0.0197 (10) | 0.0180 (10) | -0.0037 (8)   | -0.0055 (8) | -0.0063 (8) |
| C17 | 0.0176 (10) | 0.0189 (10) | 0.0158 (9)  | 0.0005 (7)    | -0.0034 (8) | -0.0057 (8) |
| C18 | 0.0217 (10) | 0.0182 (10) | 0.0211 (10) | -0.0023 (7)   | -0.0051 (8) | -0.0077 (8) |
| C19 | 0.0195 (10) | 0.0240 (10) | 0.0150 (9)  | -0.0009 (8)   | -0.0047 (8) | -0.0077 (8) |

| C20 | 0.0199 (10) | 0.0173 (9)  | 0.0159 (9)  | -0.0013 (7)  | -0.0047 (8)  | -0.0027 (8)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C21 | 0.0176 (10) | 0.0161 (9)  | 0.0233 (10) | -0.0024 (7)  | -0.0054 (8)  | -0.0071 (8)  |
| C22 | 0.0175 (10) | 0.0187 (9)  | 0.0149 (9)  | -0.0020 (7)  | -0.0037 (7)  | -0.0051 (8)  |
| C23 | 0.0306 (13) | 0.0312 (12) | 0.0327 (12) | -0.0105 (9)  | -0.0052 (10) | -0.0137 (10) |
| C24 | 0.0357 (13) | 0.0284 (11) | 0.0226 (11) | -0.0013 (9)  | -0.0092 (9)  | -0.0129 (9)  |
| C25 | 0.0463 (15) | 0.0343 (13) | 0.0222 (11) | -0.0170 (11) | 0.0012 (10)  | -0.0083 (10) |
| C26 | 0.0365 (13) | 0.0264 (11) | 0.0263 (11) | -0.0053 (9)  | -0.0096 (10) | -0.0129 (9)  |
| C27 | 0.0348 (13) | 0.0300 (12) | 0.0250 (12) | -0.0045 (10) | 0.0006 (10)  | 0.0008 (10)  |
| C28 | 0.0355 (13) | 0.0191 (10) | 0.0235 (11) | -0.0022 (8)  | -0.0110 (9)  | -0.0086 (9)  |
| C29 | 0.0277 (12) | 0.0373 (13) | 0.0277 (12) | -0.0028 (9)  | -0.0076 (10) | -0.0100 (10) |
| C30 | 0.0557 (17) | 0.0482 (16) | 0.0263 (13) | -0.0224 (13) | 0.0021 (12)  | -0.0150 (12) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | 1.664 (2) | C9—C10   | 1.393 (3) |
|-------------------------------------------------|-----------|----------|-----------|
| S2—C15                                          | 1.659 (2) | C9—C14   | 1.396 (3) |
| O1—C8                                           | 1.234 (2) | C10-C11  | 1.386 (3) |
| O2—C16                                          | 1.232 (2) | C10—H10  | 0.9500    |
| O3—C11                                          | 1.373 (2) | C11—C12  | 1.400 (3) |
| O3—C23                                          | 1.425 (3) | C12—C13  | 1.402 (3) |
| O4—C12                                          | 1.370 (2) | C13—C14  | 1.389 (3) |
| O4—C24                                          | 1.438 (2) | C14—H14  | 0.9500    |
| O5—C13                                          | 1.375 (2) | C16—C17  | 1.491 (3) |
| O5—C25                                          | 1.423 (3) | C17—C18  | 1.395 (3) |
| O6—C19                                          | 1.361 (2) | C17—C22  | 1.397 (3) |
| O6—C26                                          | 1.433 (2) | C18—C19  | 1.393 (3) |
| O7—C20                                          | 1.374 (2) | C18—H18  | 0.9500    |
| O7—C27                                          | 1.441 (3) | C19—C20  | 1.400 (3) |
| O8—C21                                          | 1.370 (2) | C20—C21  | 1.402 (3) |
| O8—C28                                          | 1.428 (2) | C21—C22  | 1.393 (3) |
| O9—C29                                          | 1.434 (3) | C22—H22  | 0.9500    |
| О9—Н9                                           | 0.80 (3)  | C23—H23A | 0.9800    |
| N1—C7                                           | 1.342 (2) | С23—Н23В | 0.9800    |
| N1—C1                                           | 1.433 (3) | С23—Н23С | 0.9800    |
| N1—H1                                           | 0.89 (2)  | C24—H24A | 0.9800    |
| N2—C15                                          | 1.344 (3) | C24—H24B | 0.9800    |
| N2—C2                                           | 1.425 (2) | C24—H24C | 0.9800    |
| N2—H2                                           | 0.88 (2)  | C25—H25A | 0.9800    |
| N3—C8                                           | 1.375 (3) | С25—Н25В | 0.9800    |
| N3—C7                                           | 1.403 (3) | С25—Н25С | 0.9800    |
| N3—H3A                                          | 0.84 (2)  | C26—H26A | 0.9800    |
| N4—C16                                          | 1.381 (3) | C26—H26B | 0.9800    |
| N4—C15                                          | 1.407 (2) | C26—H26C | 0.9800    |
| N4—H4A                                          | 0.90 (2)  | C27—H27A | 0.9800    |
| C1—C6                                           | 1.388 (3) | С27—Н27В | 0.9800    |
| C1—C2                                           | 1.398 (3) | С27—Н27С | 0.9800    |
| C2—C3                                           | 1.393 (3) | C28—H28A | 0.9800    |
| C3—C4                                           | 1.391 (3) | C28—H28B | 0.9800    |

| С3—Н3      | 0.9500      | C28—H28C      | 0.9800      |
|------------|-------------|---------------|-------------|
| C4—C5      | 1.387 (3)   | C29—C30       | 1.508 (3)   |
| C4—H4      | 0.9500      | C29—H29A      | 0.9900      |
| С5—С6      | 1.388 (3)   | C29—H29B      | 0.9900      |
| С5—Н5      | 0.9500      | C30—H30A      | 0.9800      |
| С6—Н6      | 0.9500      | C30—H30B      | 0.9800      |
| C8—C9      | 1.493 (3)   | C30—H30C      | 0.9800      |
|            |             |               |             |
| C11—O3—C23 | 116.05 (16) | C18—C17—C22   | 121.48 (17) |
| C12—O4—C24 | 114.05 (15) | C18—C17—C16   | 116.36 (18) |
| C13—O5—C25 | 116.56 (17) | C22—C17—C16   | 122.13 (18) |
| C19—O6—C26 | 117.41 (16) | C19—C18—C17   | 119.18 (18) |
| C20—O7—C27 | 114.85 (15) | C19—C18—H18   | 120.4       |
| C21—O8—C28 | 117.05 (15) | C17—C18—H18   | 120.4       |
| С29—О9—Н9  | 107.2 (19)  | O6—C19—C18    | 124.44 (18) |
| C7—N1—C1   | 124.35 (17) | O6—C19—C20    | 115.37 (17) |
| C7—N1—H1   | 116.3 (15)  | C18—C19—C20   | 120.19 (18) |
| C1—N1—H1   | 118.6 (15)  | O7—C20—C19    | 121.59 (18) |
| C15—N2—C2  | 125.79 (17) | O7—C20—C21    | 118.60 (17) |
| C15—N2—H2  | 117.3 (15)  | C19—C20—C21   | 119.73 (17) |
| C2—N2—H2   | 116.3 (15)  | O8—C21—C22    | 124.37 (18) |
| C8—N3—C7   | 127.62 (17) | O8-C21-C20    | 115.14 (17) |
| C8—N3—H3A  | 118.5 (16)  | C22—C21—C20   | 120.47 (18) |
| C7—N3—H3A  | 113.8 (16)  | C21—C22—C17   | 118.83 (18) |
| C16—N4—C15 | 129.46 (17) | C21—C22—H22   | 120.6       |
| C16—N4—H4A | 116.0 (15)  | C17—C22—H22   | 120.6       |
| C15—N4—H4A | 114.3 (15)  | O3—C23—H23A   | 109.5       |
| C6—C1—C2   | 120.34 (18) | O3—C23—H23B   | 109.5       |
| C6-C1-N1   | 118.33 (18) | H23A—C23—H23B | 109.5       |
| C2C1N1     | 121.21 (17) | O3—C23—H23C   | 109.5       |
| C3—C2—C1   | 119.20 (18) | H23A—C23—H23C | 109.5       |
| C3—C2—N2   | 121.58 (18) | H23B—C23—H23C | 109.5       |
| C1-C2-N2   | 119.21 (17) | O4—C24—H24A   | 109.5       |
| C4—C3—C2   | 120.1 (2)   | O4—C24—H24B   | 109.5       |
| С4—С3—Н3   | 120.0       | H24A—C24—H24B | 109.5       |
| С2—С3—Н3   | 120.0       | O4—C24—H24C   | 109.5       |
| C5—C4—C3   | 120.44 (19) | H24A—C24—H24C | 109.5       |
| С5—С4—Н4   | 119.8       | H24B—C24—H24C | 109.5       |
| С3—С4—Н4   | 119.8       | O5—C25—H25A   | 109.5       |
| C4—C5—C6   | 119.65 (19) | O5—C25—H25B   | 109.5       |
| С4—С5—Н5   | 120.2       | H25A—C25—H25B | 109.5       |
| С6—С5—Н5   | 120.2       | O5—C25—H25C   | 109.5       |
| C5—C6—C1   | 120.21 (19) | H25A—C25—H25C | 109.5       |
| С5—С6—Н6   | 119.9       | H25B—C25—H25C | 109.5       |
| С1—С6—Н6   | 119.9       | O6—C26—H26A   | 109.5       |
| N1—C7—N3   | 115.67 (17) | O6—C26—H26B   | 109.5       |
| N1         | 125.33 (15) | H26A—C26—H26B | 109.5       |
| N3—C7—S1   | 118.99 (14) | O6—C26—H26C   | 109.5       |
|            |             |               |             |

| O1—C8—N3                        | 121.57 (18)              | H26A—C26—H26C                                        | 109.5        |
|---------------------------------|--------------------------|------------------------------------------------------|--------------|
| O1—C8—C9                        | 121.22 (18)              | H26B—C26—H26C                                        | 109.5        |
| N3—C8—C9                        | 117.16 (17)              | O7—C27—H27A                                          | 109.5        |
| C10—C9—C14                      | 120.91 (19)              | O7—C27—H27B                                          | 109.5        |
| C10—C9—C8                       | 115.91 (17)              | H27A—C27—H27B                                        | 109.5        |
| C14—C9—C8                       | 123.07 (18)              | O7—C27—H27C                                          | 109.5        |
| C11—C10—C9                      | 119.59 (18)              | H27A—C27—H27C                                        | 109.5        |
| C11—C10—H10                     | 120.2                    | H27B—C27—H27C                                        | 109.5        |
| C9—C10—H10                      | 120.2                    | O8—C28—H28A                                          | 109.5        |
| O3—C11—C10                      | 124.62 (18)              | O8—C28—H28B                                          | 109.5        |
| O3—C11—C12                      | 114.95 (18)              | H28A—C28—H28B                                        | 109.5        |
| C10-C11-C12                     | 120.41 (19)              | O8—C28—H28C                                          | 109.5        |
| 04-C12-C11                      | 120.25 (19)              | H28A—C28—H28C                                        | 109.5        |
| 04-C12-C13                      | 120.29 (18)              | H28B-C28-H28C                                        | 109.5        |
| $C_{11} - C_{12} - C_{13}$      | 119 24 (18)              | 09-C29-C30                                           | 112.1(2)     |
| 05-C13-C14                      | 124 23 (19)              | 09-C29-H29A                                          | 109.2        |
| 05-C13-C12                      | 115 03 (18)              | $C_{30}$ $C_{29}$ $H_{29A}$                          | 109.2        |
| $C_{14}$ $C_{13}$ $C_{12}$      | 120 71 (18)              | 09-029-1127X                                         | 109.2        |
| $C_{13} = C_{13} = C_{12}$      | 120.71(10)<br>110.08(10) | $C_{30}$ $C_{29}$ $H_{29B}$                          | 109.2        |
| $C_{13} = C_{14} = C_{3}$       | 120.5                    | $H_{20A} = C_{20} = H_{20B}$                         | 109.2        |
| $C_{13}$ $C_{14}$ $H_{14}$      | 120.5                    | 1129A - C29 - 1129B                                  | 107.9        |
| $N_{2} = C_{14} = M_{4}$        | 120.3<br>114.00(17)      | $C_{29} = C_{30} = H_{30} R$                         | 109.5        |
| $N_2 = C_{15} = N_4$            | 114.99(17)<br>128.00(15) | 1204 $1200$ $1200$                                   | 109.5        |
| $N_2 = C_{15} = S_2$            | 126.09(13)               | $H_{30A} - C_{30} - H_{30B}$                         | 109.5        |
| N4-C15-S2                       | 110.90 (14)              | U29-C30-H30C                                         | 109.5        |
| 02—C16—N4                       | 121.94 (18)              | $H_{30}A - C_{30} - H_{30}C$                         | 109.5        |
| 02C16C17                        | 122.15 (18)              | H30B—C30—H30C                                        | 109.5        |
| N4                              | 115.90 (17)              |                                                      |              |
| C7—N1—C1—C6                     | 112 1 (2)                | $C_{11} - C_{12} - C_{13} - O_{5}$                   | -17933(17)   |
| C7 N1 $C1$ $C2$                 | -71.9(2)                 | 04-C12-C13-C14                                       | -171.96(17)  |
| $C_{1} = C_{1} = C_{2}$         | -2 A (3)                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 26(3)        |
| $C_0 - C_1 - C_2 - C_3$         | -178 42 (17)             | 05 C13 C14 C9                                        | -17868(18)   |
| $C_{1} = C_{1} = C_{2} = C_{3}$ | 178.92(17)               | $C_{12} = C_{13} = C_{14} = C_{9}$                   | -0.8(3)      |
| $C_0 - C_1 - C_2 - N_2$         | 1/8.93(17)               | $C_{12} = C_{13} = C_{14} = C_{7}$                   | -1.2(3)      |
| NI = CI = C2 = N2               | 2.9(3)                   | $C_{10}^{0} - C_{9}^{0} - C_{14}^{14} - C_{13}^{12}$ | -1.2(3)      |
| C15 N2 C2 C1                    | 40.2(3)                  | $C_{0} = C_{14} = C_{15}$                            | 1/4.92(18)   |
| C13 - N2 - C2 - C1              | -155.2(2)                | $C_2 = N_2 = C_{15} = N_4$                           | 1/0.38(18)   |
| C1 = C2 = C3 = C4               | 3.5 (5)<br>177.04 (19)   | $C_2 = N_2 = C_{15} = S_2$                           | -2.4(3)      |
| $N_2 = C_2 = C_3 = C_4$         | -1/.94(18)               | C16 - N4 - C15 - N2                                  | -11.5(3)     |
| $C_2 = C_3 = C_4 = C_5$         | -1.0(3)                  | C16 - N4 - C15 - S2                                  | 107.43(17)   |
| $C_3 - C_4 - C_5 - C_6$         | -1.3(3)                  | C15 - N4 - C16 - O2                                  | 4.6 (3)      |
| C4-C5-C6-C1                     | 2.3 (3)                  | C15 - N4 - C16 - C17                                 | -1/4.03 (19) |
| $C_2 - C_1 - C_6 - C_5$         | -0.5(3)                  | $U_2 - U_1 = U_1 / - U_1 $                           | -28.7(3)     |
| N1 - C1 - C6 - C5               | 1/5.64 (18)              | N4-U16-U17-U18                                       | 149.99 (18)  |
| C1 - N1 - C7 - N3               | -1/8.21(16)              | 02-C16-C17-C22                                       | 149.5 (2)    |
| C1 - N1 - C' - S1               | 1.0 (3)                  | N4—C16—C17—C22                                       | -31.8 (3)    |
| C8—N3—C7—N1                     | 11.8 (3)                 | C22—C17—C18—C19                                      | -0.3 (3)     |
| C8—N3—C7—S1                     | -167.47 (15)             | C16—C17—C18—C19                                      | 177.93 (18)  |
| C7—N3—C8—O1                     | 0.1 (3)                  | C26—O6—C19—C18                                       | -5.4 (3)     |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 177.21\ (17)\\ 15.1\ (3)\\ -162.03\ (17)\\ -161.21\ (19)\\ 21.6\ (3)\\ 1.4\ (3)\\ -174.97\ (17)\\ -2.1\ (3)\\ 176.46\ (17)\\ 178.88\ (18)\\ 0.4\ (3)\\ 93.5\ (2)\\ -92.0\ (2)\\ -6.4\ (3)\\ 172.17\ (17)\\ 178.98\ (17)\\ -2.4\ (3)\\ -5.1\ (3)\\ 176.94\ (18)\\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 174.43 (17)<br>176.90 (17)<br>-2.9 (3)<br>65.1 (3)<br>-118.3 (2)<br>0.9 (3)<br>-179.27 (17)<br>-175.70 (17)<br>4.1 (3)<br>4.0 (3)<br>-177.79 (17)<br>2.8 (3)<br>179.51 (17)<br>-178.87 (17)<br>-2.2 (3)<br>177.19 (17)<br>-1.0 (3)<br>2.2 (3)<br>-175.89 (18) |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C25-O5-C13-C14<br>C25-O5-C13-C12<br>O4-C12-C13-O5    | -5.1 (3)<br>176.94 (18)<br>6.1 (3)                                                                                                                                                                                                                                                              | C18—C17—C22—C21<br>C16—C17—C22—C21                   | 2.2 (3)<br>-175.89 (18)                                                                                                                                                                                                                                       |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | Н…А      | $D \cdots A$ | D—H··· $A$ |
|--------------------------|-------------|----------|--------------|------------|
| N4—H4A···O1 <sup>i</sup> | 0.90 (2)    | 2.51 (2) | 3.403 (2)    | 173 (2)    |
| N2—H2…S1                 | 0.88 (2)    | 2.69 (2) | 3.3527 (19)  | 133.0 (18) |
| N2—H2…O2                 | 0.88 (2)    | 1.97 (2) | 2.677 (2)    | 136 (2)    |
| N1—H1…O1                 | 0.89 (2)    | 1.90 (2) | 2.621 (2)    | 137 (2)    |
| N3—H3 <i>A</i> ···O9     | 0.84 (2)    | 2.23 (2) | 2.949 (2)    | 145 (2)    |
| О9—Н9…О2                 | 0.80 (3)    | 2.13 (3) | 2.905 (2)    | 163 (3)    |
|                          |             |          |              |            |

Symmetry code: (i) -x+2, -y+1, -z+1.