Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido-bis\{[2-(morpholino-methyl)phenyl- $\left.\kappa^{2} C^{1}, N\right]$ palladium(II)\}

Dana Copolovici, ${ }^{\text {a }}$ Cristian Silvestru, ${ }^{\text {a }}$ Francesco Isaia ${ }^{\text {b }}$ and Richard A. Varga ${ }^{\text {a* }}$

 Janos Street, RO-400028, Cluj Napoca, Romania, and ${ }^{\text {b }}$ Universita degli Studi di Cagliari, Dipartimento di Chimica Inorganica ed Analitica, 09042 Monserrato, Cagliari, Italy
Correspondence e-mail: richy@chem.ubbcluj.ro

Received 7 July 2008; accepted 18 July 2008

Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.029 ; w R$ factor $=0.059$; data-to-parameter ratio $=17.2$.

The title compound, $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}\right)_{2} \mathrm{Cl}_{2}\right]$, has a dimeric structure with Cl atoms bridging the two Pd atoms, one half of the molecule being generated by symmetry due to the crystallographic inversion centre located in the middle of the perfectly planar $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring. The five-membered ring adopts an envelope conformation, while the morpholino group has a chair conformation. The geometry around the metal centres is distorted square-planar, as a result of a strong intramolecular $\mathrm{N} \rightarrow \mathrm{Pd}$ coordination trans to a $\mathrm{Pd}-\mathrm{Cl}$ bond. In the crystal structure, the dimeric structure is strengthened by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}_{\text {phenyl }}$ interactions link the dimers into a columnar supramolecular array along the a axis; the dimers are further connected by C $\mathrm{H} \cdots \mathrm{Ph}$ interactions into a three-dimensional supramolecular arrangement.

Related literature

For related literature, see: Copolovici et al. (2007, 2008); Crispini et al. (1992); Fuchita et al. (1999); Mahalakshmi et al. (2003); Mentes et al. (1997, 2004, 2005); Phadnis et al. (2002, 2003); Emsley (1994); IUPAC (1979).

Experimental

Crystal data
$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}\right)_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=636.20$
Monoclinic, $P 2_{b} / c$
$a=8.1234$ (6) A
$b=16.4437$ (13) \AA
$c=8.8298$ (7) A
$\beta=101.9570(10)^{\circ}$

$$
V=1153.88(15) \AA^{3}
$$

$Z=2$
Mo K α radiation
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=297$ (2) K
$0.22 \times 0.17 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.677, T_{\text {max }}=0.733$
9118 measured reflections 2354 independent reflections 2245 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.059$
$S=1.15$
2354 reflections

137 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Cl} 1-\mathrm{Pd} 1$	$2.3232(8)$	$\mathrm{N} 1-\mathrm{Pd} 1$	$2.118(2)$
$\mathrm{Cl} 1-\mathrm{Pd} 1^{\mathrm{i}}$	$2.4815(8)$	$\mathrm{C} 1-\mathrm{Pd} 1$	$1.971(3)$
$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$82.66(3)$	$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$81.69(11)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$174.34(7)$	$\mathrm{Pd} 1-\mathrm{Cl} 1-\mathrm{Pd} 1{ }^{\mathrm{i}}$	$97.34(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$102.76(6)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Pd} 1$	$104.01(17)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 1$	$92.88(9)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Pd} 1$	$117.35(18)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$175.53(9)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{Pd} 1$	$111.92(17)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
Cg is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.97	2.49	$3.370(3)$	150
$\mathrm{C} 7-\mathrm{H} 7 B \cdots 1^{\text {ii }}$	0.97	2.67	$3.588(4)$	159
$\mathrm{C} 11-\mathrm{H} 11 A \cdots C g^{\text {iii }}$	0.97	2.93	$3.829(3)$	154

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x,-y+1,-z$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Financial support from the Romanian Ministry of Education and Research within the programme 'Excellency Research' (contract No. 19/2006) is greatly appreciated. The authors also thank the National Center for X-ray Diffraction in Cluj-Napoca, Romania, for help with the solid-state structure determinations.

metal-organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2489).

References

Brandenburg, K. \& Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA Copolovici, D., Silvestru, C. \& Varga, R. A. (2007). Acta Cryst. E63, o2465.
Copolovici, D., Silvestru, C. \& Varga, R. A. (2008). Acta Cryst. C64, m37-m39.
Crispini, A., De Mundo, G., Ghedini, M. \& Neve, F. (1992). J. Organomet. Chem. 427, 409-414.
Emsley, J. (1994). In Die Elemente. Berlin: Walter de Gruyter.

Fuchita, Y., Yoshinaga, K., Hanakit, H., Kawano, H. \& Kinoshita-Nagaoka, J. (1999). J. Organomet. Chem. 580, 273-281

IUPAC (1979). In Nomenclature of Organic Chemistry. Oxford: Pergamon Press.
Mahalakshmi, H., Jain, V. K. \& Tiekink, E. R. T. (2003). Polyhedron, 22, 549555.

Mentes, A. \& Fawcett, J. (2005). Inorg. Chim. Acta, 358, 1279-1283.
Mentes, A., Kemmitt, R. D. W., Fawcett, J. \& Russell, D. R. (1997). J. Organomet. Chem. 528, 59-63.
Mentes, A., Kemmitt, R. D. W., Fawcett, J. \& Russell, D. R. (2004). J. Organomet. Chem. 693, 241-246.
Phadnis, P. P., Jain, V. K., Klein, A., Schurr, T. \& Kaim, W. (2003). New J. Chem. 27, 1584-1591.
Phadnis, P. P., Jain, V. K. \& Varghese, B. (2002). Appl. Organomet. Chem. 16, 61-64.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m1057-m1058 [doi:10.1107/S1600536808022575]

Di- μ-chlorido-bis\{[2-(morpholinomethyl)phenyl- $\left.\kappa^{2} C^{1}, N\right]$ palladium(II) $\}$

Dana Copolovici, Cristian Silvestru, Francesco Isaia and Richard A. Varga

S1. Comment

There are scarce data reported upon the reactivity of triorganoantimony(III) compounds toward palladium(II) chloride or corresponding complexes. The compounds of the type $\left[\mathrm{PdCl}_{2}\left(\mathrm{Sb}_{3}\right)_{2}\right], R={ }^{i} \operatorname{Pr}$ (Phadnis et al., 2002), ortho-tolyl (Mentes \& Fawcett, 2005), were obtained by reaction of $\left[\mathrm{PdCl}_{2}(\mathrm{COD})\right], \mathrm{COD}=$ cycloocta-1,5-diene, with the corresponding stibines. The reaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with $\mathrm{Sb} R_{3}(R=2$-thienyl) resulted in a black insoluble powder (possible Pd metal) due to a decomposition process (Mahalakshmi et al., 2003), whilst the reaction of $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ with tri(allyl)stibine and tris(2-methylallyl)stibine afforded the transmetalation products $\left[\mathrm{Pd}_{2}(\mu-\mathrm{Cl})_{2} R_{2}\right], R=$ allyl, 2-methylallyl, and the fate of the stibine residue is unknown (Phadnis et al., 2003). Reaction of SbPh_{3} with $\left[\mathrm{PdCl}_{2}(\mathrm{COD})\right]$ or PdCl_{2} afforded trans- $\left[\mathrm{PdCl}(\sigma-\mathrm{Ph})\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ due to the easy cleveage of $\mathrm{Sb}-\mathrm{C}$ bond in SbPh_{3}, whilst reaction of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ with SbPh_{3} gave cis-[$\left.\mathrm{PdCl}_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ contaminated with small amount of chloro σ-phenyl complex (Mentes et al., 1997). Related to our interest on the synthesis and chemical properties of organoantimony(III) compounds, we performed the reaction between $\mathrm{Sb}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\left\{\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right\}-2\right]_{3}$ and $\left[\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}\right]$ in acetonitrile/chloroform mixture, at room temperature. The title compound has a dimeric structure, with two palladacycles bridged through the chlorine atoms, resulting in a perfectly planar $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ core. One half of the molecule is generated by symmetry owing the crystallographic inversion centre located in the middle of the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring. The cycle is distorted from the ideal square as reflected by the diferences in the $\mathrm{Pd}-\mathrm{Cl}$ bond lengths and the $\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl1}^{\mathrm{i}}$ and $\mathrm{Pd} 1-\mathrm{Cl} 1-\mathrm{Pd} 1^{\mathrm{i}}$ bond angles (Table 1$)$ [symmetry code: $(\mathrm{i})=1-$ $x, 1-y,-z]$.

The N atom from the pendant arm coordinates the metal centre resulting in a square planar $(C, N) \mathrm{PdCl}_{2}$ core, in which the distortion is mainly due to the $\mathrm{PdC}_{3} \mathrm{~N}$ ring constraint. The two equivalent organic ligands from the dimer are in a trans arrangement with respect to the $\mathrm{Pd} \cdots \mathrm{Pd}$ axis (Fig. 1). The $\mathrm{Pd} 1 — \mathrm{C} 1[1.971(2) \AA$] bond is smaller than the sum of the corresponding covalent radii, its magnitude being similar to those found for related compounds for which partialy Pd-C multiple bond was assumed (Crispini et al., 1992, Fuchita et al., 1999, Mentes et al., 2004).
An almost ideal chair conformation was observed for the morpholinyl groups with torsion angles [C8—N1—C11-C10 $=-52.6(3)^{\circ}$ and $\left.\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8=58.4(3)^{\circ}\right]$ similar with those found in 4-benzylmorpholin-4-ium chloride (Copolovici et al., 2007) and in tris[2-(morpholin-4-ylmethyl)phenyl $\left.-\kappa^{2} C^{1}, N\right] \alpha$ ntimony(III) (Copolovici et al., 2008).

As a result of the intramolecular coordination of the N 1 atom from the organic ligand to Pd 1 atom, a nonplanar fivemembered ring is formed, with nitrogen atom lying out of the Pd1/C1/C2/C7 best plane [0.666 (2) \AA]. The dihedral angle between the $\mathrm{Pd} 1 / \mathrm{N} 1 / \mathrm{C} 7$ and $\mathrm{Pd} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7$ planes is $39.2(1)^{\circ}$. This induces planar chirality (with the aromatic ring and the nitrogen atom as chiral plane and pilot atom, respectively, IUPAC, 1979). In the crystal of the title compound, the dimer contains both R_{N} and $S_{\mathrm{N}}{ }^{i}$ isomers.
In the crystal structure, the dimer is strengthened by hydrogen-bond type interactions (Table 2) involving the Cl from one molecular unit and the methylenic proton of the morpholinyl group from the other molecular unit from the same dimer [the sum of van der Waals radii of the corresponding atoms $\Sigma \mathrm{r}_{\mathrm{vdw}}(\mathrm{Cl}, \mathrm{H})=3.00 \AA$; Emsley, 1994] (Fig. 2).

Intermolecular $C-H^{\cdots} C_{\text {phenyl }}$ interactions (Table 2) between a methylene hydrogen from the pendant arm and a carbon atom from the aromatic ring of another dimer connect the molecular units in a columnar arrangement along the a axis. Furthermore, these arrays are interlinked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Ph}$ interactions (Table 2) in a three-dimensional supramolecular arrangement in the crystal structure (Fig.3).

S2. Experimental

For the preparation of the title compound, $\mathrm{PdCl}_{2}(0.1 \mathrm{~g}, 0.56 \mathrm{mmol})$ in acetonitrile $(40 \mathrm{ml})$ was refluxed for 3 h , and then allowed to cool to room temperature. A solution of $\mathrm{Sb}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\left\{\mathrm{~N}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right\}-2\right]_{3}(0.369 \mathrm{~g}, 0.56 \mathrm{mmol}) \text { in } \mathrm{CHCl}_{3}(35}\right.\right.$ ml) was added and the mixture was stirred at room temperature for 30 h , under an N_{2} atmosphere. The reaction mixture was filtered off and the solvents were removed under vacuum. The yellow oil obtained was triturated with hexane ($2 x 20$ $\mathrm{ml})$ and then washed with petroleum ether $(2 \times 10 \mathrm{ml})$ to give a yellow solid. Yellow crystals suitable for X-ray diffraction studies were obtained by slow diffusion of hexane into a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of the title compound (1:1 v/v ratio) (yield: 0.217 g, 47%). Anal. Found: C, 41.38 ; $\mathrm{H}, 4.63$; $\mathrm{N}, 4.73$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}(636.22)$: C, 41.53; H , 4.44; N, 4.40\%. FT—IR (KBr, cm ${ }^{-1}$): C—H stretch aromatic: 3038, 3035, 2958, 2891; 2857, 1436, 1114, 1069, 868, 745.

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$ for aromatic and methylene H , respectively, and constrained to ride on their parent atoms with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$,

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) $1-x, 1-y,-z$].

Figure 2
Intermolecular interactions in the title compound. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) $1-x$, $1-y,-z$; (ii) -x, $1-y,-z$; (iii) $x, 3 / 2-y, 1 / 2+z]$. H atoms not involved in hydrogen bonding are omitted for clarity.

Figure 3

A packing diagram of the title compound, showing the supramolecular arrangement.

Di- μ-chlorido-bis\{[2-(morpholinomethyl)phenyl- $\left.\kappa^{2} \mathbf{C}^{1}, N\right]$ palladium(II) $\}$

Crystal data

$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}\right)_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=636.20$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.1234$ (6) Å
$b=16.4437$ (13) \AA
$c=8.8298(7) \AA$
$\beta=101.957(1)^{\circ}$
$V=1153.88(15) \AA^{3}$
$Z=2$
Data collection
Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.677, T_{\max }=0.733$
$F(000)=632$
$D_{\mathrm{x}}=1.831 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4334 reflections
$\theta=2.5-27.3^{\circ}$
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, yellow
$0.22 \times 0.17 \times 0.17 \mathrm{~mm}$

9118 measured reflections
2354 independent reflections
2245 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-20 \rightarrow 20$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.059$
$S=1.15$
2354 reflections
137 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0166 P)^{2}+1.0911 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pd1	0.32057 (3)	0.559622 (13)	0.02382 (2)	0.03252 (8)
Cl1	0.41182 (11)	0.49501 (6)	-0.17788 (9)	0.0591 (3)
O1	0.4523 (3)	0.69670 (15)	0.4417 (3)	0.0524 (6)
N1	0.2135 (3)	0.61896 (14)	0.1932 (3)	0.0311 (5)
C1	0.1119 (3)	0.59843 (17)	-0.1126 (3)	0.0332 (6)
C2	-0.0122 (4)	0.62200 (19)	-0.0349 (4)	0.0382 (7)
C3	-0.1640 (4)	0.6534 (2)	-0.1153 (4)	0.0564 (10)
H3	-0.2460	0.6700	-0.0624	0.068*
C4	-0.1921 (4)	0.6598 (2)	-0.2752 (4)	0.0578 (10)
H4	-0.2932	0.6811	-0.3296	0.069*
C5	-0.0721 (4)	0.6349 (2)	-0.3534 (4)	0.0494 (8)
H5	-0.0930	0.6382	-0.4608	0.059*
C6	0.0798 (4)	0.60484 (19)	-0.2732 (4)	0.0401 (7)
H6	0.1614	0.5888	-0.3270	0.048*
C7	0.0286 (4)	0.6089 (2)	0.1360 (4)	0.0426 (7)
H7A	-0.0318	0.6480	0.1864	0.051*
H7B	-0.0055	0.5547	0.1601	0.051*
C8	0.2571 (4)	0.5867 (2)	0.3546 (3)	0.0437 (8)
H8A	0.2506	0.5278	0.3510	0.052*
H8B	0.1743	0.6059	0.4112	0.052*
C9	0.4285 (4)	0.6111 (2)	0.4406 (4)	0.0493 (8)
H9A	0.4448	0.5917	0.5464	0.059*
H9B	0.5125	0.5854	0.3929	0.059*
C10	0.4272 (4)	0.7249 (2)	0.2865 (4)	0.0497 (8)
H10A	0.5065	0.6983	0.2344	0.060*

H10B	0.4479	0.7830	0.2862	0.060^{*}
C11	$0.2517(4)$	$0.70759(18)$	$0.2014(3)$	$0.0378(7)$
H11A	0.1730	0.7351	0.2529	0.045^{*}
H11B	0.2365	0.7292	0.0972	0.045^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.03461(14)$	$0.03664(14)$	$0.02611(12)$	$0.00850(9)$	$0.00582(9)$	$0.00045(9)$
C11	$0.0574(5)$	$0.0891(7)$	$0.0284(4)$	$0.0394(5)$	$0.0034(4)$	$-0.0061(4)$
O1	$0.0565(14)$	$0.0596(15)$	$0.0356(12)$	$0.0015(12)$	$-0.0028(10)$	$-0.0127(11)$
N1	$0.0336(12)$	$0.0330(12)$	$0.0270(12)$	$-0.0006(10)$	$0.0071(10)$	$-0.0009(10)$
C1	$0.0313(14)$	$0.0282(14)$	$0.0368(16)$	$0.0048(12)$	$-0.0006(12)$	$0.0000(12)$
C2	$0.0324(15)$	$0.0417(17)$	$0.0391(17)$	$-0.0050(13)$	$0.0039(13)$	$-0.0066(13)$
C3	$0.0319(17)$	$0.077(3)$	$0.057(2)$	$0.0086(17)$	$0.0022(16)$	$-0.0190(19)$
C4	$0.0371(18)$	$0.069(2)$	$0.057(2)$	$0.0090(17)$	$-0.0122(16)$	$-0.0084(19)$
C5	$0.0468(19)$	$0.056(2)$	$0.0398(18)$	$0.0014(16)$	$-0.0038(15)$	$0.0025(16)$
C6	$0.0390(16)$	$0.0432(17)$	$0.0365(16)$	$0.0032(14)$	$0.0043(13)$	$0.0025(14)$
C7	$0.0344(16)$	$0.0509(19)$	$0.0446(18)$	$-0.0057(14)$	$0.0131(14)$	$-0.0087(15)$
C8	$0.060(2)$	$0.0444(18)$	$0.0291(16)$	$0.0036(16)$	$0.0144(15)$	$0.0038(13)$
C9	$0.059(2)$	$0.059(2)$	$0.0274(16)$	$0.0164(17)$	$0.0032(15)$	$0.0011(15)$
C10	$0.050(2)$	$0.050(2)$	$0.0455(19)$	$-0.0111(16)$	$0.0020(15)$	$-0.0035(16)$
C11	$0.0464(17)$	$0.0309(15)$	$0.0343(16)$	$0.0022(13)$	$0.0042(13)$	$-0.0015(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pd} 1-\mathrm{Cl}^{1}$	2.4815 (8)	C7-H7A	0.9700
Cl1-Pd1	2.3232 (8)	C7-H7B	0.9700
$\mathrm{Cl} 1-\mathrm{Pd} 1^{\text {i }}$	2.4815 (8)	C8-N1	1.493 (4)
N1-Pd1	2.118 (2)	C8-C9	1.496 (5)
C1-C2	1.387 (4)	C8-H8A	0.9700
C1-C6	1.392 (4)	C8-H8B	0.9700
C1-Pd1	1.971 (3)	C9-O1	1.421 (4)
C2-C3	1.389 (4)	C9-H9A	0.9700
C2-C7	1.492 (4)	C9—H9B	0.9700
C3-C4	1.387 (5)	C10-O1	1.421 (4)
C3-H3	0.9300	C10-C11	1.495 (4)
C4-C5	1.369 (5)	C10-H10A	0.9700
C4-H4	0.9300	C10-H10B	0.9700
C5-C6	1.381 (4)	C11-N1	1.489 (4)
C5-H5	0.9300	C11-H11A	0.9700
C6-H6	0.9300	C11-H11B	0.9700
C7-N1	1.492 (4)		
$\mathrm{Cl1}-\mathrm{Pd} 1-\mathrm{Cl1}^{\mathrm{i}}$	82.66 (3)	C1-C6-H6	119.7
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	174.34 (7)	N1-C7-C2	108.9 (2)
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl1}{ }^{\text {i }}$	102.76 (6)	N1-C7-H7A	109.9
C1-Pd1-Cl1	92.88 (9)	C2-C7-H7A	109.9

C1-Pd1- $\mathrm{Cl1}^{\text {i }}$	175.53 (9)
C1-Pd1-N1	81.69 (11)
$\mathrm{Pd} 1-\mathrm{Cl1}-\mathrm{Pd} 1^{\mathrm{i}}$	97.34 (3)
$\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 9$	108.9 (2)
C7-N1-C8	107.9 (2)
C7-N1-Pd1	104.01 (17)
C8—N1—Pd1	117.35 (18)
C11-N1—Pd1	111.92 (17)
C11-N1-C7	108.0 (2)
C11-N1-C8	107.2 (2)
C2-C1-C6	118.8 (3)
C2-C1-Pd1	114.2 (2)
C6-C1-Pd1	127.1 (2)
C1-C2-C3	120.7 (3)
C1-C2-C7	115.4 (3)
C3-C2-C7	123.9 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.4 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3
C2-C3-H3	120.3
C5-C4-C3	120.4 (3)
C5-C4-H4	119.8
C3-C4-H4	119.8
C4-C5-C6	120.2 (3)
C4-C5-H5	119.9
C6-C5-H5	119.9
C5-C6-C1	120.5 (3)
C5-C6-H6	119.7
Pd1- ${ }^{\text {i }}$ Cl1—Pd1- C 1	-179.66 (9)
$\mathrm{Pd} 1-\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\text {i }}$	0.0
C11-N1-Pd1-C1	-84.42 (19)
C7-N1-Pd1-C1	31.98 (19)
C8-N1-Pd1-C1	151.0 (2)
C11-N1-Pd1- $\mathrm{Cl1}^{\text {i }}$	96.05 (18)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl}^{\text {i }}$	-147.55 (17)
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl1}{ }^{\text {i }}$	-28.5 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.6 (5)
Pd1-C1-C2-C3	177.7 (3)
C6-C1-C2-C7	176.8 (3)
$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-3.9 (3)
C1-C2-C3-C4	1.1 (5)
C7-C2-C3-C4	-177.1 (3)
C2-C3-C4-C5	0.4 (6)
C3-C4-C5-C6	-1.4 (6)
C4-C5-C6-C1	0.9 (5)

N1-C7-H7B	109.9
C2- $77-\mathrm{H} 7 \mathrm{~B}$	109.9
H7A-C7-H7B	108.3
N1-C8-C9	113.6 (3)
N1-C8-H8A	108.8
C9-C8-H8A	108.8
N1-C8-H8B	108.8
C9-C8-H8B	108.8
H8A-C8-H8B	107.7
O1-C9-C8	112.4 (3)
O1-C9-H9A	109.1
C8-C9-H9A	109.1
O1-C9-H9B	109.1
C8-C9-H9B	109.1
H9A-C9-H9B	107.9
O1-C10-C11	110.8 (3)
O1-C10-H10A	109.5
C11-C10-H10A	109.5
O1-C10-H10B	109.5
C11-C10-H10B	109.5
H10A-C10-H10B	108.1
N1-C11-C10	112.2 (3)
N1-C11-H11A	109.2
C10-C11-H11A	109.2
N1-C11-H11B	109.2
C10-C11-H11B	109.2
H11A-C11-H11B	107.9
C1-C2-C7-N1	32.1 (4)
C3-C2-C7-N1	-149.6 (3)
N1-C8-C9-O1	54.4 (4)
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	-61.0 (4)
C10-C11-N1-C7	168.6 (3)
C10-C11-N1-C8	52.6 (3)
C10-C11-N1-Pd1	-77.4 (3)
C2-C7-N1-C11	77.7 (3)
C2-C7-N1-C8	-166.7 (3)
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{N} 1-\mathrm{Pd} 1$	-41.4 (3)
C9-C8-N1-C11	-49.5 (3)
C9-C8-N1-C7	-165.6 (3)
C9-C8-N1-Pd1	77.4 (3)
C11-C10-O1-C9	61.6 (4)
C8-C9-O1-C10	-58.5 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1$	-16.4 (2)
C6-C1-Pd1-N1	162.9 (3)

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.6(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$162.0(2)$
$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.6(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Cl1}$	$-18.7(3)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	0.97	2.49	$3.370(3)$	150
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots \mathrm{C} 1^{\mathrm{ii}}$	0.97	2.67	$3.588(4)$	159
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.97	2.93	$3.829(3)$	154

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x,-y+1,-z$; (iii) $x,-y+3 / 2, z+1 / 2$.

