

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## N-Acryloylphenylalanine

# Cong-Ren Wu,<sup>a</sup> Xiao-Feng Gao,<sup>a</sup> Hai-Bo Wang,<sup>a</sup>\* Dong Jin<sup>b</sup> and Jin-Tang Wang<sup>a</sup>

<sup>a</sup>Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: wjt@njut.edu.cn

Received 3 July 2008; accepted 6 July 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.063; wR factor = 0.161; data-to-parameter ratio = 7.5.

The title compound,  $C_{12}H_{13}NO_3$ , was prepared by the nucleophilic substitution reaction of acryloyl chloride with glycylglycine. In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds link the molecules into a three-dimensional network.

#### **Related literature**

For bond-length data, see: Allen et al. (1987).



#### Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{13}NO_{3}\\ M_{r}=219.23\\ Monoclinic, P2_{1}\\ a=6.0050\ (12)\ \text{\AA}\\ b=7.5820\ (15)\ \text{\AA}\\ c=12.512\ (3)\ \text{\AA}\\ \beta=98.58\ (3)^{\circ} \end{array}$ 

 $V = 563.3 (2) \text{ Å}^{3}$  Z = 2Mo K\alpha radiation  $\mu = 0.09 \text{ mm}^{-1}$  T = 291 (2) K $0.30 \times 0.10 \times 0.10 \text{ mm}$ 

#### Data collection

| Enraf–Nonius CAD-4                   |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: $\psi$ scan   |
| (North et al., 1968)                 |
| $T_{\min} = 0.973, T_{\max} = 0.991$ |
| 1195 measured reflections            |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$  $wR(F^2) = 0.161$ S = 1.001088 reflections 145 parameters 1088 independent reflections 940 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.015$ 3 standard reflections frequency: 120 min intensity decay: none

# Table 1 Hydrogen-bond geometry (Å, $^{\circ}$ ).

| $D - H \cdots A$                                               | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$                        | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------------------|----------------------|-------------------------|-------------------------------------|---------------------------|
| $N-H0A\cdotsO2^{i}$<br>O1-H1B···O3^{ii}<br>C12-H12B···O1^{iii} | 0.86<br>0.82<br>0.93 | 2.30<br>1.84<br>2.60    | 3.036 (6)<br>2.614 (6)<br>3.178 (8) | 144<br>156<br>121         |
|                                                                |                      |                         |                                     |                           |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1,  $y + \frac{1}{2}$ , -z + 1; (iii) -x + 2,  $y - \frac{1}{2}$ , -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2488).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2008). E64, o1483 [doi:10.1107/S1600536808020849]

## N-Acryloylphenylalanine

## Cong-Ren Wu, Xiao-Feng Gao, Hai-Bo Wang, Dong Jin and Jin-Tang Wang

## S1. Comment

N-Acryloylphenylalanie is one of the useful synthetic intermediates and free radical addition monomers. The crystal structure determination of the title compound has been carried out in order to elucidate the molecular conformation. We report herein its synthesis and crystal structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in stabilization of the structure.

## S2. Experimental

For the preparation of the title compound, to a well stirred solutions of phenylalanie (2.5 g) in H<sub>2</sub>O (30 ml) and sodium hydroxide (0.66 g) in H<sub>2</sub>O (5 ml), acryloyl chloride (1.34 ml) containing diphenylpicrylhydrazyl polymerization inhibitor (0.01%) and sodium hydroxide solution (0.66 g) in H<sub>2</sub>O (5 ml) were added dropwise simultaneously over a 30 min period and the stirring was continued for another 1 h. The reaction mixture was kept at 273 K in an ice-water bath. The solution was acidified to pH = 2 with HCl (6 N). The resulting solid was filtered off, and crystallized from ethanol (95%) (yield; 61%, m.p.401-403 K).

### **S3. Refinement**

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with  $U_{iso}(H) = xU_{eq}(C,N,O)$ , where x = 1.5 for OH H and x = 1.2 for all other H atoms.



### Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



### Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

### N-Acryloylphenylalanine

### Crystal data

C<sub>12</sub>H<sub>13</sub>NO<sub>3</sub>  $M_r = 219.23$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 6.0050 (12) Åb = 7.5820 (15) Åc = 12.512 (3) Å $\beta = 98.58 (3)^{\circ}$   $V = 563.3 (2) Å^{3}$  Z = 2 F(000) = 232  $D_{x} = 1.293 \text{ Mg m}^{-3}$ Melting point: 402 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 25 reflections  $\theta = 10-14^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$ T = 291 K

#### Data collection

| Enraf–Nonius CAD-4                       | 1088 independent reflections                                    |
|------------------------------------------|-----------------------------------------------------------------|
| diffractometer                           | 940 reflections with $I > 2\sigma(I)$                           |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.015$                                           |
| Graphite monochromator                   | $\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 1.7^\circ$ |
| $\omega/2\theta$ scans                   | $h = -7 \rightarrow 7$                                          |
| Absorption correction: $\psi$ scan       | $k = 0 \rightarrow 9$                                           |
| (North <i>et al.</i> , 1968)             | $l = 0 \rightarrow 14$                                          |
| $T_{\min} = 0.973, \ T_{\max} = 0.991$   | 3 standard reflections every 120 min                            |
| 1195 measured reflections                | intensity decay: none                                           |
| Refinement                               |                                                                 |

Block, colorless

 $0.30 \times 0.10 \times 0.10$  mm

Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.062$ H-atom parameters constrained  $wR(F^2) = 0.161$  $w = 1/[\sigma^2(F_0^2) + (0.06P)^2 + 0.62P]$ where  $P = (F_o^2 + 2F_c^2)/3$ S = 1.011088 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 145 parameters  $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, direct methods 2008) Secondary atom site location: difference Fourier Extinction coefficient: 0.028 (5) map

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | r           | 12          | 7           | I. */I.      |  |
|-----|-------------|-------------|-------------|--------------|--|
|     | л           | y           | 2           | O iso / O eq |  |
| Ν   | 0.7481 (7)  | 0.7059 (7)  | 0.2952 (3)  | 0.0555 (11)  |  |
| H0A | 0.8730      | 0.7469      | 0.2798      | 0.067*       |  |
| 01  | 0.5602 (6)  | 0.8820 (8)  | 0.4513 (3)  | 0.0843 (15)  |  |
| H1B | 0.4871      | 0.9128      | 0.4985      | 0.126*       |  |
| C1  | 0.8147 (14) | 0.9763 (11) | -0.0922 (6) | 0.086 (2)    |  |
| H1A | 0.8611      | 0.9777      | -0.1599     | 0.103*       |  |
| O2  | 0.2165 (6)  | 0.8618 (7)  | 0.3516 (3)  | 0.0700 (11)  |  |
| C2  | 0.9519 (13) | 1.0469 (10) | -0.0068 (7) | 0.084 (2)    |  |
| H2A | 1.0883      | 1.0979      | -0.0164     | 0.101*       |  |
| 03  | 0.5572 (6)  | 0.4855 (7)  | 0.3658 (3)  | 0.0632 (11)  |  |
| C3  | 0.8883 (9)  | 1.0423 (9)  | 0.0922 (5)  | 0.0699 (16)  |  |

| H3A  | 0.9839      | 1.0857      | 0.1517      | 0.084*      |  |
|------|-------------|-------------|-------------|-------------|--|
| C4   | 0.6681 (9)  | 0.9687 (8)  | 0.1060 (4)  | 0.0592 (13) |  |
| C5   | 0.5445 (10) | 0.8933 (9)  | 0.0224 (4)  | 0.0670 (15) |  |
| H5A  | 0.4140      | 0.8336      | 0.0325      | 0.080*      |  |
| C6   | 0.6059 (12) | 0.9014 (10) | -0.0818 (5) | 0.0801 (19) |  |
| H6A  | 0.5110      | 0.8584      | -0.1417     | 0.096*      |  |
| C7   | 0.5920 (12) | 0.9795 (10) | 0.2154 (5)  | 0.0743 (17) |  |
| H7A  | 0.4576      | 1.0520      | 0.2085      | 0.089*      |  |
| H7B  | 0.7079      | 1.0400      | 0.2642      | 0.089*      |  |
| C8   | 0.5411 (10) | 0.8052 (8)  | 0.2676 (4)  | 0.0608 (15) |  |
| H8A  | 0.4362      | 0.7369      | 0.2159      | 0.073*      |  |
| С9   | 0.4281 (9)  | 0.8489 (9)  | 0.3655 (4)  | 0.0634 (15) |  |
| C10  | 0.7431 (9)  | 0.5410 (8)  | 0.3477 (3)  | 0.0566 (14) |  |
| C11  | 0.9502 (11) | 0.4520 (10) | 0.3691 (4)  | 0.0701 (18) |  |
| H11A | 1.0794      | 0.5112      | 0.3564      | 0.084*      |  |
| C12  | 0.9710 (12) | 0.2919 (10) | 0.4055 (6)  | 0.083 (2)   |  |
| H12A | 0.8446      | 0.2297      | 0.4189      | 0.099*      |  |
| H12B | 1.1124      | 0.2392      | 0.4183      | 0.099*      |  |
|      |             |             |             |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$  | $U^{33}$    | $U^{12}$   | $U^{13}$    | $U^{23}$   |
|-----|-------------|-----------|-------------|------------|-------------|------------|
| N   | 0.055 (2)   | 0.065 (3) | 0.049 (2)   | -0.007 (2) | 0.0183 (18) | -0.002 (2) |
| 01  | 0.076 (3)   | 0.118 (4) | 0.066 (2)   | -0.021 (3) | 0.033 (2)   | -0.036 (3) |
| C1  | 0.118 (5)   | 0.070 (4) | 0.076 (4)   | 0.005 (5)  | 0.036 (4)   | 0.008 (4)  |
| O2  | 0.0515 (19) | 0.084 (3) | 0.078 (2)   | 0.001 (2)  | 0.0231 (17) | 0.001 (3)  |
| C2  | 0.093 (5)   | 0.074 (5) | 0.090 (4)   | 0.000 (4)  | 0.029 (4)   | 0.023 (4)  |
| O3  | 0.0551 (19) | 0.090 (3) | 0.0452 (18) | -0.009(2)  | 0.0088 (14) | 0.010 (2)  |
| C3  | 0.062 (3)   | 0.074 (4) | 0.078 (4)   | -0.003 (3) | 0.026 (3)   | 0.000 (3)  |
| C4  | 0.077 (3)   | 0.052 (3) | 0.052 (3)   | 0.004 (3)  | 0.020 (2)   | 0.005 (3)  |
| C5  | 0.081 (4)   | 0.063 (4) | 0.059 (3)   | -0.003 (3) | 0.019 (3)   | 0.004 (3)  |
| C6  | 0.116 (5)   | 0.077 (5) | 0.048 (3)   | 0.001 (4)  | 0.017 (3)   | -0.004 (3) |
| C7  | 0.099 (4)   | 0.066 (4) | 0.064 (3)   | -0.017 (4) | 0.032 (3)   | 0.002 (3)  |
| C8  | 0.072 (3)   | 0.064 (4) | 0.048 (3)   | -0.012 (3) | 0.016 (2)   | -0.006 (3) |
| C9  | 0.068 (3)   | 0.068 (4) | 0.055 (3)   | -0.006 (3) | 0.011 (2)   | 0.010 (3)  |
| C10 | 0.073 (3)   | 0.069 (4) | 0.030 (2)   | 0.003 (3)  | 0.011 (2)   | -0.006 (2) |
| C11 | 0.083 (4)   | 0.080 (5) | 0.053 (3)   | -0.010 (4) | 0.031 (3)   | -0.014 (3) |
| C12 | 0.067 (4)   | 0.063 (4) | 0.115 (6)   | 0.003 (3)  | 0.003 (4)   | -0.014 (4) |
|     |             |           |             |            |             |            |

Geometric parameters (Å, °)

| N-C10  | 1.414 (8)  | C4—C7  | 1.509 (7) |  |
|--------|------------|--------|-----------|--|
| N—C8   | 1.451 (7)  | C5—C6  | 1.408 (8) |  |
| N—H0A  | 0.8600     | C5—H5A | 0.9300    |  |
| O1—C9  | 1.261 (6)  | C6—H6A | 0.9300    |  |
| O1—H1B | 0.8200     | C7—C8  | 1.525 (9) |  |
| C1—C2  | 1.358 (11) | С7—Н7А | 0.9700    |  |
| C1—C6  | 1.400 (10) | С7—Н7В | 0.9700    |  |
|        |            |        |           |  |

| C1—H1A      | 0.9300     | C8—C9          | 1.523 (7)  |
|-------------|------------|----------------|------------|
| O2—C9       | 1.261 (6)  | C8—H8A         | 0.9800     |
| C2—C3       | 1.350 (10) | C10-C11        | 1.405 (9)  |
| C2—H2A      | 0.9300     | C11—C12        | 1.296 (10) |
| O3—C10      | 1.245 (6)  | C11—H11A       | 0.9300     |
| C3—C4       | 1.468 (8)  | C12—H12A       | 0.9300     |
| С3—НЗА      | 0.9300     | C12—H12B       | 0.9300     |
| C4—C5       | 1.319 (8)  |                |            |
|             |            |                |            |
| C10—N—C8    | 119.5 (4)  | С4—С7—Н7А      | 108.1      |
| C10—N—H0A   | 120.2      | С8—С7—Н7А      | 108.1      |
| C8—N—H0A    | 120.2      | С4—С7—Н7В      | 108.1      |
| C9—O1—H1B   | 109.5      | С8—С7—Н7В      | 108.1      |
| C2—C1—C6    | 122.2 (6)  | H7A—C7—H7B     | 107.3      |
| C2—C1—H1A   | 118.9      | N—C8—C9        | 112.9 (5)  |
| C6—C1—H1A   | 118.9      | N—C8—C7        | 109.4 (5)  |
| C3—C2—C1    | 119.4 (7)  | C9—C8—C7       | 107.3 (5)  |
| C3—C2—H2A   | 120.3      | N—C8—H8A       | 109.0      |
| C1—C2—H2A   | 120.3      | С9—С8—Н8А      | 109.0      |
| C2—C3—C4    | 120.0 (6)  | С7—С8—Н8А      | 109.0      |
| С2—С3—НЗА   | 120.0      | O2—C9—O1       | 126.5 (5)  |
| С4—С3—НЗА   | 120.0      | O2—C9—C8       | 117.8 (5)  |
| C5—C4—C3    | 118.8 (5)  | O1—C9—C8       | 115.4 (5)  |
| C5—C4—C7    | 122.2 (5)  | O3—C10—C11     | 126.5 (6)  |
| C3—C4—C7    | 119.0 (5)  | O3—C10—N       | 117.7 (5)  |
| C4—C5—C6    | 121.4 (6)  | C11—C10—N      | 115.7 (5)  |
| С4—С5—Н5А   | 119.3      | C12—C11—C10    | 123.6 (7)  |
| С6—С5—Н5А   | 119.3      | C12—C11—H11A   | 118.2      |
| C1—C6—C5    | 117.7 (6)  | C10-C11-H11A   | 118.2      |
| С1—С6—Н6А   | 121.1      | C11—C12—H12A   | 120.0      |
| С5—С6—Н6А   | 121.1      | C11—C12—H12B   | 120.0      |
| C4—C7—C8    | 116.7 (6)  | H12A—C12—H12B  | 120.0      |
|             |            |                |            |
| C6—C1—C2—C3 | 1.3 (12)   | C10—N—C8—C7    | 178.2 (4)  |
| C1—C2—C3—C4 | -2.8 (11)  | C4—C7—C8—N     | 67.3 (7)   |
| C2—C3—C4—C5 | 6.2 (10)   | C4—C7—C8—C9    | -169.9 (5) |
| C2—C3—C4—C7 | -174.7 (7) | N—C8—C9—O2     | -149.5 (6) |
| C3—C4—C5—C6 | -8.0 (10)  | C7—C8—C9—O2    | 89.9 (7)   |
| C7—C4—C5—C6 | 172.9 (7)  | N              | 35.8 (8)   |
| C2—C1—C6—C5 | -2.9 (12)  | C7—C8—C9—O1    | -84.9 (7)  |
| C4—C5—C6—C1 | 6.5 (10)   | C8—N—C10—O3    | 1.8 (6)    |
| C5—C4—C7—C8 | 58.1 (9)   | C8—N—C10—C11   | 178.5 (4)  |
| C3—C4—C7—C8 | -121.1 (7) | O3—C10—C11—C12 | 4.3 (9)    |
| C10—N—C8—C9 | 58.7 (6)   | N-C10-C11-C12  | -172.1 (6) |

| D—H···A                               | <i>D</i> —Н | H···A | $D^{\dots}A$ | D—H···A |
|---------------------------------------|-------------|-------|--------------|---------|
| N—H0A····O2 <sup>i</sup>              | 0.86        | 2.30  | 3.036 (6)    | 144     |
| O1—H1 <i>B</i> ···O3 <sup>ii</sup>    | 0.82        | 1.84  | 2.614 (6)    | 156     |
| C12—H12 <i>B</i> ···O1 <sup>iii</sup> | 0.93        | 2.60  | 3.178 (8)    | 121     |

## Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) -*x*+2, *y*-1/2, -*z*+1.