

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methoxy-N-[5-(2-methoxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide hemihydrate

Li-he Yin, Rong Wan,* Feng Han, Bin Wang and Jin-tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China Correspondence e-mail: rwan@njut.edu.cn

Received 27 June 2008; accepted 30 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.080; wR factor = 0.241; data-to-parameter ratio = 13.5.

In the molecule of the title compound, $C_{17}H_{15}N_3O_3S \cdot 0.5H_2O_3$ the thiadiazole ring is oriented with respect to the two 2-methoxyphenyl rings at dihedral angles of 3.70(3) and 1.74 (2)°. An intramolecular $N-H \cdots O$ hydrogen bond results in the formation of a planar six-membered ring, which is oriented with respect to the thiadiazole ring at a dihedral angle of $1.33 (3)^\circ$. Thus, all of the rings are nearly coplanar. In the crystal structure, intermolecular $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonds link the molecules.

Related literature

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental

Crystal data $C_{17}H_{15}N_3O_3S \cdot 0.5H_2O$ $M_r = 350.40$

Monoclinic, C2/c a = 29.950 (6) Å

b = 14.561 (3) Å c = 7.6520 (15) Å $\beta = 94.78 \ (3)^{\circ}$ V = 3325.4 (12) Å³ Z = 8

Data collection

Enraf–Nonius CAD-4	3003 independent reflections
diffractometer	1602 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.060$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.937, T_{\max} = 0.989$	frequency: 120 min
6340 measured reflections	intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.079$	222 parameters
$wR(F^2) = 0.240$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
3003 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N3-H3A\cdots O3$ $O4-H4\cdots N1^{i}$ $C14-H14A\cdots O2^{ii}$	0.86 0.85 0.93	2.04 2.24 2.49	2.706 (5) 2.796 (6) 3.316 (6)	134 123 148

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge Professor Hua-qin Wang, Analysis Centre, Nanjing University, for providing diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2483).

References

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$

 $0.30 \times 0.10 \times 0.05 \text{ mm}$

T = 298 (2) K

supporting information

Acta Cryst. (2008). E64, o1637 [doi:10.1107/S1600536808019934]

2-Methoxy-*N*-[5-(2-methoxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide hemihydrate

Li-he Yin, Rong Wan, Feng Han, Bin Wang and Jin-tang Wang

S1. Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang *et al.*, 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C2-C7), B (S/N1/N2/C8/C9) and C (C12-C17) are, of course, planar. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered planar ring D (N3/H3A/O3/C10/C12/C13). The dihedral angles between the rings are $A/B = 3.70 (3)^{\circ}$, $A/C = 2.81 (3)^{\circ}$, $A/D = 2.45 (3)^{\circ}$, $B/C = 1.74 (2)^{\circ}$, $B/D = 1.33 (3)^{\circ}$ and $C/D = 0.90 (3)^{\circ}$. So, all of the rings are nearly coplanar.

In the crystal structure, intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

For preparation of the title compound, a solution of 5-(2-methoxyphenyl) -1,3,4-thiadiazol-2-amine (5 mmol) in pyridine (50 ml) was cooled to 273 K. To this solution, 2-methoxybenzoyl chloride (5 mmol) was added via a drop funnel over period of 30 min. The mixture was stirred at 273 K for 1 h, raised to room temperature and reacted for 1 h. The pyridine was distilled and the solid residue was recrystallized from ethanol to give the title compound (m.p. 513-514 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

S3. Refinement

H atoms were positioned geometrically, with O-H = 0.85 Å (for H₂O), N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,N,O)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

2-Methoxy-N-[5-(2-methoxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide hemihydrate

Crystal data $C_{17}H_{15}N_3O_3S\cdot 0.5H_2O$ $M_r = 350.40$

Monoclinic, *C*2/*c* Hall symbol: -C 2yc a = 29.950 (6) Å b = 14.561 (3) Å c = 7.6520 (15) Å $\beta = 94.78 (3)^{\circ}$ $V = 3325.4 (12) \text{ Å}^{3}$ Z = 8 F(000) = 1464 $D_{x} = 1.400 \text{ Mg m}^{-3}$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.937, T_{\max} = 0.989$ 6340 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.241$ S = 1.043003 reflections 222 parameters Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

<u>x</u> y	2	2	$\overline{U_{\rm iso}^*/U_{\rm eq}}$
			- · · · ·
S 0.14065 (4) 0.20	0610 (9) (0	0.03340 (17)	0.0643 (5)
O1 0.16810 (11) 0.11	- 136 (2)	-0.2572 (5)	0.0694 (10)
O2 0.19106 (10) 0.25	584 (3)	0.3483 (5)	0.0761 (11)
O3 0.09246 (10) 0.39	994 (2)	0.5803 (4)	0.0623 (9)
O4 1.0000 0.37	791 (4) (0.2500	0.139 (3)
H4 0.9969 0.35	526 0	0.3472	0.167*
N1 0.06625 (14) 0.28	824 (4)	0.0904 (6)	0.0805 (14)
N2 0.06140 (12) 0.24	445 (3) -	-0.0693 (5)	0.0622 (11)

Melting point = 513–514 K Mo K α radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 9–12° μ = 0.22 mm⁻¹ T = 298 K Block, colorless 0.30 × 0.10 × 0.05 mm

3003 independent reflections 1602 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 25.2^\circ, \ \theta_{min} = 1.4^\circ$ $h = -35 \rightarrow 35$ $k = 0 \rightarrow 17$ $l = 0 \rightarrow 9$ 3 standard reflections every 120 min intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1018P)^2 + 4.918P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.57$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³

N3	0.11780 (9)	0.3022 (2)	0.3039(5)	0.0430 (8)
НЗА	0.0969	0.3324	0.3490	0.052*
Cl	0.20716 (19)	0.0758 (5)	-0.3250(9)	0.105(2)
HIB	0.2323	0.0820	-0.2392	0.157*
H1C	0.2132	0.1081	-0.4299	0.157*
HID	0.2022	0.0120	-0.3516	0.157*
C2	0.12874 (16)	0.1123 (3)	-0.3594 (6)	0.0575 (12)
C3	0.09255 (15)	0.1571 (3)	-0.2910 (6)	0.0543 (11)
C4	0.05153 (18)	0.1584 (4)	-0.3904 (7)	0.0796 (16)
H4A	0.0273	0.1894	-0.3501	0.095*
C5	0.0471 (2)	0.1124 (5)	-0.5522 (8)	0.0946 (19)
H5A	0.0194	0.1107	-0.6165	0.114*
C6	0.0828 (2)	0.0707 (5)	-0.6157 (8)	0.0954 (19)
H6A	0.0794	0.0422	-0.7248	0.115*
C7	0.1229 (2)	0.0696 (4)	-0.5235 (7)	0.0742 (15)
H7A	0.1470	0.0403	-0.5690	0.089*
C8	0.09539 (14)	0.2027 (3)	-0.1186 (6)	0.0515 (11)
С9	0.10742 (16)	0.2703 (4)	0.1660 (8)	0.0652 (14)
C10	0.16044 (14)	0.2990 (3)	0.4122 (6)	0.0509 (11)
C11	0.05722 (17)	0.4453 (4)	0.6622 (8)	0.0873 (19)
H11A	0.0303	0.4444	0.5846	0.131*
H11B	0.0658	0.5077	0.6873	0.131*
H11C	0.0520	0.4143	0.7694	0.131*
C12	0.13322 (14)	0.3932 (3)	0.6683 (6)	0.0486 (10)
C13	0.16640 (13)	0.3438 (3)	0.5879 (5)	0.0467 (10)
C14	0.20858 (15)	0.3341 (3)	0.6785 (6)	0.0599 (12)
H14A	0.2305	0.3006	0.6276	0.072*
C15	0.21853 (18)	0.3729 (4)	0.8408 (7)	0.0683 (14)
H15A	0.2467	0.3653	0.9000	0.082*
C16	0.1862 (2)	0.4227 (4)	0.9133 (7)	0.0790 (17)
H16A	0.1934	0.4515	1.0205	0.095*
C17	0.14394 (18)	0.4321 (3)	0.8354 (7)	0.0653 (13)
H17A	0.1223	0.4639	0.8917	0.078*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0561 (8)	0.0660 (8)	0.0708 (8)	0.0122 (6)	0.0047 (6)	-0.0030 (7)
01	0.064 (2)	0.077 (2)	0.069 (2)	0.0236 (17)	0.0142 (18)	-0.0027 (19)
O2	0.0527 (19)	0.107 (3)	0.068 (2)	0.0223 (19)	0.0017 (16)	-0.028(2)
O3	0.0505 (18)	0.070(2)	0.067 (2)	0.0199 (15)	0.0081 (16)	-0.0046 (18)
O4	0.095 (5)	0.093 (5)	0.239 (10)	0.000	0.060 (5)	0.000
N1	0.069 (3)	0.105 (4)	0.067 (3)	0.022 (3)	0.006 (2)	-0.011 (3)
N2	0.051 (2)	0.087 (3)	0.047 (2)	0.018 (2)	-0.0025 (17)	-0.011 (2)
N3	0.0212 (15)	0.0347 (18)	0.074 (2)	0.0118 (13)	0.0067 (16)	-0.0007 (18)
C1	0.091 (4)	0.124 (5)	0.104 (5)	0.055 (4)	0.040 (4)	0.011 (4)
C2	0.071 (3)	0.047 (3)	0.054 (3)	0.002 (2)	0.004 (2)	0.000(2)
C3	0.060 (3)	0.055 (3)	0.048 (2)	-0.003 (2)	0.001 (2)	-0.003 (2)

C4	0.067 (3)	0.102 (4)	0.066 (3)	-0.004 (3)	-0.014 (3)	-0.004 (3)	
C5	0.096 (4)	0.122 (5)	0.062 (3)	-0.019 (4)	-0.021 (3)	-0.015 (3)	
C6	0.129 (5)	0.088 (4)	0.067 (4)	-0.011 (4)	-0.006 (3)	-0.016 (3)	
C7	0.106 (4)	0.058 (3)	0.060 (3)	0.008 (3)	0.016 (3)	-0.011 (3)	
C8	0.054 (3)	0.048 (3)	0.052 (2)	0.003 (2)	0.003 (2)	0.000(2)	
C9	0.054 (3)	0.069 (3)	0.073 (3)	0.015 (3)	0.013 (3)	0.015 (3)	
C10	0.047 (2)	0.049 (3)	0.055 (3)	0.006 (2)	-0.003 (2)	0.003 (2)	
C11	0.070 (3)	0.101 (5)	0.095 (4)	0.042 (3)	0.025 (3)	0.002 (4)	
C12	0.050(2)	0.044 (2)	0.051 (2)	0.0060 (19)	0.006 (2)	0.004 (2)	
C13	0.045 (2)	0.048 (2)	0.046 (2)	-0.0029 (19)	0.0030 (19)	-0.004 (2)	
C14	0.045 (2)	0.067 (3)	0.067 (3)	-0.001 (2)	0.002 (2)	-0.003 (3)	
C15	0.069 (3)	0.074 (4)	0.059 (3)	-0.011 (3)	-0.012 (3)	-0.004 (3)	
C16	0.102 (4)	0.064 (3)	0.067 (3)	-0.014 (3)	-0.021 (3)	-0.009 (3)	
C17	0.084 (3)	0.059 (3)	0.055 (3)	0.004 (3)	0.020 (3)	-0.009 (2)	

Geometric parameters (Å, °)

S-C8	1.712 (4)	C4—C5	1.404 (8)	
S—C9	1.751 (6)	C4—H4A	0.9300	
O1—C2	1.360 (5)	C5—C6	1.354 (9)	
01—C1	1.429 (6)	C5—H5A	0.9300	
O2—C10	1.226 (5)	C6—C7	1.343 (8)	
O3—C12	1.347 (5)	C6—H6A	0.9300	
O3—C11	1.436 (5)	C7—H7A	0.9300	
O4—H4	0.8501	C10—C13	1.492 (6)	
N1—C9	1.329 (6)	C11—H11A	0.9600	
N1—N2	1.337 (5)	C11—H11B	0.9600	
N2—C8	1.271 (5)	C11—H11C	0.9600	
N3—C9	1.171 (6)	C12—C13	1.409 (6)	
N3—C10	1.464 (5)	C12—C17	1.411 (7)	
N3—H3A	0.8600	C13—C14	1.397 (6)	
C1—H1B	0.9600	C14—C15	1.374 (7)	
C1—H1C	0.9600	C14—H14A	0.9300	
C1—H1D	0.9600	C15—C16	1.364 (8)	
C2—C7	1.398 (7)	C15—H15A	0.9300	
C2—C3	1.404 (6)	C16—C17	1.361 (7)	
C3—C4	1.390 (6)	C16—H16A	0.9300	
C3—C8	1.472 (6)	C17—H17A	0.9300	
C8—S—C9	87.3 (2)	N2—C8—S	113.1 (3)	
C2C1	118.8 (4)	C3—C8—S	127.2 (3)	
C12—O3—C11	118.8 (4)	N3—C9—N1	120.5 (5)	
C9—N1—N2	111.7 (4)	N3—C9—S	127.8 (4)	
C8—N2—N1	116.1 (4)	N1—C9—S	111.7 (4)	
C9—N3—C10	130.6 (4)	O2—C10—N3	115.8 (4)	
C9—N3—H3A	114.7	O2—C10—C13	122.2 (4)	
C10—N3—H3A	114.7	N3—C10—C13	122.0 (4)	
O1—C1—H1B	109.5	O3—C11—H11A	109.5	

O1—C1—H1C	109.5	O3—C11—H11B	109.5
H1B—C1—H1C	109.5	H11A—C11—H11B	109.5
O1—C1—H1D	109.5	O3—C11—H11C	109.5
H1B—C1—H1D	109.5	H11A—C11—H11C	109.5
H1C—C1—H1D	109.5	H11B—C11—H11C	109.5
O1—C2—C7	124.0 (5)	O3—C12—C13	117.3 (4)
O1—C2—C3	116.0 (4)	O3—C12—C17	123.6 (4)
C7—C2—C3	120.0 (5)	C13—C12—C17	119.0 (4)
C4—C3—C2	118.5 (4)	C14—C13—C12	118.4 (4)
C4—C3—C8	117.8 (4)	C14—C13—C10	116.0 (4)
C2—C3—C8	123.7 (4)	C12—C13—C10	125.5 (4)
C3—C4—C5	119.4 (6)	C15—C14—C13	121.8 (5)
C3—C4—H4A	120.3	C15—C14—H14A	119.1
C5—C4—H4A	120.3	C13—C14—H14A	119.1
C6-C5-C4	120.7 (6)	C16—C15—C14	118.6 (5)
C6—C5—H5A	119.6	C16—C15—H15A	120.7
C4—C5—H5A	119.6	C14-C15-H15A	120.7
C7—C6—C5	121.0 (6)	C17-C16-C15	122.8 (5)
C7—C6—H6A	119 5	C17-C16-H16A	118.6
C5-C6-H6A	119.5	C_{15} C_{16} H_{16A}	118.6
C6-C7-C2	120.4 (5)	C_{16} $-C_{17}$ $-C_{12}$	119.3 (5)
C6-C7-H7A	119.8	$C_{16} - C_{17} - H_{17A}$	120.4
$C_2 - C_7 - H_7 A$	119.8	C_{12} C_{17} H_{17A}	120.1
$N_2 = C_8 = C_3$	119.6 (4)		120.1
112 00 05	119.0 (4)		
C9—N1—N2—C8	1.8 (7)	N2—N1—C9—N3	177.2 (5)
C1-O1-C2-C7	5.2 (7)	N2-N1-C9-S	-1.8(6)
C1 - 01 - C2 - C3	-174.9(5)	C8 = S = C9 = N3	-177.8(5)
01 - C2 - C3 - C4	179.6 (4)	C8 - S - C9 - N1	1.1 (4)
C7-C2-C3-C4	-0.5(7)	C9-N3-C10-O2	2.0(7)
$01-C^2-C^3-C^8$	-0.8(7)	C9 - N3 - C10 - C13	-1790(5)
C7-C2-C3-C8	179 1 (4)	$C_{11} = 03 = C_{12} = C_{13}$	176 9 (4)
$C_{2} = C_{3} = C_{4} = C_{5}$	2.2 (8)	$C_{11} = 03 = C_{12} = C_{13}$	-2.3(7)
C8 - C3 - C4 - C5	-1774(5)	03-C12-C13-C14	-1782(4)
C_{3} C_{4} C_{5} C_{6}	-30(10)	C_{17} C_{12} C_{13} C_{14}	10(6)
C4-C5-C6-C7	2.0 (11)	$O_3 - C_{12} - C_{13} - C_{10}$	1.1 (6)
$C_{5}-C_{6}-C_{7}-C_{2}$	-0.3(10)	C_{17} C_{12} C_{13} C_{10}	-1797(4)
$01 - C^2 - C^7 - C^6$	179.4 (5)	02-C10-C13-C14	-21(7)
C_{3} C_{2} C_{7} C_{6}	-0.5(8)	N_{3} C_{10} C_{13} C_{14}	1790(4)
$N_1 - N_2 - C_8 - C_3$	178 5 (4)	$\Omega^2 - C10 - C13 - C12$	178.6(4)
N1-N2-C8-S	-0.9(6)	N3-C10-C13-C12	-0.3(7)
$C4-C3-C8-N^2$	-29(7)	C_{12} C_{13} C_{14} C_{15}	-1.3(7)
$C_2 - C_3 - C_8 - N_2$	177.5 (5)	C10-C13-C14-C15	179 3 (4)
C4-C3-C8-S	1764(4)	C_{13} C_{14} C_{15} C_{16}	-0.7(8)
$C^2 - C^3 - C^8 - 8$	-32(7)	C14-C15-C16-C17	31(9)
$C_{2} = C_{3} = C_{3} = C_{3}$	-0.2(7)	C_{15} C_{16} C_{17} C_{12}	-35(8)
C9 - S - C8 - C3	-179 5 (4)	03-C12-C17-C16	-1795(4)
C10—N3—C9—N1	-179.7(4)	C_{13} C_{12} C_{17} C_{16}	1.3 (7)
	* · · · · · · · · · · · · · · · · · · ·		(')

C10—N3—C9—S -0.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N3—H3 <i>A</i> …O3	0.86	2.04	2.706 (5)	134
O4—H4…N1 ⁱ	0.85	2.24	2.796 (6)	123
C14—H14 <i>A</i> ····O2 ⁱⁱ	0.93	2.49	3.316 (6)	148

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*+1.