

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(2-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide methanol solvate

Dao-Hang He,^a* Yong-Chuang Zhu,^a Zhuo-Ru Yang,^a Shao-Yun Song^b and Qi-Jin Chen^b

^aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and ^bCollege of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China Correspondence e-mail: daohanghe@yahoo.com.cn

Received 8 July 2008; accepted 28 July 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.081; data-to-parameter ratio = 16.3.

In the title compound, $C_{17}H_{17}CIN_2O_4$ ·CH₄O, the dihedral angle between the benzene ring planes is 5.29 (6)°. Intermolecular N-H···O and O-H···O hydrogen bonds link the molecules into a chain along the *a* axis.

Related literature

For related literature, see: Allen *et al.* (1987), Bernardino *et al.* (2006); Ganjali *et al.* (2006); Gardner *et al.* (1991); Patole *et al.* (2003)

a = 12.9356 (7) Å

b = 4.8718 (3) Å

c = 29.4119 (16) Å

Experimental

Crystal data $C_{17}H_{17}CIN_2O_4 \cdot CH_4O$ $M_r = 380.82$ Orthorhombic, *Pna2*₁ $V = 1853.53 (18) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T_{min} = 0.895, T_{max} = 0.913

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.080$ S = 1.09 3916 reflections 240 parameters 1 restraint $\mu = 0.24 \text{ mm}^{-1}$ T = 173 (2) K $0.48 \times 0.40 \times 0.39 \text{ mm}$

organic compounds

9008	measured reflections
3916	independent reflections
3561	reflections with $I > 2\sigma(I)$
$R_{int} =$	= 0.021

H-atom parameters constrained $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1846 Friedel pairs Flack parameter: 0.04 (5)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O5^{i}$ $O5 - H5 \cdots O4$	0.88 0.84	2.01	2.8673 (19) 2 7904 (18)	165 166
	1 1	1.97	2.7904 (10)	100

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Youth Foundation of South China University of Technology for financial assistance (E5050570).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2761).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.

- Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). *Eur. J. Med. Chem.* 41, 80–87.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Ganjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, **120**, 119–124.
- Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514-1530.
- Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1649 [doi:10.1107/S1600536808023891]

N'-(2-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide methanol solvate

Dao-Hang He, Yong-Chuang Zhu, Zhuo-Ru Yang, Shao-Yun Song and Qi-Jin Chen

S1. Comment

Molecules involving Schiff bases have attracted much attention due to their diverse range of bioactivities in pharmaceutical and agrochemical field (e.g. Bernardino *et al.*, 2006; Ganjali *et al.*, 2006). We now report the synthesis and structure of the title compound, (I), obtained by the condensation of 3,4,5-trimethoxybenzohydrazide with 2-chlorobenzaldehyde as a methanol solvate (Fig. 1).

The bond lengths and bond angles for (I) are within normal ranges (Allen *et al.*, 1987). The two benzene rings are approximately planar, with a dihedral angle of 5.29 (6)°. The methanol molecules in the crystal are lined to the Schiff base moieties through intermolecular N—H···O and O—H···O hydrogen bonds to form a chain along the *a* axis, which helps to consolidate the packing (Fig 2).

S2. Experimental

A mixture of 3,4,5-trimethoxybenzohydrazide (1 mmol) and 2-chlorobenzaldehyde in anhydrous ethanol (10 ml) was refluxed for 2 h. When the solution was cooled to room temperature, some white needles separated out. After filtration, colorless blocks of (I) were obtained by slow evaporation of a methanol solution.

S3. Refinement

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with N—H = 0.88 Å, O—H = 0.84 Å, C—H = 0.95 (aromatic and N=CH), 0.98 (methyl) Å) and $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.5 for the methyl and hydroxyl groups, x = 1.2 for all other H atoms.

Figure 1

The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Figure 2

The packing of (I), viewed down the b axis. The dashed lines represent the hydrogen bonding interactions.

(I)

Crystal data

C₁₇H₁₇ClN₂O₄·CH₄O $M_r = 380.82$ Orthorhombic, *Pna*2₁ Hall symbol: P 2c -2n a = 12.9356 (7) Å b = 4.8718 (3) Å c = 29.4119 (16) Å V = 1853.53 (18) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans F(000) = 800 $D_x = 1.365 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5318 reflections $\theta = 2.6-27.0^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.48 \times 0.40 \times 0.39 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.895$, $T_{max} = 0.913$ 9008 measured reflections 3916 independent reflections 3561 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.021$	
$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.8^\circ$	
$h = -16 \rightarrow 8$	

Kejinemeni	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 0.3064P]$
<i>S</i> = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
3916 reflections	$(\Delta/\sigma)_{\rm max} = 0.012$
240 parameters	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1846 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.04 (5)
map	

 $k = -5 \rightarrow 6$ $l = -37 \rightarrow 36$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.88399 (4)	-0.29291 (12)	0.98890 (2)	0.04522 (15)	
C1	0.93423 (13)	0.2105 (4)	0.75620 (6)	0.0215 (3)	
C2	0.85309 (13)	0.0229 (4)	0.75340 (6)	0.0211 (3)	
H2	0.8352	-0.0866	0.7789	0.025*	
C3	0.79858 (12)	-0.0025 (3)	0.71285 (6)	0.0213 (3)	
C4	0.82468 (13)	0.1595 (3)	0.67522 (6)	0.0209 (3)	
C5	0.90935 (13)	0.3386 (4)	0.67796 (6)	0.0221 (3)	
C6	0.96347 (13)	0.3656 (4)	0.71860 (6)	0.0216 (3)	
H6	1.0201	0.4892	0.7207	0.026*	
C7	0.99585 (13)	0.2484 (4)	0.79886 (6)	0.0231 (4)	
C8	0.96354 (14)	0.0864 (4)	0.91319 (7)	0.0308 (4)	
H8	0.8949	0.0174	0.9121	0.037*	
C9	1.02227 (15)	0.0827 (4)	0.95597 (6)	0.0286 (4)	
C10	0.99287 (15)	-0.0824 (4)	0.99280 (7)	0.0319 (4)	
C11	1.04956 (19)	-0.0869 (5)	1.03275 (7)	0.0403 (5)	
H11	1.0289	-0.2029	1.0571	0.048*	
C12	1.13525 (18)	0.0753 (5)	1.03723 (7)	0.0435 (5)	
H12	1.1731	0.0753	1.0649	0.052*	
C13	1.16701 (18)	0.2405 (5)	1.00118 (7)	0.0416 (5)	
H13	1.2270	0.3517	1.0041	0.050*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	1.11093 (16)	0.2419 (5)	0.96120 (7)	0.0362 (5)
H14	1.1334	0.3541	0.9367	0.043*
C15	0.69115 (15)	-0.3585 (4)	0.74240 (6)	0.0260 (4)
H15A	0.7517	-0.4661	0.7515	0.039*
H15B	0.6361	-0.4827	0.7324	0.039*
H15C	0.6668	-0.2497	0.7683	0.039*
C16	0.71561 (18)	0.3559 (4)	0.61922 (7)	0.0386 (5)
H16A	0.6581	0.3954	0.6399	0.058*
H16B	0.6884	0.3175	0.5888	0.058*
H16C	0.7619	0.5150	0.6179	0.058*
C17	1.01472 (14)	0.6703 (4)	0.63995 (7)	0.0302 (4)
H17A	0.9989	0.8111	0.6627	0.045*
H17B	1.0217	0.7565	0.6100	0.045*
H17C	1.0796	0.5785	0.6480	0.045*
C18	1.2215 (2)	0.7735 (5)	0.86998 (9)	0.0501 (6)
H18A	1.1903	0.7780	0.9003	0.075*
H18B	1.1739	0.8569	0.8480	0.075*
H18C	1.2866	0.8763	0.8703	0.075*
N1	0.94896 (12)	0.1728 (3)	0.83814 (5)	0.0268 (3)
H1	0.8841	0.1185	0.8385	0.032*
N2	1.00645 (11)	0.1840 (3)	0.87756 (5)	0.0269 (3)
O1	0.71872 (9)	-0.1791 (3)	0.70587 (4)	0.0259 (3)
O2	0.77131 (9)	0.1235 (3)	0.63530 (4)	0.0259 (3)
O3	0.93290 (10)	0.4729 (3)	0.63872 (4)	0.0308 (3)
O4	1.08391 (10)	0.3399 (3)	0.79778 (4)	0.0298 (3)
05	1.24118 (9)	0.4964 (3)	0.85732 (5)	0.0328 (3)
Н5	1.1900	0.4338	0.8431	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0469 (3)	0.0485 (3)	0.0403 (3)	-0.0043 (2)	0.0087 (2)	0.0094 (3)
C1	0.0212 (8)	0.0249 (9)	0.0183 (8)	0.0027 (7)	-0.0023 (7)	-0.0007 (7)
C2	0.0216 (8)	0.0220 (8)	0.0196 (8)	0.0027 (6)	0.0005 (7)	0.0018 (7)
C3	0.0197 (8)	0.0211 (8)	0.0231 (8)	0.0018 (6)	0.0002 (7)	-0.0038 (7)
C4	0.0212 (8)	0.0242 (9)	0.0171 (8)	0.0044 (7)	-0.0033 (6)	-0.0027 (6)
C5	0.0219 (8)	0.0239 (9)	0.0205 (8)	0.0015 (7)	0.0007 (6)	0.0009 (7)
C6	0.0205 (8)	0.0243 (8)	0.0201 (8)	-0.0005 (7)	-0.0017 (6)	-0.0003 (7)
C7	0.0219 (8)	0.0280 (9)	0.0195 (8)	0.0017 (7)	-0.0028 (7)	-0.0007 (7)
C8	0.0255 (9)	0.0425 (11)	0.0244 (9)	-0.0010 (8)	-0.0022 (7)	0.0010 (8)
C9	0.0308 (10)	0.0370 (10)	0.0179 (8)	0.0040 (8)	-0.0003 (7)	-0.0002 (8)
C10	0.0353 (10)	0.0339 (10)	0.0266 (9)	0.0074 (8)	0.0055 (8)	-0.0001 (8)
C11	0.0580 (14)	0.0406 (12)	0.0221 (9)	0.0135 (11)	0.0047 (9)	0.0069 (9)
C12	0.0540 (14)	0.0538 (14)	0.0227 (9)	0.0139 (11)	-0.0115 (9)	-0.0045 (10)
C13	0.0419 (12)	0.0519 (14)	0.0309 (11)	0.0028 (10)	-0.0109 (9)	-0.0042 (10)
C14	0.0397 (11)	0.0458 (12)	0.0233 (9)	-0.0009 (10)	-0.0031 (8)	0.0043 (9)
C15	0.0269 (9)	0.0232 (9)	0.0278 (9)	-0.0019 (7)	0.0025 (7)	-0.0004 (7)
C16	0.0433 (12)	0.0374 (11)	0.0351 (11)	0.0081 (10)	-0.0179 (9)	-0.0010 (9)

supporting information

C17	0.0269 (9)	0.0345 (10)	0.0293 (9)	-0.0029 (8)	-0.0006 (8)	0.0078 (8)
C18	0.0638 (15)	0.0453 (13)	0.0412 (13)	0.0120 (12)	-0.0099 (12)	-0.0078 (11)
N1	0.0206 (7)	0.0415 (9)	0.0184 (7)	-0.0044 (6)	-0.0041 (6)	0.0019 (6)
N2	0.0257 (7)	0.0370 (9)	0.0180 (7)	0.0010 (6)	-0.0053 (6)	0.0009 (6)
O1	0.0263 (6)	0.0282 (7)	0.0232 (6)	-0.0049 (5)	-0.0047 (5)	0.0008 (5)
O2	0.0292 (6)	0.0276 (6)	0.0208 (6)	0.0011 (5)	-0.0064 (5)	-0.0028 (5)
O3	0.0309 (6)	0.0399 (7)	0.0217 (6)	-0.0096 (6)	-0.0052 (6)	0.0076 (6)
O4	0.0243 (6)	0.0426 (8)	0.0225 (7)	-0.0089 (6)	-0.0040 (5)	0.0029 (6)
05	0.0231 (6)	0.0405 (7)	0.0347 (7)	0.0025 (6)	-0.0042 (5)	-0.0078 (6)

Geometric parameters (Å, °)

Cl1—C10	1.746 (2)	C12—H12	0.9500	
C1—C6	1.392 (2)	C13—C14	1.382 (3)	
C1—C2	1.394 (2)	C13—H13	0.9500	
C1—C7	1.498 (2)	C14—H14	0.9500	
С2—С3	1.391 (2)	C15—O1	1.430 (2)	
С2—Н2	0.9500	C15—H15A	0.9800	
C3—O1	1.360 (2)	C15—H15B	0.9800	
С3—С4	1.401 (2)	C15—H15C	0.9800	
C4—O2	1.373 (2)	C16—O2	1.423 (2)	
C4—C5	1.402 (2)	C16—H16A	0.9800	
С5—О3	1.361 (2)	C16—H16B	0.9800	
С5—С6	1.391 (2)	C16—H16C	0.9800	
С6—Н6	0.9500	C17—O3	1.430 (2)	
С7—О4	1.224 (2)	C17—H17A	0.9800	
C7—N1	1.356 (2)	C17—H17B	0.9800	
C8—N2	1.278 (2)	C17—H17C	0.9800	
С8—С9	1.470 (2)	C18—O5	1.423 (3)	
С8—Н8	0.9500	C18—H18A	0.9800	
C9—C14	1.393 (3)	C18—H18B	0.9800	
C9—C10	1.402 (3)	C18—H18C	0.9800	
C10-C11	1.385 (3)	N1—N2	1.378 (2)	
C11—C12	1.368 (3)	N1—H1	0.8800	
C11—H11	0.9500	O5—H5	0.8400	
C12—C13	1.393 (3)			
C6—C1—C2	120.90 (15)	C14—C13—H13	120.1	
C6—C1—C7	117.00 (15)	C12—C13—H13	120.1	
C2-C1-C7	122.07 (14)	C13—C14—C9	121.6 (2)	
C3—C2—C1	119.38 (15)	C13—C14—H14	119.2	
С3—С2—Н2	120.3	C9—C14—H14	119.2	
C1—C2—H2	120.3	O1-C15-H15A	109.5	
O1—C3—C2	124.80 (15)	O1—C15—H15B	109.5	
O1—C3—C4	114.85 (15)	H15A—C15—H15B	109.5	
C2—C3—C4	120.34 (15)	O1—C15—H15C	109.5	
O2—C4—C3	118.83 (15)	H15A—C15—H15C	109.5	
O2—C4—C5	121.43 (15)	H15B—C15—H15C	109.5	

C3—C4—C5	119.55 (14)	O2—C16—H16A	109.5
O3—C5—C6	124.76 (15)	O2—C16—H16B	109.5
O3—C5—C4	115.15 (14)	H16A—C16—H16B	109.5
C6—C5—C4	120.09 (15)	O2—C16—H16C	109.5
C5—C6—C1	119.63 (16)	H16A—C16—H16C	109.5
С5—С6—Н6	120.2	H16B—C16—H16C	109.5
С1—С6—Н6	120.2	O3—C17—H17A	109.5
O4—C7—N1	122.52 (16)	O3—C17—H17B	109.5
O4—C7—C1	121.23 (15)	H17A—C17—H17B	109.5
N1—C7—C1	116.24 (15)	O3—C17—H17C	109.5
N2—C8—C9	118.82 (17)	H17A—C17—H17C	109.5
N2—C8—H8	120.6	H17B—C17—H17C	109.5
С9—С8—Н8	120.6	O5—C18—H18A	109.5
C14—C9—C10	117.21 (17)	O5—C18—H18B	109.5
C14—C9—C8	120.89 (18)	H18A—C18—H18B	109.5
C10-C9-C8	121.89 (18)	05-C18-H18C	109.5
$C_{11} - C_{10} - C_{9}$	121.69 (19)	H18A - C18 - H18C	109.5
$C_{11} - C_{10} - C_{11}$	118 27 (16)	H18B-C18-H18C	109.5
C9-C10-C11	120.33(15)	C7N1N2	117.68 (14)
C_{12} C_{11} C_{10}	120.55(15) 120.1(2)	C7N1H1	121.2
C_{12} C_{11} H_{11}	119.9	N2N1H1	121.2
C10-C11-H11	119.9	C8—N2—N1	121.2
C_{11} C_{12} C_{13}	119.97 (10)	$C_{3} = 01 = C_{15}$	117 56 (13)
$C_{11} - C_{12} - H_{12}$	120.0	$C_{4} = 0^{2} = C_{16}^{16}$	117.30(13) 115.90(14)
C13 - C12 - H12	120.0	$C_{1}^{-02} = C_{10}^{-01}$	117.90(14)
$C_{13} = C_{12} = 112$	120.0 110.7(2)	C_{18} O_{5} H_{5}	109.5
014-015-012	119.7 (2)	05-115	109.5
C6—C1—C2—C3	-2.2(2)	C14—C9—C10—C11	0.1 (3)
C7—C1—C2—C3	179.86 (15)	C8—C9—C10—C11	179.16 (19)
C1—C2—C3—O1	179.51 (15)	C14—C9—C10—Cl1	-178.94 (15)
C1—C2—C3—C4	-0.2(2)	C8—C9—C10—C11	0.2 (3)
O1—C3—C4—O2	-1.7 (2)	C9—C10—C11—C12	1.1 (3)
C2—C3—C4—O2	178.07 (15)	Cl1—C10—C11—C12	-179.86 (17)
O1—C3—C4—C5	-176.74 (15)	C10-C11-C12-C13	-1.5 (3)
C2—C3—C4—C5	3.0 (2)	C11—C12—C13—C14	0.7 (3)
O2—C4—C5—O3	0.7 (2)	C12—C13—C14—C9	0.5 (3)
C3-C4-C5-O3	175.62 (15)	C10-C9-C14-C13	-0.8(3)
O2—C4—C5—C6	-178.40(16)	C8—C9—C14—C13	-180.0(2)
$C_{3}-C_{4}-C_{5}-C_{6}$	-3.5(2)	04-C7-N1-N2	-4.4 (3)
O3—C5—C6—C1	-177.87(16)	C1—C7—N1—N2	174.82 (16)
C4—C5—C6—C1	1.1 (3)	C9—C8—N2—N1	177.74 (17)
$C_{2}-C_{1}-C_{6}-C_{5}$	1.7 (3)	C7-N1-N2-C8	-173.39(17)
C7—C1—C6—C5	179.79 (15)	C2-C3-O1-C15	-2.3 (2)
C6-C1-C7-O4	-21.9(3)	C4-C3-O1-C15	177.43 (14)
C2-C1-C7-O4	156.15 (17)	$C_3 - C_4 - O_2 - C_{16}$	118.71 (19)
C6-C1-C7-N1	158.87 (16)	$C_{5}-C_{4}-O_{2}-C_{16}$	-66.3(2)
C2-C1-C7-N1	-23.1(2)	C6-C5-O3-C17	-4.5(3)
$N_{2} - C_{8} - C_{9} - C_{14}$	163(3)	C4-C5-O3-C17	176 48 (15)
	10.0 (0)	C. CO CO CI,	1,0,10 (10)

N2—C8—C9—C10 –162.78 (19)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O5 ⁱ	0.88	2.01	2.8673 (19)	165
O5—H5…O4	0.84	1.97	2.7904 (18)	166

Symmetry code: (i) x-1/2, -y+1/2, z.