

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl N'-[(E)-4-hydroxy-3-methoxybenzylidene]hydrazinecarboxylate

Xiang-Wei Cheng

Zhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China Correspondence e-mail: zpccxw@126.com

Received 27 June 2008; accepted 28 June 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.113; data-to-parameter ratio = 12.9.

The molecule of the title compound, $C_{10}H_{12}N_2O_4$, adopts a *trans* configuration with respect to the C=N double bond. The dihedral angle between the benzene ring and the hydrazinecarboxylate mean plane is 36.54 (6)°. The molecules are linked into a two-dimensional network by intermolecular $O-H\cdots O, N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, and by aromatic π - π stacking interactions [ring-centroid separation 3.7689 (9) Å].

Related literature

For a related structure, see: Cheng (2008).

Experimental

Crystal data

 $C_{10}H_{12}N_2O_4$ $M_r = 224.22$ Monoclinic, $P2_1/c$ a = 9.4718 (10) Å b = 11.0983 (11) Å c = 10.3220 (11) Å $\beta = 98.272 (4)^{\circ}$ $V = 1073.77 (19) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD	11214 measured reflections
diffractometer	1887 independent reflections
Absorption correction: multi-scan	1590 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.029$
$T_{\min} = 0.965, \ T_{\max} = 0.968$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 146 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.19$ e Å⁻³1887 reflections $\Delta \rho_{min} = -0.14$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O2	0.84	2.21	2.6695 (15)	114
$O1 - H1 \cdots O3^{i}$	0.84	2.34	3.0286 (16)	139
$O1 - H1 \cdot \cdot \cdot N1^i$	0.84	2.57	3.2640 (17)	140
$N2 - H2B \cdots O3^{ii}$	0.88	2.19	3.0124 (16)	155

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, $-y - \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author acknowledges financial support from Zhejiang Police College, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2754).

References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, X.-W. (2008). Acta Cryst. E64, 01302. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

 $0.29 \times 0.27 \times 0.26$ mm

T = 123 (2) K

supporting information

Acta Cryst. (2008). E64, o1397 [doi:10.1107/S1600536808019788]

Methyl N'-[(E)-4-hydroxy-3-methoxybenzylidene]hydrazinecarboxylate

Xiang-Wei Cheng

S1. Comment

As part of our ongoig studies of benzaldehydehydrazone derivatives (Cheng, 2008), we now report the synthesis and structure of the title compound, (I).

The title molecule (Fig. 1) adopts a *trans* configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the C9/C10//N1/N2/O3/O4 plane is 36.54 (6)°. Otherwise, the bond lengths and angles for (I) agree with those observed for (*E*)-methyl*N'*-(4-hydroxybenzylidene)hydrazinecarboxylate (Cheng, 2008).

In the crystal, the molecules are linked into a two-dimensional network by intramolecular O—H···O and intermolecular O—H···O, N—H···O, O—H···N hydrogen bonds (Table 1). Additionally, neighbouring aromatic rings interact by π - π stacking [centroid separation = 3.7689 (9) Å].

S2. Experimental

4-Hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 480–482 K).

S3. Refinement

The H atoms were placed geometrically (O—H = 0.84 Å, N—H = 0.88 Å and C—H = 0.95 or 0.98 Å) and refined as riding, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(carrier)$.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Methyl N'-[(E)-4-hydroxy-3-methoxybenzylidene]hydrazinecarboxylate

Crystal data	
$C_{10}H_{12}N_{2}O_{4}$ $M_{r} = 224.22$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 9.4718 (10) \text{ Å}$ $b = 11.0983 (11) \text{ Å}$ $c = 10.3220 (11) \text{ Å}$ $\beta = 98.272 (4)^{\circ}$ $V = 1073.77 (19) \text{ Å}^{3}$ $Z = 4$	F(000) = 472 $D_x = 1.387 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1887 reflections $\theta = 2.2-25.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 123 K Block, colourless $0.29 \times 0.27 \times 0.26 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.965, T_{\max} = 0.968$	11214 measured reflections 1887 independent reflections 1590 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -11 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.113$ S = 1.02 1887 reflections 146 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 0.1817P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.010$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³

Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.036 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.46841 (16)	0.22471 (12)	0.90488 (15)	0.0408 (4)
C2	0.57541 (17)	0.23855 (13)	1.00956 (16)	0.0453 (4)
H2A	0.5760	0.3073	1.0645	0.054*
C3	0.46883 (16)	0.12325 (13)	0.82397 (14)	0.0405 (4)
C4	0.3402 (2)	0.01177 (17)	0.64655 (17)	0.0596 (5)
H4A	0.2550	0.0191	0.5809	0.089*
H4B	0.3309	-0.0589	0.7016	0.089*
H4C	0.4246	0.0026	0.6025	0.089*
C5	0.57560 (15)	0.03861 (13)	0.84778 (14)	0.0406 (4)
Н5	0.5761	-0.0291	0.7916	0.049*
C6	0.68260 (16)	0.15212 (14)	1.03504 (15)	0.0439 (4)
H6	0.7554	0.1618	1.1079	0.053*
C7	0.68361 (15)	0.05223 (13)	0.95482 (14)	0.0390 (4)
C8	0.79364 (16)	-0.04036 (13)	0.98484 (15)	0.0425 (4)
H8	0.8497	-0.0414	1.0689	0.051*
С9	0.96010 (15)	-0.28026 (12)	0.85416 (14)	0.0381 (4)
C10	1.0957 (2)	-0.45396 (18)	0.82782 (19)	0.0681 (6)
H10A	1.1524	-0.5152	0.8804	0.102*
H10B	1.1562	-0.4113	0.7734	0.102*
H10C	1.0166	-0.4929	0.7715	0.102*
N1	0.81595 (13)	-0.11952 (11)	0.90087 (12)	0.0409 (3)
N2	0.91622 (13)	-0.20662 (11)	0.94426 (12)	0.0434 (3)
H2B	0.9502	-0.2137	1.0279	0.052*
01	0.36374 (12)	0.30938 (9)	0.88270(11)	0.0543 (3)
H1	0.3060	0.2900	0.8164	0.081*
02	0.35509 (13)	0.11728 (10)	0.72612 (11)	0.0571 (4)
03	0.93369 (12)	-0.26695 (10)	0.73659 (10)	0.0508 (3)
O4	1.03976 (12)	-0.36926 (10)	0.91342 (10)	0.0520 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0423 (8)	0.0368 (7)	0.0437 (9)	0.0025 (6)	0.0071 (6)	0.0028 (6)

supporting information

C2	0.0511 (9)	0.0373 (8)	0.0469 (9)	0.0004 (6)	0.0045 (7)	-0.0050 (6)
C3	0.0410 (8)	0.0445 (8)	0.0360 (8)	0.0010 (6)	0.0055 (6)	0.0012 (6)
C4	0.0648 (11)	0.0618 (10)	0.0485 (10)	0.0017 (9)	-0.0038 (8)	-0.0113 (8)
C5	0.0432 (8)	0.0401 (8)	0.0398 (8)	0.0016 (6)	0.0101 (6)	-0.0025 (6)
C6	0.0431 (8)	0.0458 (8)	0.0415 (9)	-0.0022 (7)	0.0018 (6)	0.0014 (6)
C7	0.0387 (8)	0.0403 (7)	0.0390 (8)	-0.0002 (6)	0.0095 (6)	0.0040 (6)
C8	0.0431 (8)	0.0455 (8)	0.0387 (8)	0.0030 (6)	0.0056 (6)	0.0025 (6)
C9	0.0352 (7)	0.0434 (8)	0.0349 (8)	-0.0014 (6)	0.0029 (6)	0.0006 (6)
C10	0.0767 (13)	0.0687 (12)	0.0567 (11)	0.0307 (10)	0.0019 (9)	-0.0149 (9)
N1	0.0393 (7)	0.0442 (7)	0.0393 (7)	0.0059 (5)	0.0064 (5)	0.0070 (5)
N2	0.0465 (7)	0.0500 (7)	0.0328 (7)	0.0132 (6)	0.0033 (5)	0.0023 (5)
01	0.0565 (7)	0.0465 (6)	0.0559 (7)	0.0137 (5)	-0.0053 (5)	-0.0084 (5)
O2	0.0551 (7)	0.0610(7)	0.0501 (7)	0.0157 (5)	-0.0093 (5)	-0.0147 (5)
O3	0.0589 (7)	0.0593 (7)	0.0336 (7)	0.0073 (5)	0.0046 (5)	0.0001 (5)
04	0.0612 (7)	0.0534 (7)	0.0402 (6)	0.0199 (5)	0.0026 (5)	-0.0030 (5)

Geometric parameters (Å, °)

C1-01	1.3613 (17)	С6—Н6	0.9500
C1—C2	1.380 (2)	C7—C8	1.465 (2)
C1—C3	1.402 (2)	C8—N1	1.2729 (19)
C2—C6	1.394 (2)	C8—H8	0.9500
C2—H2A	0.9500	С9—ОЗ	1.2123 (18)
C3—O2	1.3682 (18)	C9—O4	1.3366 (17)
C3—C5	1.376 (2)	C9—N2	1.3479 (19)
C4—O2	1.4256 (19)	C10—O4	1.4421 (19)
C4—H4A	0.9800	C10—H10A	0.9800
C4—H4B	0.9800	C10—H10B	0.9800
C4—H4C	0.9800	C10—H10C	0.9800
С5—С7	1.402 (2)	N1—N2	1.3837 (16)
С5—Н5	0.9500	N2—H2B	0.8800
С6—С7	1.385 (2)	O1—H1	0.8400
O1—C1—C2	119.35 (13)	C6—C7—C8	120.08 (13)
O1—C1—C3	121.23 (13)	C5—C7—C8	120.50 (13)
C2—C1—C3	119.42 (13)	N1C7	121.53 (13)
C1—C2—C6	120.28 (14)	N1—C8—H8	119.2
C1—C2—H2A	119.9	С7—С8—Н8	119.2
C6—C2—H2A	119.9	O3—C9—O4	124.73 (13)
O2—C3—C5	125.38 (13)	O3—C9—N2	125.25 (13)
O2—C3—C1	114.15 (13)	O4—C9—N2	110.01 (12)
C5—C3—C1	120.45 (13)	O4C10H10A	109.5
O2—C4—H4A	109.5	O4C10H10B	109.5
O2—C4—H4B	109.5	H10A—C10—H10B	109.5
H4A—C4—H4B	109.5	O4—C10—H10C	109.5
O2—C4—H4C	109.5	H10A—C10—H10C	109.5
Н4А—С4—Н4С	109.5	H10B-C10-H10C	109.5
H4B—C4—H4C	109.5	C8—N1—N2	115.80 (12)

C3—C5—C7 C3—C5—H5 C7—C5—H5 C7—C6—C2 C7—C6—H6 C2—C6—H6 C6—C7—C5	120.09 (13) 120.0 120.0 120.37 (14) 119.8 119.8 119.38 (13)	C9—N2—N1 C9—N2—H2B N1—N2—H2B C1—O1—H1 C3—O2—C4 C9—O4—C10	117.75 (12) 121.1 121.1 109.5 117.85 (12) 115.75 (12)
$\begin{array}{c} 01 &C1 &C2 &C6 \\ C3 &C1 &C2 &C6 \\ 01 &C1 &C3 &02 \\ 01 &C1 &C3 &02 \\ 01 &C1 &C3 &C5 \\ 02 &C3 &C5 &C7 \\ 02 &C3 &C5 &C7 \\ 01 &C2 &C6 &C7 \\ 02 &C6 &C7 &C6 \\ \end{array}$	179.17 (14) -0.3 (2) -1.5 (2) 177.96 (14) 179.93 (14) -0.6 (2) -177.24 (13) 1.1 (2) 0.7 (2) -0.1 (2) -177.83 (13) -0.8 (2)	C3—C5—C7—C8 C6—C7—C8—N1 C5—C7—C8—N1 C7—C8—N1—N2 O3—C9—N2—N1 O4—C9—N2—N1 C8—N1—N2—C9 C5—C3—O2—C4 C1—C3—O2—C4 O3—C9—O4—C10 N2—C9—O4—C10	176.91 (13) -165.42 (14) 16.9 (2) -175.85 (12) 10.3 (2) -170.91 (11) -169.52 (13) 4.0 (2) -174.49 (14) -0.3 (2) -179.09 (14)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.84	2.21	2.6695 (15)	114
0.84	2.34	3.0286 (16)	139
0.84	2.57	3.2640 (17)	140
0.88	2.19	3.0124 (16)	155
	<i>D</i> —H 0.84 0.84 0.84 0.88	D—H H…A 0.84 2.21 0.84 2.34 0.84 2.57 0.88 2.19	DHH···AD···A0.842.212.6695 (15)0.842.343.0286 (16)0.842.573.2640 (17)0.882.193.0124 (16)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x, -y-1/2, z+1/2.