Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl N'-[(E)-1-phenylethylidene]hydrazinecarboxylate

Xiang-Wei Cheng

Zhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China Correspondence e-mail: zpccxw@126.com

Received 24 June 2008; accepted 25 June 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.077; data-to-parameter ratio = 6.8.

The molecule of the title compound, $C_{10}H_{12}N_2O_2$, adopts a *trans* configuration with respect to the C=N bond. The dihedral angle between the phenyl ring and the hydrazine carboxylic acid mean plane is 25.23 (9)°. In the crystal structure, molecules are linked into chains by N-H···O hydrogen bonds and C-H··· π interactions.

Related literature

For a related structure and background, see: Cheng (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{12}N_2O_2\\ M_r = 192.22\\ Orthorhombic, \ Pca2_1\\ a = 6.6733 \ (5) \ \text{\AA}\\ b = 19.8940 \ (14) \ \text{\AA}\\ c = 7.7254 \ (5) \ \text{\AA} \end{array}$

 $V = 1025.61 (12) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 123 (2) K $0.26 \times 0.25 \times 0.23 \text{ mm}$

Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
T_{\rm min} = 0.965, T_{\rm max} = 0.968
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	
$wR(F^2) = 0.076$	
S = 1.14	
971 reflections	
143 parameters	
1 restraint	

10169 measured reflections 971 independent reflections 935 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.09 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

2	$D = \Pi$	IIA	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H10\cdots O1^{i}$	0.84 (4)	2.16 (4)	2.977 (2)	167
$C2-H2A\cdots Cg1^{ii}$	0.95	2.96	3.827 (2)	156
$C5-H5\cdots Cg1^{iii}$	0.95	2.88	3.753 (2)	156

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author acknowledges financial support from Zhejiang Police College, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2751).

References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, X.-W. (2008). Acta Cryst. E64, o1302. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2008). E64, o1384 [doi:10.1107/S1600536808019259]

Methyl N'-[(E)-1-phenylethylidene]hydrazinecarboxylate

Xiang-Wei Cheng

S1. Comment

As part of our ongoing studies of benzaldehydehydrazone derivatives (Cheng, 2008), we now report the synthesis and structure of the title compound, (I).

The title molecule (Fig. 1) adopts a *trans* configuration with respect to the C=N bond. The C9/C10/N2/O1/O2 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C1—C6 ring and the C9/C10/N2/O1/O2 plane is 25.23 (9)°. Otherwise, the bond lengths and angles ij (I) agree with those observed for (*E*)-methyl *N*'-(4-hydroxybenzylidene) hydrazinecarboxylate (Cheng, 2008).

In the crystal structure, N–H···O hydrogen bonds and C–H··· π interactions (Table 1) link the molecules into chains (Fig. 2).

S2. Experimental

Acetophenone (1.2 g, 0.01 mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 450–452 K).

S3. Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The H atoms attached to C7 and N2 were located in a difference map and their positions and U_{iso} values were freely refined. The other H atoms were geometrically placed (C—H = 0.95-0.98Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Figure 2

Crystal packing of (I), viewed approximately down the *a* axis. Dashed lines indicate hydrogen bonds.

Methyl N'-[(E)-1-phenylethylidene]hydrazinecarboxylate

Crystal data
$C_{10}H_{12}N_2O_2$
$M_r = 192.22$
Orthorhombic, <i>Pca</i> 2 ₁
Hall symbol: P 2c -2ac
a = 6.6733 (5) Å
<i>b</i> = 19.8940 (14) Å
c = 7.7254(5) Å
$V = 1025.61 (12) \text{ Å}^3$
Z = 4

F(000) = 408 $D_x = 1.245 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 971 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 123 KBlock, colourless $0.26 \times 0.25 \times 0.23 \text{ mm}$ Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{min} = 0.965, T_{max} = 0.968$ <i>Refinement</i>	10169 measured reflections 971 independent reflections 935 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -23 \rightarrow 21$ $l = -8 \rightarrow 9$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: difmap and geom
$wR(F^2) = 0.076$	H atoms treated by a mixture of independent
S = 1.14	and constrained refinement
971 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.0621P]$
143 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} = 0.048$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.11$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.09$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O2	0.8998 (2)	0.42251 (7)	0.4199 (2)	0.0606 (4)	
01	0.9765 (2)	0.37588 (7)	0.1622 (2)	0.0563 (4)	
N2	0.7026 (3)	0.34290 (8)	0.3197 (2)	0.0491 (4)	
N1	0.6763 (2)	0.28503 (7)	0.2224 (2)	0.0472 (4)	
C6	0.5017 (3)	0.18464 (9)	0.1633 (3)	0.0467 (4)	
C8	0.5153 (3)	0.25135 (9)	0.2518 (2)	0.0471 (4)	
C9	0.8707 (3)	0.37937 (9)	0.2891 (3)	0.0448 (4)	
C4	0.6331 (3)	0.16677 (11)	0.0313 (4)	0.0632 (6)	
H4	0.7287	0.1986	-0.0087	0.076*	
C5	0.3635 (3)	0.13717 (10)	0.2157 (3)	0.0610 (5)	
H5	0.2700	0.1480	0.3041	0.073*	
C7	0.3524 (4)	0.27326 (16)	0.3717 (4)	0.0703 (7)	
C2	0.6270 (4)	0.10375 (11)	-0.0424 (4)	0.0688 (7)	
H2A	0.7188	0.0926	-0.1320	0.083*	
C1	0.4902 (4)	0.05692 (10)	0.0119 (4)	0.0634 (6)	
H1	0.4865	0.0135	-0.0393	0.076*	

C10	1.0751 (3)	0.46413 (12)	0.4084 (4)	0.0729 (7)
H10A	1.0816	0.4937	0.5096	0.109*
H10B	1.0684	0.4914	0.3029	0.109*
H10C	1.1949	0.4357	0.4048	0.109*
C3	0.3594 (4)	0.07359 (11)	0.1404 (4)	0.0665 (6)
H3	0.2642	0.0414	0.1792	0.080*
H10	0.642 (4)	0.3456 (12)	0.414 (5)	0.074 (8)*
H11	0.239 (7)	0.2525 (14)	0.336 (5)	0.100 (9)*
H12	0.347 (4)	0.3212 (16)	0.373 (5)	0.092 (9)*
H13	0.400 (8)	0.261 (2)	0.480 (9)	0.16 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0663 (8)	0.0588 (8)	0.0566 (9)	-0.0113 (7)	0.0026 (8)	-0.0173 (7)
01	0.0578 (7)	0.0621 (9)	0.0488 (8)	-0.0081 (6)	0.0045 (7)	-0.0092 (7)
N2	0.0621 (10)	0.0459 (8)	0.0394 (9)	-0.0059 (7)	0.0030 (8)	-0.0046 (7)
N1	0.0612 (8)	0.0410 (7)	0.0393 (8)	-0.0045 (6)	-0.0020 (7)	-0.0006 (7)
C6	0.0555 (10)	0.0438 (9)	0.0408 (10)	-0.0039 (8)	-0.0054 (8)	0.0032 (8)
C8	0.0562 (10)	0.0469 (9)	0.0381 (10)	-0.0007 (8)	-0.0028 (8)	0.0023 (8)
C9	0.0507 (9)	0.0410 (9)	0.0428 (10)	0.0029 (7)	-0.0068 (8)	-0.0024 (8)
C4	0.0729 (13)	0.0512 (11)	0.0656 (14)	-0.0112 (10)	0.0152 (12)	-0.0035 (11)
C5	0.0684 (12)	0.0596 (11)	0.0549 (12)	-0.0151 (10)	0.0044 (10)	-0.0012 (11)
C7	0.0636 (13)	0.0744 (17)	0.0728 (18)	-0.0115 (12)	0.0119 (12)	-0.0210 (14)
C2	0.0804 (14)	0.0563 (12)	0.0698 (16)	-0.0010 (11)	0.0110 (13)	-0.0104 (12)
C1	0.0815 (14)	0.0429 (11)	0.0660 (14)	-0.0022 (10)	-0.0125 (12)	-0.0032 (10)
C10	0.0673 (13)	0.0730 (15)	0.0786 (16)	-0.0169 (11)	-0.0033 (13)	-0.0243 (14)
C3	0.0798 (13)	0.0547 (12)	0.0650 (15)	-0.0209 (10)	-0.0032 (12)	0.0034 (11)

Geometric parameters (Å, °)

02—C9	1.340 (2)	C5—C3	1.392 (3)	
O2—C10	1.436 (2)	С5—Н5	0.9500	
O1—C9	1.211 (3)	C7—H11	0.91 (4)	
N2—C9	1.357 (2)	С7—Н12	0.95 (3)	
N2—N1	1.386 (2)	С7—Н13	0.93 (6)	
N2—H10	0.84 (3)	C2—C1	1.370 (3)	
N1—C8	1.286 (2)	C2—H2A	0.9500	
C6—C5	1.381 (3)	C1—C3	1.363 (4)	
C6—C4	1.391 (3)	C1—H1	0.9500	
C6—C8	1.496 (3)	C10—H10A	0.9800	
C8—C7	1.494 (3)	C10—H10B	0.9800	
C4—C2	1.378 (3)	C10—H10C	0.9800	
C4—H4	0.9500	С3—Н3	0.9500	
C9—O2—C10	116.16 (17)	C8—C7—H12	109 (2)	
C9—N2—N1	117.04 (17)	H11—C7—H12	115 (3)	
C9—N2—H10	121.1 (18)	С8—С7—Н13	103 (3)	

N1—N2—H10	117.8 (18)	H11—C7—H13	116 (4)
C8—N1—N2	116.30 (16)	Н12—С7—Н13	106 (4)
C5—C6—C4	117.5 (2)	C1—C2—C4	120.8 (2)
C5—C6—C8	120.90 (19)	C1—C2—H2A	119.6
C4—C6—C8	121.57 (17)	C4—C2—H2A	119.6
N1—C8—C7	124.42 (19)	C3—C1—C2	119.0 (2)
N1—C8—C6	115.63 (16)	C3—C1—H1	120.5
C7—C8—C6	119.88 (18)	C2-C1-H1	120.5
O1—C9—O2	124.28 (17)	O2-C10-H10A	109.5
O1—C9—N2	126.33 (18)	O2-C10-H10B	109.5
O2—C9—N2	109.35 (17)	H10A—C10—H10B	109.5
C2—C4—C6	121.1 (2)	O2—C10—H10C	109.5
C2—C4—H4	119.4	H10A—C10—H10C	109.5
C6—C4—H4	119.4	H10B-C10-H10C	109.5
C6—C5—C3	120.8 (2)	C1—C3—C5	120.8 (2)
С6—С5—Н5	119.6	С1—С3—Н3	119.6
С3—С5—Н5	119.6	С5—С3—Н3	119.6
C8—C7—H11	107 (2)		
C9—N2—N1—C8	-179.38 (17)	N1—N2—C9—O2	-164.20 (15)
N2—N1—C8—C7	4.7 (3)	C5—C6—C4—C2	-0.9 (3)
N2—N1—C8—C6	-172.29 (15)	C8—C6—C4—C2	176.1 (2)
C5-C6-C8-N1	164.0 (2)	C4—C6—C5—C3	1.1 (3)
C4—C6—C8—N1	-12.9 (3)	C8—C6—C5—C3	-175.9 (2)
C5—C6—C8—C7	-13.1 (3)	C6—C4—C2—C1	0.3 (4)
C4—C6—C8—C7	170.0 (3)	C4—C2—C1—C3	0.0 (4)
C10-O2-C9-O1	-3.3 (3)	C2—C1—C3—C5	0.2 (4)
C10-02-C9-N2	178.85 (18)	C6—C5—C3—C1	-0.8 (4)
N1—N2—C9—O1	18.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
N2—H10····O1 ⁱ	0.84 (4)	2.16 (4)	2.977 (2)	167
C2—H2 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱ	0.95	2.96	3.827 (2)	156
C5—H5···Cg1 ⁱⁱⁱ	0.95	2.88	3.753 (2)	156

Symmetry codes: (i) -*x*+3/2, *y*, *z*+1/2; (ii) -*x*+3/2, *y*, *z*-1/2; (iii) -*x*+1/2, *y*, *z*+1/2.