organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4'-Formylbenzo-15-crown-5

Conrad Fischer,^a Stefanie F. Helas,^a Wilhelm Seichter,^a Edwin Weber^a and Bakhtiyar T. Ibragimov^b*

^aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and ^bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H Abdullaev 83, Tashkent 100125, Uzbekistan Correspondence e-mail: bahtier@academy.uzsci.net

Received 18 April 2008; accepted 15 July 2008

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.001 Å; R factor = 0.037; wR factor = 0.116; data-to-parameter ratio = 23.8.

In the title compound (systematic name: 17-formyl-2,5,8,11,14pentaoxabicyclo[13.4.0]nonadeca-15,17,19-triene), $C_{15}H_{20}O_6$, the 15-crown-5 ring adopts a twisted conformation. The formyl group is coplanar with the benzene ring. The crystal packing is stabilized by $C-H\cdots O$ interactions involving the C=O group and ether O atoms as acceptors and methylene CH groups as donors.

Related literature

The unsubstituted benzocrown ether was characterized by Pedersen (1967) and its structure was described by Hanson (1978), while Rogers and co-workers reported 4'-amino- and 4'-nitro-substituted compounds (Rogers, Huggins *et al.*, 1992; Rogers, Henry & Rollins, 1992). For the synthesis of the title compound, see: Hyde *et al.* (1978).

Experimental

Crystal data $C_{15}H_{20}O_6$ $M_r = 296.31$ Monoclinic, $P2_1/c$ a = 18.0091 (8) Å

b = 9.6678 (4) Å
c = 8.1028 (3) Å
$\beta = 91.262 \ (2)^{\circ}$
$V = 1410.42 (10) \text{ Å}^3$

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min} = 0.857, T_{\max} = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 190 parameters $wR(F^2) = 0.116$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.28$ e Å $^{-3}$ 4523 reflections $\Delta \rho_{min} = -0.22$ e Å $^{-3}$

T = 90 (2) K $0.60 \times 0.39 \times 0.05 \text{ mm}$

 $R_{\rm int}=0.026$

18190 measured reflections 4523 independent reflections

3716 reflections with $I > 2\sigma(I)$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13B\cdots O4^{i}$	0.99	2.55	3.3351 (10)	137
$C14-H14A\cdots O5^{ii}$	0.99	2.66	3.1700 (12)	112
$C8-H8A\cdots O1^{iii}$	0.99	2.66	3.3775 (13)	130
Symmetry codes: (i)	$-\mathbf{r} \pm 1 \mathbf{v} \pm 1$	$-\pi \pm \frac{1}{1}$ (ii)	$x = y \pm \frac{3}{2} = \frac{1}{2}$ (iii	i) $-r - n \pm 1$

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Financial support from the German Federal Ministry of Economics and Technology (BMWi) under grant No. 16IN0218 'ChemoChips' is gratefully acknowledged. We thank Dr Tobias Gruber for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2144).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hanson, I. R. (1978). Acta Cryst. B34, 1026-1028.
- Hyde, E. M., Shaw, B. L. & Shepherd, I. (1978). J. Chem. Soc. Dalton Trans. pp. 1696–1705.
- Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
- Rogers, R. D., Henry, R. F. & Rollins, A. N. (1992). J. Inclusion Phenom. Macrocycl. Chem. 13, 219–232.
- Rogers, R. D., Huggins, S. E., Henry, R. F. & Bond, A. H. (1992). Supramol. Chem. 1, 59–63.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1556 [doi:10.1107/S1600536808022186]

4'-Formylbenzo-15-crown-5

Conrad Fischer, Stefanie F. Helas, Wilhelm Seichter, Edwin Weber and Bakhtiyar T. Ibragimov

S1. Comment

The title compound is a derivative of benzo-15-crown-5 (Pedersen, 1967). It was prepared as part of our studies concerning fluorogenic receptor molecules with possible analytical applications. The O-C-C-O torsion angles within the polyether ring are (\pm)gauche [69.34° (10), -71.10°(8), -65.61°(11)) and anti (168.42°(9)]) resulting in a twisted crown ether conformation. In the title molecule, the dihedral angle between the aromatic ring plane and the mean plane of ether oxygen atoms is 20.67 (5)°. Worth to note, the torsion angle C3—C4—C7—O1 is 179.75 (10)°, indicating only a very small twist of the formyl group relative to the aromatic ring. Thus, in agreement with a previous report (Rogers, Huggins *et al.*, 1992; Rogers, Henry & Rollins, 1992), the substituent on the benzene ring has negligible influence on the conformation of the benzo-15-crown-5 (Hanson, 1978). Owing to the absence of strong hydrogen bond donors, the crystal packing is stabilized by weak C—H···O hydrogen bonds, involving the O atoms of the crown ether and C==O group as acceptors, and the methylene C-H groups as donors (Table 1). In addition, π — π interaction has also been detected, resulting in a stacking of the molecules along the crystallographic *c* axis with a distance of 4.211 (2) Å between the centroids of two neighboring aromatic rings (Fig.2).

S2. Experimental

The title compound, 4'-formylbenzo-15-crown-5, was synthesized from benzo-15-crown-5 (Pedersen, 1967) which was reacted with *N*-methylformanilide and phoshoryl chloride (Hyde *et al.*, 1978). Colourless needles of the title compound suitable for X-ray diffraction analysis were obtained by slow cooling and evaporation of a solution of *n*-heptane. Fast cooling of the solution resulted in the formation of an orthorhombic polymorph of the title compound.

S3. Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 -0.99 Å, and U_{iso} =1.2–1.5 U_{eq} (C).

Figure 1

Molecular structure of the title compound with ellipsoids drawn at the 50% probability level.

Figure 2

Packing diagram, viewed down the c axis.

17-Formyl-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-15,17,19-triene

Crystal data

C₁₅H₂₀O₆ $M_r = 296.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 18.0091 (8) Å b = 9.6678 (4) Å c = 8.1028 (3) Å $\beta = 91.262$ (2)° V = 1410.42 (10) Å³ Z = 4 F(000) = 632 $D_x = 1.395 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9008 reflections $\theta = 2.4-33.3^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 90 KPlate, colourless $0.60 \times 0.39 \times 0.05 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD	18190 measured reflections
diffractometer	4523 independent reflections
Radiation source: fine-focus sealed tube	3716 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.027$
φ and ω scans	$\theta_{max} = 31.1^{\circ}, \theta_{min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 23$
(<i>SADABS</i> ; Sheldrick, 2004)	$k = -14 \rightarrow 12$
$T_{\min} = 0.857, T_{\max} = 0.995$	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.00	H-atom parameters constrained
4523 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0681P)^2 + 0.3911P]$
190 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.03932 (4)	0.76211 (8)	0.74777 (10)	0.02453 (17)	
O2	0.18803 (4)	0.54926 (7)	0.45384 (9)	0.01606 (14)	
03	0.25972 (4)	0.29979 (8)	0.55829 (10)	0.02217 (17)	
O4	0.42078 (4)	0.40116 (8)	0.32578 (9)	0.01872 (15)	
05	0.41719 (4)	0.72035 (7)	0.34545 (8)	0.01730 (15)	
O6	0.26420 (4)	0.75557 (7)	0.36194 (9)	0.01609 (14)	
C1	0.15926 (5)	0.67447 (9)	0.49388 (11)	0.01361 (17)	
C2	0.09428 (5)	0.69566 (10)	0.57629 (11)	0.01540 (17)	
H2	0.0650	0.6190	0.6084	0.018*	
C3	0.07132 (5)	0.83094 (10)	0.61289 (11)	0.01618 (18)	
C4	0.11385 (6)	0.94299 (10)	0.56708 (12)	0.01868 (19)	
H4	0.0984	1.0340	0.5940	0.022*	
C5	0.17961 (6)	0.92303 (10)	0.48118 (12)	0.01756 (18)	
H5	0.2085	1.0002	0.4487	0.021*	
C6	0.20225 (5)	0.78964 (9)	0.44389 (11)	0.01396 (17)	
C7	0.00239 (5)	0.85268 (11)	0.70205 (12)	0.02018 (19)	

H7	-0.0109	0.9455	0.7262	0.024*
C8	0.14823 (5)	0.43015 (9)	0.50768 (13)	0.01689 (18)
H8A	0.0984	0.4269	0.4539	0.020*
H8B	0.1422	0.4329	0.6288	0.020*
С9	0.19286 (5)	0.30593 (10)	0.46010 (14)	0.0203 (2)
H9A	0.1633	0.2209	0.4769	0.024*
H9B	0.2052	0.3116	0.3418	0.024*
C10	0.32608 (5)	0.28738 (10)	0.46689 (14)	0.0204 (2)
H10A	0.3193	0.2140	0.3827	0.025*
H10B	0.3672	0.2589	0.5425	0.025*
C11	0.34702 (5)	0.42146 (10)	0.38202 (12)	0.01686 (18)
H11A	0.3126	0.4408	0.2879	0.020*
H11B	0.3453	0.4999	0.4604	0.020*
C12	0.44456 (5)	0.49820 (11)	0.20613 (12)	0.01883 (19)
H12A	0.4024	0.5185	0.1295	0.023*
H12B	0.4844	0.4554	0.1410	0.023*
C13	0.47328 (5)	0.63335 (11)	0.27812 (12)	0.01947 (19)
H13A	0.5106	0.6122	0.3662	0.023*
H13B	0.4988	0.6851	0.1905	0.023*
C14	0.37553 (5)	0.79418 (10)	0.22314 (11)	0.01733 (18)
H14A	0.3570	0.7297	0.1367	0.021*
H14B	0.4074	0.8642	0.1705	0.021*
C15	0.31127 (5)	0.86389 (10)	0.30465 (11)	0.01632 (18)
H15A	0.3291	0.9217	0.3982	0.020*
H15B	0.2840	0.9236	0.2247	0.020*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0197 (3)	0.0272 (4)	0.0269 (4)	-0.0004 (3)	0.0049 (3)	-0.0043 (3)
O2	0.0180 (3)	0.0094 (3)	0.0211 (3)	-0.0007 (2)	0.0051 (2)	0.0003 (2)
03	0.0173 (3)	0.0243 (4)	0.0250 (4)	0.0025 (3)	0.0044 (3)	0.0089 (3)
O4	0.0157 (3)	0.0198 (3)	0.0208 (3)	0.0011 (2)	0.0037 (2)	0.0046 (3)
05	0.0187 (3)	0.0205 (3)	0.0127 (3)	-0.0001 (3)	0.0001 (2)	0.0022 (2)
06	0.0177 (3)	0.0122 (3)	0.0186 (3)	-0.0023 (2)	0.0052 (2)	0.0007 (2)
C1	0.0164 (4)	0.0108 (4)	0.0137 (4)	0.0004 (3)	-0.0004 (3)	0.0002 (3)
C2	0.0164 (4)	0.0140 (4)	0.0158 (4)	-0.0003 (3)	0.0005 (3)	0.0001 (3)
C3	0.0175 (4)	0.0163 (4)	0.0148 (4)	0.0023 (3)	-0.0001 (3)	-0.0014 (3)
C4	0.0233 (4)	0.0129 (4)	0.0199 (4)	0.0028 (3)	0.0012 (3)	-0.0017 (3)
C5	0.0222 (4)	0.0119 (4)	0.0186 (4)	-0.0003 (3)	0.0011 (3)	0.0007 (3)
C6	0.0159 (4)	0.0133 (4)	0.0127 (4)	-0.0004 (3)	0.0002 (3)	0.0006 (3)
C7	0.0195 (4)	0.0209 (5)	0.0201 (4)	0.0039 (3)	0.0009 (3)	-0.0053 (4)
C8	0.0161 (4)	0.0112 (4)	0.0235 (5)	-0.0019 (3)	0.0035 (3)	0.0015 (3)
C9	0.0171 (4)	0.0124 (4)	0.0314 (5)	-0.0006 (3)	0.0021 (4)	-0.0001 (4)
C10	0.0169 (4)	0.0171 (4)	0.0274 (5)	0.0023 (3)	0.0044 (3)	0.0054 (4)
C11	0.0162 (4)	0.0154 (4)	0.0191 (4)	-0.0003 (3)	0.0033 (3)	-0.0001 (3)
C12	0.0193 (4)	0.0218 (5)	0.0156 (4)	0.0005 (3)	0.0043 (3)	0.0017 (3)
C13	0.0156 (4)	0.0230 (5)	0.0199 (4)	-0.0019 (3)	0.0023 (3)	0.0025 (4)

supporting information

C14	0.0185 (4)	0.0208 (4)	0.0127 (4)	-0.0019 (3)	0.0009 (3)	0.0043 (3)
C15	0.0194 (4)	0.0141 (4)	0.0156 (4)	-0.0040 (3)	0.0008 (3)	0.0027 (3)

Geometric parameters (Å, °)

01—C7	1.2168 (13)	С7—Н7	0.9500
O2—C1	1.3589 (11)	C8—C9	1.5001 (13)
O2—C8	1.4296 (11)	C8—H8A	0.9900
O3—C10	1.4249 (12)	C8—H8B	0.9900
О3—С9	1.4297 (13)	С9—Н9А	0.9900
O4—C12	1.4219 (12)	С9—Н9В	0.9900
O4—C11	1.4275 (11)	C10—C11	1.5189 (13)
O5—C14	1.4219 (12)	C10—H10A	0.9900
O5—C13	1.4318 (12)	C10—H10B	0.9900
O6—C6	1.3516 (11)	C11—H11A	0.9900
O6—C15	1.4311 (11)	C11—H11B	0.9900
C1—C2	1.3755 (12)	C12—C13	1.5171 (15)
C1—C6	1.4202 (12)	C12—H12A	0.9900
C2—C3	1.4052 (13)	C12—H12B	0.9900
С2—Н2	0.9500	C13—H13A	0.9900
C3—C4	1.3822 (13)	C13—H13B	0.9900
С3—С7	1.4651 (13)	C14—C15	1.5044 (13)
C4—C5	1.4003 (13)	C14—H14A	0.9900
C4—H4	0.9500	C14—H14B	0.9900
C5—C6	1.3877 (13)	C15—H15A	0.9900
С5—Н5	0.9500	C15—H15B	0.9900
C1 $O2$ $C9$	116(64(7))		108.2
C1 = 02 = C8	110.04 (7)	H9A - C9 - H9B	108.2
C10-03-C9	114.84 (8)	03 - C10 - C11	112.51 (8)
C12-04-C11	115.04 (7)	C_{11} C_{10} H_{10A}	109.1
C14-05-C13	113.27(7)	CII = CI0 = HI0A	109.1
$C_0 = -0_0 = -C_{15}$	118.85(7)	$O_3 = C_{10} = H_{10B}$	109.1
02C1C2	123.30(8)		107.9
02-01-06	114.00 (8)	$\begin{array}{c} \text{HI0A} \\ \text{CI0} \\ \text{HI0B} \\ \text{HI0B} \\ $	107.8
$C_2 = C_1 = C_0$	119.78 (8)	04 - C11 - C10	105.62 (7)
C1 - C2 - C3	119.90 (9)	C10 C11 H11A	110.6
C1 - C2 - H2	120.0	CIO-CII-HIIA	110.6
$C_3 - C_2 - H_2$	120.0	C10 C11 U11D	110.6
C4 - C3 - C2	120.36 (9)		10.0
C4 - C3 - C7	120.05 (9)		108.7
$C_2 = C_3 = C_7$	119.01 (9)	04 - C12 - C13	114.29 (8)
$C_3 = C_4 = C_5$	120.35 (9)	O4-C12-H12A	108.7
C_{3} — C_{4} — H_{4}	119.8	C13— $C12$ — $H12A$	108.7
C_{4} C_{4} C_{4}	119.8	O4 - C12 - H12B	100.7
$C_0 = C_3 = C_4$	119.47 (9)	$\begin{array}{c} \text{C13} \\ \text{C13} \\ \text{C12} \\ \text{C13} \\ C13$	100.7
$C_0 = C_3 = \Pi_3$	120.3	$\begin{array}{c} \Pi 12A - \Box 12 - \Pi 12B \\ \Box 5 - \Box 12 - \Box 12 \\ \Box 12 \\ \Box 12 - \Box 12 \\ \Box$	107.0
С4—СЭ—НЭ Об. Сб. Сб	120.3	05 - 013 - 012	114.52 (8)
00-00-03	123.07 (8)	03-013-HI3A	108.0

O6—C6—C1	114.21 (8)	C12—C13—H13A	108.6
C5—C6—C1	120.12 (8)	O5—C13—H13B	108.6
O1—C7—C3	125.61 (10)	С12—С13—Н13В	108.6
O1—C7—H7	117.2	H13A—C13—H13B	107.6
С3—С7—Н7	117.2	O5—C14—C15	108.54 (7)
O2—C8—C9	106.94 (7)	O5—C14—H14A	110.0
O2—C8—H8A	110.3	C15—C14—H14A	110.0
С9—С8—Н8А	110.3	O5—C14—H14B	110.0
O2—C8—H8B	110.3	C15—C14—H14B	110.0
С9—С8—Н8В	110.3	H14A—C14—H14B	108.4
H8A—C8—H8B	108.6	O6—C15—C14	106.35 (7)
O3—C9—C8	109.85 (8)	O6—C15—H15A	110.5
О3—С9—Н9А	109.7	C14—C15—H15A	110.5
С8—С9—Н9А	109.7	O6—C15—H15B	110.5
О3—С9—Н9В	109.7	C14—C15—H15B	110.5
С8—С9—Н9В	109.7	H15A—C15—H15B	108.7
C8—O2—C1—C2	-2.33 (13)	C2-C1-C6-C5	1.40 (14)
C8—O2—C1—C6	177.50 (8)	C4—C3—C7—O1	179.75 (10)
O2—C1—C2—C3	178.83 (9)	C2-C3-C7-O1	-1.06 (16)
C6—C1—C2—C3	-0.99 (14)	C1—O2—C8—C9	-176.14 (8)
C1—C2—C3—C4	-0.25 (14)	C10—O3—C9—C8	-127.42 (9)
C1—C2—C3—C7	-179.43 (9)	O2—C8—C9—O3	69.34 (10)
C2—C3—C4—C5	1.12 (15)	C9—O3—C10—C11	73.81 (11)
C7—C3—C4—C5	-179.71 (9)	C12—O4—C11—C10	164.16 (8)
C3—C4—C5—C6	-0.71 (15)	O3—C10—C11—O4	168.42 (8)
C15—O6—C6—C5	-1.01 (14)	C11—O4—C12—C13	82.80 (10)
C15—O6—C6—C1	179.48 (8)	C14—O5—C13—C12	-78.28 (10)
C4—C5—C6—O6	179.97 (9)	O4—C12—C13—O5	-71.10 (11)
C4—C5—C6—C1	-0.54 (14)	C13—O5—C14—C15	171.27 (8)
O2—C1—C6—O6	1.10 (12)	C6	178.69 (8)
C2-C1-C6-O6	-179.06 (8)	O5-C14-C15-O6	-65.61 (9)
O2—C1—C6—C5	-178.45 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H··· A
C13—H13 <i>B</i> ····O4 ⁱ	0.99	2.55	3.3351 (10)	137
C14—H14 <i>A</i> ···O5 ⁱⁱ	0.99	2.66	3.1700 (12)	112
C8—H8A…O1 ⁱⁱⁱ	0.99	2.66	3.3775 (13)	130

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) -*x*, -*y*+1, -*z*+1.