

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Bromo-3-hydroxy-4-oxo-2-phenyl-4*H*chromene-8-carboxylic acid dimethylformamide disolvate

Hui-Liang Wen,^{a,b}* Dan-Dan Chen^a and Chong-Bo Liu^c

^aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China, ^bState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, and ^cCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China Correspondence e-mail: hlwen70@163.com

Received 17 June 2008; accepted 26 June 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.098; data-to-parameter ratio = 14.3.

In the title compound, $C_{16}H_9BrO_5 \cdot 2C_3H_7NO$, the chromene ring system is essentially planar. The two dimethylformamide solvent molecules are linked by intermolecular $O-H\cdots O$ hydrogen bonds to the 6-bromo-3-hydroxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid molecules.

Related literature

For related literature, see: Gills *et al.* (1980); Liu *et al.* (2007); Jin & Xiao (2005); Kagechika *et al.* (1989); Valenti *et al.* (1998); Walenta *et al.* (1991); Zwaagstra *et al.* (1996, 1998*a*,*b*).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_9BrO_5{\cdot}2C_3H_7NO\\ M_r = 507.33\\ Monoclinic, P2_1/n\\ a = 10.489 \ (2) \ \AA\\ b = 11.470 \ (2) \ \AA\\ c = 18.803 \ (4) \ \AA\\ \beta = 92.127 \ (3)^\circ \end{array}$

$V = 2260.6 (8) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 1.86 \text{ mm}^{-1}$
T = 294 (2) K
$0.49 \times 0.38 \times 0.17 \text{ mm}$

organic compounds

14295 measured reflections

 $R_{\rm int} = 0.028$

4203 independent reflections

2889 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.462, T_{max} = 0.742
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	294 parameters
$vR(F^2) = 0.098$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
203 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

		/			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O2-H2A\cdots O6$	0.82	1.78	2.598 (2)	173	
$O5-H5\cdots O7$	0.82	1.89	2.627 (2)	149	
$O5-H5\cdots O4$	0.82	2.32	2.741 (3)	113	

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson,1996); *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work is supported by the National Natural Science Foundation of China (20662007) and the Key Laboratory Open Foundation of Food Science of the Ministry of Education, Nanchang University (NCU200407).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2358).

References

- Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gills, P. M., Haemers, A. & Bollaert, W. (1980). Eur. J. Med. Chem. Chim. Ther. 15, 185–190.
- Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198-o1199.
- Kagechika, H., Kawachi, E., Hashimoto, Y. & Shudo, K. (1989). J. Med. Chem. 32, 834–840.
- Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, 090–091.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valenti, P., Bisi, A., Rampa, A., Gobbi, S., Belluti, F., Da Re, P., Cima, L. & Carrara, M. (1998). Anti Cancer Drug Des. 13, 881–892.
- Walenta, R., Muller-Peddinghaus, R., Ban, I., Wurl, M. & Preuschoff, U. (1991). US Patent 5 013 852.
- Zwaagstra, M. E., Korthouwer, R. E. M., Timmerman, H. & Zhang, M.-Q. (1998a). Eur J. Med. Chem. 33, 95–102.
- Zwaagstra, M. E., Timmerman, H., Abdoelgafoe, R. S. & Zhang, M.-Q. (1996). *Eur J. Med. Chem.* **31**, 861–874.
- Zwaagstra, M. E., Zhang, M., Timmermann, H., Tamura, M. & Wada, Y. (1998b). European Patent 8 345 10.

supporting information

Acta Cryst. (2008). E64, o1415 [doi:10.1107/S1600536808019454]

6-Bromo-3-hydroxy-4-oxo-2-phenyl-4*H*-chromene-8-carboxylic acid dimethylformamide disolvate

Hui-Liang Wen, Dan-Dan Chen and Chong-Bo Liu

S1. Comment

Flavonoids are widely present in nature, which have potential biological activity such as antiviral (Zwaagstra *et al.*, 1996; Zwaagstra *et al.*, 1998*a*), anticancer (Valenti *et al.*, 1998), treating leukemia (Kagechika *et al.*, 1989), antihypertensive, antimicrobial (Gills *et al.*, 1980; Walenta *et al.*, 1991) *et al.* Due to the varieties of its biological activity, the structure-activity relationships study of flavonoids carboxylic acids has been the hot spot all along. In a continuation of our recent studies of flavonoids carboxylic acids (Liu *et al.*, 2007), we report here the title compound, $C_{16}H_9BrO_5$ — $C_6H_{14}N_2O_2$, (I).

In compound (I), the chromene molecule is roughly planar, with a mean deviation of 0.0521 Å. The dihedral angle between the chromene ring and the phenyl ring is 7.5 (2)°. Two O—H…O hydrogen bonds (Table 1, Fig. 1) involving the H atoms of hydroxyl group and carboxylic acid group connect the dimethylformamide molecules and 6-bromo-3-hydroxy-4-oxo-2-phenyl-4*H*-chromene-8-carboxylic acid.

S2. Experimental

The title compound was synthesized by the ring closure of 5'-bromo-3'-carboxy-2'-hydroxychalcone under the existence of a certain oxidant, according to the route published by Zwaagstra *et al.* (Zwaagstra *et al.*, 1998*b*). Single crystals of (I) suitable for X-ray diffraction analysis were obtained from a solution in *N*,*N*-dimethylformamide.

S3. Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ and O.

Figure 1

The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii. The hydrogen bonds are shown as dashed lines.

6-Bromo-3-hydroxy-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid dimethylformamide solvate

Crystal data

C₁₆H₉BrO₅·2C₃H₇NO $M_r = 507.33$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.489 (2) Å b = 11.470 (2) Å c = 18.803 (4) Å $\beta = 92.127$ (3)° V = 2260.6 (8) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.462, T_{\max} = 0.742$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.098$ S = 1.004203 reflections F(000) = 1040 $D_x = 1.491 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3645 reflections $\theta = 2.6-23.5^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$ T = 294 KBlock, yellow $0.49 \times 0.38 \times 0.17 \text{ mm}$

14295 measured reflections 4203 independent reflections 2889 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -12 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -22 \rightarrow 22$

294 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 0.6824P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.017$
	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.06013 (3)	0.88028 (2)	0.582768 (19)	0.07113 (15)
01	-0.0368 (2)	0.44074 (18)	0.65009 (12)	0.0911 (8)
O2	0.06856 (17)	0.31912 (16)	0.58290 (9)	0.0577 (5)
H2A	0.0279	0.2704	0.6046	0.087*
O3	0.24560 (16)	0.40314 (13)	0.50359 (9)	0.0460 (4)
O4	0.41242 (18)	0.68075 (16)	0.41187 (10)	0.0652 (6)
05	0.49923 (18)	0.46087 (15)	0.38343 (11)	0.0610 (5)
Н5	0.5303	0.5237	0.3727	0.091*
C1	0.1082 (2)	0.5216 (2)	0.57023 (13)	0.0439 (6)
C2	0.0684 (2)	0.6327 (2)	0.58763 (14)	0.0517 (7)
H2	0.0041	0.6416	0.6199	0.062*
C3	0.1222 (2)	0.7312 (2)	0.55796 (14)	0.0495 (7)
C4	0.2183 (2)	0.7207 (2)	0.51073 (14)	0.0485 (6)
H4	0.2544	0.7869	0.4912	0.058*
C5	0.2615 (2)	0.6101 (2)	0.49221 (13)	0.0422 (6)
C6	0.2067 (2)	0.5112 (2)	0.52147 (12)	0.0411 (6)
C7	0.3634 (2)	0.5972 (2)	0.44191 (14)	0.0456 (6)
C8	0.4030 (2)	0.4787 (2)	0.42805 (13)	0.0443 (6)
C9	0.3421 (2)	0.3864 (2)	0.45729 (13)	0.0429 (6)
C10	0.0406 (3)	0.4222 (2)	0.60528 (14)	0.0518 (7)
C11	0.3633 (2)	0.2608 (2)	0.44578 (13)	0.0442 (6)
C12	0.4628 (3)	0.2186 (3)	0.40674 (19)	0.0821 (11)
H12	0.5188	0.2708	0.3865	0.099*
C13	0.4800 (4)	0.1012 (3)	0.3976 (2)	0.0944 (13)
H13	0.5482	0.0752	0.3716	0.113*
C14	0.3998 (3)	0.0217 (2)	0.42550 (17)	0.0686 (9)
H14	0.4114	-0.0578	0.4184	0.082*
C15	0.3021 (3)	0.0619 (2)	0.46419 (18)	0.0736 (9)
H15	0.2464	0.0089	0.4839	0.088*
C16	0.2840 (3)	0.1793 (2)	0.47476 (16)	0.0629 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	0.2169	0.2041	0.5020	0.075*
N1	-0.2166 (3)	0.1136 (2)	0.71663 (13)	0.0631 (7)
O6	-0.0563 (2)	0.15290 (18)	0.64329 (11)	0.0722 (6)
C17	-0.1516 (3)	0.1828 (3)	0.67549 (16)	0.0626 (8)
H17	-0.1792	0.2595	0.6703	0.075*
C18	-0.3276 (4)	0.1567 (3)	0.7524 (2)	0.0983 (13)
H18A	-0.3072	0.1649	0.8024	0.147*
H18B	-0.3968	0.1026	0.7456	0.147*
H18C	-0.3521	0.2311	0.7329	0.147*
C19	-0.1781 (3)	-0.0070 (3)	0.72818 (18)	0.0840 (10)
H19A	-0.2251	-0.0565	0.6955	0.126*
H19B	-0.1953	-0.0294	0.7761	0.126*
H19C	-0.0885	-0.0147	0.7206	0.126*
N2	0.7254 (2)	0.78411 (18)	0.28823 (12)	0.0554 (6)
07	0.6435 (2)	0.60874 (17)	0.31631 (12)	0.0773 (7)
C20	0.6539 (3)	0.7141 (3)	0.32545 (16)	0.0642 (8)
H20	0.6076	0.7473	0.3615	0.077*
C21	0.7365 (4)	0.9061 (3)	0.3036 (3)	0.1108 (15)
H21A	0.6909	0.9239	0.3456	0.166*
H21B	0.7012	0.9503	0.2642	0.166*
H21C	0.8248	0.9260	0.3113	0.166*
C22	0.8037 (3)	0.7385 (3)	0.23293 (16)	0.0746 (9)
H22A	0.8853	0.7160	0.2532	0.112*
H22B	0.8151	0.7974	0.1975	0.112*
H22C	0.7626	0.6718	0.2114	0.112*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
Br1	0.0723 (2)	0.04462 (18)	0.0983 (3)	0.00670 (14)	0.02689 (18)	-0.00929 (15)
01	0.1120 (19)	0.0564 (13)	0.1106 (18)	-0.0065 (12)	0.0794 (16)	-0.0021 (12)
02	0.0641 (13)	0.0440 (11)	0.0672 (12)	-0.0095 (9)	0.0321 (10)	0.0013 (9)
O3	0.0491 (10)	0.0358 (9)	0.0546 (10)	-0.0028 (7)	0.0219 (8)	0.0004 (7)
O4	0.0696 (14)	0.0428 (11)	0.0860 (14)	-0.0029 (9)	0.0389 (11)	0.0106 (10)
05	0.0621 (13)	0.0421 (10)	0.0814 (13)	-0.0017 (9)	0.0392 (10)	0.0058 (9)
C1	0.0440 (15)	0.0429 (14)	0.0454 (14)	-0.0045 (11)	0.0098 (12)	0.0000 (11)
C2	0.0483 (16)	0.0522 (16)	0.0557 (16)	-0.0010 (12)	0.0179 (13)	-0.0043 (12)
C3	0.0501 (16)	0.0402 (14)	0.0587 (17)	0.0007 (12)	0.0073 (13)	-0.0050 (12)
C4	0.0486 (16)	0.0375 (13)	0.0600 (17)	-0.0043 (11)	0.0085 (13)	0.0032 (12)
C5	0.0411 (14)	0.0389 (13)	0.0472 (14)	-0.0012 (11)	0.0078 (11)	0.0025 (11)
C6	0.0411 (14)	0.0372 (13)	0.0455 (14)	-0.0011 (11)	0.0080 (11)	-0.0015 (11)
C7	0.0425 (15)	0.0412 (14)	0.0540 (15)	-0.0033 (11)	0.0125 (12)	0.0060 (11)
C8	0.0413 (15)	0.0429 (14)	0.0494 (14)	-0.0025 (11)	0.0131 (12)	0.0040 (11)
C9	0.0401 (14)	0.0432 (13)	0.0460 (14)	-0.0022 (11)	0.0116 (11)	0.0022 (11)
C10	0.0528 (17)	0.0501 (15)	0.0537 (16)	-0.0041 (13)	0.0197 (14)	-0.0009 (12)
C11	0.0448 (15)	0.0383 (13)	0.0500 (15)	-0.0009 (11)	0.0102 (12)	-0.0001 (11)
C12	0.083 (2)	0.0446 (16)	0.123 (3)	-0.0012 (15)	0.061 (2)	0.0002 (17)
C13	0.099 (3)	0.0519 (19)	0.137 (3)	0.0085 (18)	0.070 (3)	-0.0067 (19)

C14	0.079 (2)	0.0396 (16)	0.089 (2)	0.0024 (15)	0.0210 (18)	-0.0071 (15)
C15	0.085 (2)	0.0397 (15)	0.099 (2)	-0.0087 (16)	0.0338 (19)	0.0043 (16)
C16	0.069 (2)	0.0440 (15)	0.078 (2)	-0.0023 (14)	0.0344 (16)	-0.0023 (14)
N1	0.0694 (17)	0.0582 (15)	0.0630 (15)	-0.0122 (12)	0.0213 (13)	0.0075 (11)
O6	0.0710 (15)	0.0588 (12)	0.0889 (15)	-0.0066 (10)	0.0320 (12)	0.0131 (11)
C17	0.064 (2)	0.0532 (17)	0.072 (2)	-0.0080 (15)	0.0209 (16)	0.0106 (15)
C18	0.096 (3)	0.088 (3)	0.114 (3)	-0.014 (2)	0.057 (2)	0.004 (2)
C19	0.104 (3)	0.064 (2)	0.084 (2)	-0.0043 (19)	0.016 (2)	0.0247 (18)
N2	0.0544 (14)	0.0404 (12)	0.0727 (15)	-0.0045 (10)	0.0200 (12)	0.0015 (11)
O7	0.0906 (17)	0.0485 (13)	0.0959 (16)	-0.0178 (10)	0.0453 (13)	-0.0037 (10)
C20	0.065 (2)	0.0550 (18)	0.075 (2)	-0.0054 (15)	0.0276 (16)	-0.0033 (15)
C21	0.114 (3)	0.0420 (18)	0.180 (4)	-0.0070 (19)	0.056 (3)	-0.007 (2)
C22	0.087 (2)	0.072 (2)	0.067 (2)	-0.0156 (17)	0.0320 (18)	-0.0041 (16)

Geometric parameters (Å, °)

Br1—C3	1.894 (2)	C14—C15	1.359 (4)
O1—C10	1.210 (3)	C14—H14	0.9300
O2—C10	1.293 (3)	C15—C16	1.376 (4)
O2—H2A	0.8200	C15—H15	0.9300
O3—C6	1.351 (3)	C16—H16	0.9300
O3—C9	1.372 (3)	N1—C17	1.316 (3)
O4—C7	1.235 (3)	N1—C18	1.453 (4)
O5—C8	1.352 (3)	N1—C19	1.455 (4)
O5—H5	0.8200	O6—C17	1.236 (3)
C1—C2	1.384 (3)	C17—H17	0.9300
C1—C6	1.412 (3)	C18—H18A	0.9600
C1—C10	1.507 (3)	C18—H18B	0.9600
C2—C3	1.389 (4)	C18—H18C	0.9600
С2—Н2	0.9300	C19—H19A	0.9600
C3—C4	1.373 (3)	C19—H19B	0.9600
C4—C5	1.396 (3)	C19—H19C	0.9600
C4—H4	0.9300	N2—C20	1.318 (3)
C5—C6	1.394 (3)	N2—C21	1.433 (4)
С5—С7	1.460 (3)	N2—C22	1.447 (3)
C7—C8	1.447 (3)	O7—C20	1.225 (3)
C8—C9	1.363 (3)	C20—H20	0.9300
C9—C11	1.475 (3)	C21—H21A	0.9600
C11—C16	1.377 (3)	C21—H21B	0.9600
C11—C12	1.386 (4)	C21—H21C	0.9600
C12—C13	1.371 (4)	C22—H22A	0.9600
C12—H12	0.9300	C22—H22B	0.9600
C13—C14	1.359 (4)	C22—H22C	0.9600
С13—Н13	0.9300		
C10—O2—H2A	109.5	C13—C14—H14	121.0
C6—O3—C9	121.48 (18)	C14—C15—C16	121.4 (3)
С8—О5—Н5	109.5	C14—C15—H15	119.3

C2-C1-C6	117.8 (2)	C16—C15—H15	119.3
C2-C1-C10	116.2 (2)	C15—C16—C11	121.2 (3)
C6-C1-C10	126.0 (2)	C15—C16—H16	119.4
C1—C2—C3	121.6 (2)	С11—С16—Н16	119.4
C1—C2—H2	119.2	C17 - N1 - C18	120.6 (3)
C3—C2—H2	119.2	C17 - N1 - C19	120.0(3)
C4-C3-C2	120.5 (2)	C18 - N1 - C19	118.5 (3)
C4-C3-Br1	120.38 (19)	06—C17—N1	124.5(3)
$C^2 - C^3 - Br^1$	119 14 (19)	06—C17—H17	1177
$C_3 - C_4 - C_5$	119.6 (2)	N1—C17—H17	117.7
C3-C4-H4	120.2	N1—C18—H18A	109.5
C5-C4-H4	120.2	N1—C18—H18B	109.5
C6-C5-C4	1199(2)	H18A-C18-H18B	109.5
C6—C5—C7	119.7 (2)	N1—C18—H18C	109.5
C4—C5—C7	120.4 (2)	H18A—C18—H18C	109.5
03—C6—C5	121.0 (2)	H18B—C18—H18C	109.5
O3—C6—C1	118.3 (2)	N1—C19—H19A	109.5
C5—C6—C1	120.6 (2)	N1—C19—H19B	109.5
O4—C7—C8	121.3 (2)	H19A—C19—H19B	109.5
O4—C7—C5	123.0 (2)	N1—C19—H19C	109.5
C8—C7—C5	115.7 (2)	H19A—C19—H19C	109.5
O5—C8—C9	120.3 (2)	H19B—C19—H19C	109.5
O5—C8—C7	118.7 (2)	C20—N2—C21	122.1 (3)
C9—C8—C7	120.9 (2)	C20—N2—C22	120.7 (2)
C8—C9—O3	121.0 (2)	C21—N2—C22	117.0 (2)
C8—C9—C11	128.6 (2)	O7—C20—N2	125.2 (3)
O3—C9—C11	110.38 (19)	O7—C20—H20	117.4
O1—C10—O2	123.6 (2)	N2-C20-H20	117.4
O1—C10—C1	120.7 (2)	N2-C21-H21A	109.5
O2—C10—C1	115.7 (2)	N2—C21—H21B	109.5
C16—C11—C12	116.8 (2)	H21A—C21—H21B	109.5
C16—C11—C9	120.6 (2)	N2—C21—H21C	109.5
C12—C11—C9	122.7 (2)	H21A—C21—H21C	109.5
C13—C12—C11	121.0 (3)	H21B—C21—H21C	109.5
C13—C12—H12	119.5	N2—C22—H22A	109.5
C11—C12—H12	119.5	N2—C22—H22B	109.5
C14—C13—C12	121.6 (3)	H22A—C22—H22B	109.5
C14—C13—H13	119.2	N2—C22—H22C	109.5
C12—C13—H13	119.2	H22A—C22—H22C	109.5
C15—C14—C13	118.0 (3)	H22B—C22—H22C	109.5
C15—C14—H14	121.0		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
02—H2A···O6	0.82	1.78	2.598 (2)	173
O5—H5…O7	0.82	1.89	2.627 (2)	149
O5—H5…O4	0.82	2.32	2.741 (3)	113