organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-(p-tolyl)acetamide

Qing-Zhu Chu, Bao-Ping Qi and Xiao-Ru Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China Correspondence e-mail: gustchemistry@126.com

Received 14 July 2008; accepted 23 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.056; wR factor = 0.137; data-to-parameter ratio = 14.6.

In the title molecule, C₁₇H₁₆N₄O, the triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1) $^{\circ}$, respectively, with the phenyl and benzene rings. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains extending along the c axis.

Related literature

For related literature, see: Kolb et al. (2001); Kolb & Sharpless (2003); Allen et al. (1987).

Experimental

Crystal data

 $C_{17}H_{16}N_4O$ $M_r = 292.34$ Monoclinic, $P2_1/c$ a = 5.5923 (7) Å b = 30.438 (4) Å c = 9.6112 (10) Å $\beta = 115.595$ (6)°

V = 1475.5 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K $0.39 \times 0.26 \times 0.04$ mm

Data collection

Siemens SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.967, T_{\max} = 0.997$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	199 parameters
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
2896 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

8229 measured reflections

 $R_{\rm int} = 0.038$

2896 independent reflections

1970 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4-H4A···O1 ⁱ	0.86	2.09	2.878 (3)	152
Symmetry code: (i) x,	$-y + \frac{3}{2}, z + \frac{1}{2}.$			

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2006B07).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2432).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021

Kolb, H. C. & Sharpless, K. B. (2003). Drug Discov. Today, 8, 1128-1137.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o1612 [doi:10.1107/S1600536808023209]

2-(4-Phenyl-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide

Qing-Zhu Chu, Bao-Ping Qi and Xiao-Ru Zhang

S1. Comment

The Huisgen 1,3-dipolar cycloaddition of alkynes with azides *via* Cu(I) catalysis is the most well known example of click chemistry (Kolb & Sharpless, 2003; Kolb *et al.*, 2001), which leads to the synthesis of 1,4-disubstituted 1,2,3-triazoles. In this study, a new 1,2,3-triazole derivative was prepared by such "click" reaction and its structure was characterized by X-ray crystallographic analysis.

In the title compound, (I), all bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The N1–N3/C7/C8 triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)° with C1–C6 and C11–C16 rings, respectively, and the dihedral angle between the latter two aromatic rings is 88.00 (1)°.

In the crystal, intermolecular N—H…O hydrogen bond (Table 1) link the molecules into chains extended along c axis.

S2. Experimental

To a solution of 4-methylaniline (2.61 g, 24.36 mmol), triethylamine (3.05 ml, 21.92 mmol) in dry CH_2Cl_2 (90 ml), chloroacetyl chloride (1.74 ml, 21.92 mmol) in dry CH_2Cl_2 (10 ml) was added dropwisely at 273 K under an inert atmosphere. The mixture was stirred at r.t. for 5 h, followed by dilution with CH_2Cl_2 (50 ml). Then washed by water for three times and the organic phase was dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, 2-chloro-*N*-(4-methylphenyl)acetamide (3.82 g, 94.76%) was obtaind. To a solution of 2-chloro-*N*-(4-methylxyphenyl)-acetamide (1.72 g, 9.37 mmol) in 50 ml DMF/H₂O (1:1, v/v), NaN₃ (0.79 g, 12.15 mmol), phenylacetylene (3.08 ml, 28.08 mmol), CuSO₄.5H₂O (0.24 g, 0.94 mmol), *L*-Ascorbic acid sodium salt (0.37 g, 1.87 mmol) were added successively. The mixture was stirred at 333 K for 36 h. Then NH₃.H₂O (25 ml) was added, and the solvent was extracted with ethyl acetate, washed with water for three times. The organic phase was dried over anhydrous Na₂SO₄. After evaporation, the resulting solid was recrystallized from ethyl acetate, yielding the title compound (I) (2.13 g, 77.9%). Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of ethyl acetate.

S3. Refinement

All H atoms were located in difference Fourier maps, placed in idealized positions (C—H 0.93–0.97 Å, N—H 0.86 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the parent atom.

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.

Figure 2

A packing diagram of (I), viewed down the *a* axis. Dashed lines denote N—H…O hydrogen bonds.

2-(4-Phenyl-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide

Crystal data

 $C_{17}H_{16}N_4O$ $M_r = 292.34$ Monoclinic, $P2_1/c$ a = 5.5923 (7) Å b = 30.438 (4) Å c = 9.6112 (10) Å $\beta = 115.595$ (6)° V = 1475.5 (3) Å³ Z = 4

Data collection

Siemens SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.967, T_{\max} = 0.997$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.136$	neighbouring sites
S = 1.01	H-atom parameters constrained
2896 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 0.5144P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 616

 $\theta = 2.4 - 21.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Plate. colourless

 $0.39 \times 0.26 \times 0.04$ mm

8229 measured reflections

 $\theta_{\text{max}} = 26.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

2896 independent reflections 1970 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.039$

 $h = -6 \rightarrow 6$

 $l = -9 \rightarrow 11$

 $k = -37 \rightarrow 33$

 $D_{\rm x} = 1.316 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1236 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N4	0.5557 (4)	0.72043 (6)	0.6455 (2)	0.0390 (5)	
H4A	0.6141	0.7249	0.7431	0.047*	
N3	0.9051 (4)	0.81474 (6)	0.5865 (2)	0.0386 (5)	
01	0.5915 (4)	0.74454 (5)	0.43200 (19)	0.0558 (5)	

C7	0.9236 (4)	0.87351 (7)	0.4663 (3)	0.0372 (5)
N1	1.1547 (4)	0.85049 (7)	0.5105 (2)	0.0481 (5)
N2	1.1417 (4)	0.81467 (7)	0.5828 (2)	0.0495 (6)
C11	0.3715 (4)	0.68575 (7)	0.5825 (2)	0.0348 (5)
C8	0.7636 (5)	0.85028 (7)	0.5150 (3)	0.0385 (6)
H8A	0.5935	0.8576	0.5014	0.046*
C16	0.3509 (5)	0.66145 (7)	0.4563 (3)	0.0383 (6)
H16A	0.4596	0.6679	0.4081	0.046*
C12	0.2094 (5)	0.67507 (8)	0.6535 (3)	0.0412 (6)
H12A	0.2224	0.6909	0.7393	0.049*
C10	0.6489 (5)	0.74713 (7)	0.5694 (3)	0.0373 (6)
C15	0.1688 (5)	0.62767 (7)	0.4016 (3)	0.0422 (6)
H15A	0.1568	0.6117	0.3164	0.051*
C6	0.8802 (5)	0.91601 (8)	0.3866 (3)	0.0409 (6)
C14	0.0036 (5)	0.61689 (8)	0.4702 (3)	0.0445 (6)
C13	0.0295 (5)	0.64126 (8)	0.5975 (3)	0.0465 (6)
H13A	-0.0775	0.6346	0.6465	0.056*
C9	0.8423 (5)	0.78126 (8)	0.6729 (3)	0.0474 (6)
H9A	0.7666	0.7952	0.7355	0.057*
H9B	1.0047	0.7667	0.7420	0.057*
C5	0.6276 (5)	0.92969 (9)	0.2884 (3)	0.0533 (7)
H5A	0.4834	0.9117	0.2715	0.064*
C1	1.0916 (6)	0.94323 (9)	0.4090 (3)	0.0557 (7)
H1B	1.2632	0.9345	0.4743	0.067*
C4	0.5868 (6)	0.96997 (10)	0.2147 (4)	0.0668 (8)
H4B	0.4158	0.9788	0.1487	0.080*
C3	0.7971 (7)	0.99692 (10)	0.2385 (4)	0.0690 (9)
H3A	0.7693	1.0241	0.1900	0.083*
C2	1.0483 (7)	0.98348 (9)	0.3341 (4)	0.0694 (9)
H2B	1.1918	1.0015	0.3492	0.083*
C17	-0.1951 (6)	0.58006 (9)	0.4079 (4)	0.0701 (9)
H17A	-0.1834	0.5672	0.3198	0.105*
H17B	-0.3706	0.5914	0.3780	0.105*
H17C	-0.1578	0.5581	0.4862	0.105*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N4	0.0487 (12)	0.0423 (11)	0.0276 (10)	-0.0047 (9)	0.0180 (9)	-0.0002 (9)
N3	0.0409 (12)	0.0390 (11)	0.0379 (11)	-0.0043 (9)	0.0190 (9)	0.0001 (9)
01	0.0874 (14)	0.0507 (11)	0.0314 (10)	-0.0180 (10)	0.0277 (10)	-0.0014 (8)
C7	0.0375 (13)	0.0394 (13)	0.0394 (13)	-0.0022 (10)	0.0210 (11)	-0.0007 (10)
N1	0.0435 (13)	0.0523 (13)	0.0560 (14)	0.0042 (10)	0.0285 (11)	0.0084 (11)
N2	0.0462 (13)	0.0533 (13)	0.0556 (14)	0.0078 (10)	0.0283 (11)	0.0093 (11)
C11	0.0370 (13)	0.0343 (12)	0.0314 (12)	0.0033 (10)	0.0131 (10)	0.0036 (10)
C8	0.0334 (13)	0.0410 (13)	0.0440 (14)	-0.0011 (11)	0.0194 (11)	-0.0024 (11)
C16	0.0424 (14)	0.0383 (13)	0.0363 (13)	0.0012 (11)	0.0191 (11)	0.0034 (10)
C12	0.0489 (15)	0.0392 (13)	0.0403 (14)	0.0035 (11)	0.0238 (12)	0.0031 (11)
CI2	0.0489 (15)	0.0392 (13)	0.0403 (14)	0.0035 (11)	0.0238 (12)	0

C10	0.0469 (14)	0.0344 (13)	0.0319 (13)	0.0023 (10)	0.0184 (11)	0.0016 (10)
C15	0.0456 (15)	0.0372 (13)	0.0407 (14)	0.0042 (11)	0.0157 (12)	-0.0029 (11)
C6	0.0460 (14)	0.0402 (13)	0.0451 (14)	-0.0018 (11)	0.0279 (12)	-0.0018 (11)
C14	0.0394 (14)	0.0376 (13)	0.0536 (16)	0.0006 (11)	0.0175 (12)	0.0011 (12)
C13	0.0439 (15)	0.0489 (15)	0.0532 (16)	0.0009 (12)	0.0270 (13)	0.0072 (13)
C9	0.0616 (17)	0.0450 (15)	0.0367 (14)	-0.0083 (12)	0.0221 (13)	0.0006 (12)
C5	0.0494 (16)	0.0478 (16)	0.0624 (18)	0.0007 (12)	0.0239 (14)	0.0063 (13)
C1	0.0520 (17)	0.0538 (17)	0.0674 (19)	-0.0052 (13)	0.0315 (15)	0.0039 (14)
C4	0.069 (2)	0.0564 (18)	0.073 (2)	0.0146 (16)	0.0296 (18)	0.0155 (16)
C3	0.096 (3)	0.0428 (16)	0.085 (2)	0.0112 (17)	0.056 (2)	0.0156 (16)
C2	0.078 (2)	0.0487 (17)	0.097 (2)	-0.0096 (16)	0.052 (2)	0.0070 (17)
C17	0.065 (2)	0.0576 (18)	0.095 (2)	-0.0155 (15)	0.0414 (19)	-0.0156 (17)

Geometric parameters (Å, °)

N4—C10	1.341 (3)	C15—H15A	0.9300
N4—C11	1.415 (3)	C6—C5	1.381 (3)
N4—H4A	0.8600	C6—C1	1.382 (3)
N3—N2	1.339 (3)	C14—C13	1.384 (3)
N3—C8	1.341 (3)	C14—C17	1.508 (3)
N3—C9	1.450 (3)	C13—H13A	0.9300
O1—C10	1.219 (3)	С9—Н9А	0.9700
C7—N1	1.367 (3)	С9—Н9В	0.9700
С7—С8	1.372 (3)	C5—C4	1.385 (4)
С7—С6	1.469 (3)	С5—Н5А	0.9300
N1—N2	1.312 (3)	C1—C2	1.388 (4)
C11-C16	1.383 (3)	C1—H1B	0.9300
C11—C12	1.388 (3)	C4—C3	1.370 (4)
C8—H8A	0.9300	C4—H4B	0.9300
C16—C15	1.381 (3)	C3—C2	1.368 (4)
C16—H16A	0.9300	С3—НЗА	0.9300
C12—C13	1.376 (3)	C2—H2B	0.9300
C12—H12A	0.9300	C17—H17A	0.9600
С10—С9	1.520 (3)	C17—H17B	0.9600
C15—C14	1.386 (3)	C17—H17C	0.9600
C10—N4—C11	126.96 (19)	C13—C14—C17	121.8 (2)
C10—N4—H4A	116.5	C15—C14—C17	121.0 (2)
C11—N4—H4A	116.5	C12—C13—C14	121.8 (2)
N2—N3—C8	111.02 (18)	C12—C13—H13A	119.1
N2—N3—C9	120.0 (2)	C14—C13—H13A	119.1
C8—N3—C9	128.7 (2)	N3—C9—C10	112.66 (19)
N1—C7—C8	107.4 (2)	N3—C9—H9A	109.1
N1-C7-C6	122.3 (2)	С10—С9—Н9А	109.1
C8—C7—C6	130.3 (2)	N3—C9—H9B	109.1
N2—N1—C7	109.24 (18)	С10—С9—Н9В	109.1
N1—N2—N3	107.11 (19)	H9A—C9—H9B	107.8
C16—C11—C12	118.8 (2)	C6—C5—C4	120.7 (3)

D—H···A	D—H	H···A D···A	D—H···A
Hydrogen-bond geometry (Å, °)			
0-0/-00-03	-30.1 (4)		
NI - U / - U b - U 5	152.5(2) -20.1(4)	Ub	0.5 (4)
C11—C16—C15—C14	-0.2(4)	C4 - C3 - C2 - C1	-1.0(5)
C11—N4—C10—C9	179.3 (2)	C5-C4-C3-C2	0.9 (5)
C11—N4—C10—O1	-1.9 (4)	C6—C5—C4—C3	-0.1 (4)
N4—C11—C12—C13	-179.2 (2)	C7—C6—C1—C2	-179.5 (2)
C16—C11—C12—C13	-0.8 (3)	C5—C6—C1—C2	0.3 (4)
N4—C11—C16—C15	179.2 (2)	C7—C6—C5—C4	179.3 (2)
C12—C11—C16—C15	0.9 (3)	C1—C6—C5—C4	-0.5 (4)
C6—C7—C8—N3	-177.4 (2)	N4—C10—C9—N3	-169.56 (19)
N1—C7—C8—N3	0.3 (3)	O1—C10—C9—N3	11.7 (3)
C9—N3—C8—C7	173.4 (2)	C8—N3—C9—C10	80.4 (3)
N2—N3—C8—C7	-0.7 (3)	N2—N3—C9—C10	-106.1 (2)
C10-N4-C11-C12	-151.1 (2)	C17—C14—C13—C12	-179.5 (2)
C10—N4—C11—C16	30.6 (3)	C15—C14—C13—C12	0.6 (4)
C9—N3—N2—N1	-173.9 (2)	C11—C12—C13—C14	0.0 (4)
C8—N3—N2—N1	0.7 (3)	C16—C15—C14—C17	179.6 (2)
C7—N1—N2—N3	-0.5 (3)	C16—C15—C14—C13	-0.5 (4)
C6—C7—N1—N2	178.1 (2)	C8—C7—C6—C1	149.7 (3)
C8—C7—N1—N2	0.1 (3)	N1—C7—C6—C1	-27.7 (3)
C13—C14—C15	117.2 (2)		
C1—C6—C7	120.6 (2)	H17B—C17—H17C	109.5
C5—C6—C7	120.8 (2)	H17A—C17—H17C	109.5
C5—C6—C1	118.6 (2)	C14—C17—H17C	109.5
C14—C15—H15A	119.0	H17A—C17—H17B	109.5
C16—C15—H15A	119.0	C14—C17—H17B	109.5
C16—C15—C14	121.9 (2)	C14—C17—H17A	109.5
N4—C10—C9	113.05 (19)	C1—C2—H2B	119.6
O1—C10—C9	122.2 (2)	C3—C2—H2B	119.6
O1-C10-N4	124.7 (2)	C3—C2—C1	120.7 (3)
C11—C12—H12A	119.8	C4—C3—H3A	120.3
C13—C12—H12A	119.8	С2—С3—НЗА	120.3
C13—C12—C11	120.3 (2)	C2—C3—C4	119.5 (3)
C11—C16—H16A	120.0	C5—C4—H4B	119.8
С15—С16—Н16А	120.0	C3—C4—H4B	119.8
C15—C16—C11	120.0 (2)	C3—C4—C5	120.3 (3)
C7—C8—H8A	127.4	C2-C1-H1B	119.9
N3—C8—H8A	127.4	C6-C1-H1B	119.9
N3—C8—C7	1053(2)	C6-C1-C2	120.2 (3)
C12— $C11$ —N4	123.0(2) 1183(2)	C4 - C5 - H5A	119.7
C16—C11—N4	123.0(2)	С6—С5—Н5А	119 7

supporting information

N4—H4A···O1 ⁱ	0.86	2.09	2.878 (3)	152	

Symmetry code: (i) x, -y+3/2, z+1/2.