organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(E)-2-Furvlmethyleneamino]-3-phenyl-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun,^a* Samuel Robinson Jebas,^a‡ K. V. Sujith,^b P. S. Patil,^c B. Kalluraya^b and S. M. Dharmaprakash^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 11 July 2008; accepted 13 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.126; data-to-parameter ratio = 20.6.

In the title molecule, $C_{13}H_{10}N_4OS$, the triazole ring makes dihedral angles of 16.14 (9) and 58.51 $(11)^{\circ}$, respectively, with the phenyl and furan rings. Intramolecular $C-H \cdots N$ hydrogen bonds generate S(5) and S(6) ring motifs. In the crystal structure, centrosymmetrically related molecules are linked via $N-H \cdot \cdot S$ hydrogen bonds to form dimeric pairs, which are interlinked via C-H···O and C-H··· π interactions.

Related literature

For the biological activities of triazole derivatives, see: Clemons et al. (2004); Glerman et al. (1997); Holla et al. (2003); Johnston (2002); Kane et al. (1990); Kkgzel et al. (2004); Modzelewska & Kalabun (1999); Rollas et al. (1993); Shujuan et al. (2004); For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental

Crystal data

C13H10N4OS $M_r = 270.31$ Orthorhombic, Pbcn a = 27.4006 (6) Å b = 11.4940 (3) Å c = 7.7886 (2) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.829, T_{\max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.125$	independent and constrained
S = 1.05	refinement
3627 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
1 restraint	

 $V = 2452.96 (10) \text{ Å}^3$

 $0.40 \times 0.13 \times 0.10 \text{ mm}$

40042 measured reflections

3627 independent reflections

2573 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.26 \text{ mm}^{-1}$

 $R_{\rm int} = 0.071$

T = 100.0 (1) K

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3-C8 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdot \cdot \cdot S1^i$	0.85 (2)	2.42 (2)	3.265 (2)	169 (2)
$C4 - H4A \cdots N2$	0.93	2.55	2.859 (2)	100
$C6-H6A\cdotsO1^{ii}$	0.93	2.59	3.347 (2)	139
$C8 - H8A \cdots N4$	0.93	2.29	2.942 (2)	126
$C5-H5A\cdots Cg1^{iii}$	0.93	2.92	3.522 (2)	123
Symmetry codes:	(i) $-r + 1 - v$	+1 - 7 + 1 ((ii) $-r + \frac{1}{2} - v - \frac{1}{2} - \frac{1}$	$+\frac{3}{7}$ $+\frac{1}{7}$ (iii)

 $-x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$ (iii) $-x - \frac{1}{2}, y + \frac{1}{2}, z.$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2631).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332
- Glerman, N., Rollas, S., Kiraz, M., Ekinci, A. C. & Vidin, A. (1997). Farmaco, 52, 691-695.
- Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.

[‡] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.

- Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772–2777.
- Kucukguzel, I., Kucukguzel, S. G., Rollas, S., OtuK-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 893–901.
- Modzelewska, B. & Kalabun, J. (1999). Pharmazie, 54, 503-505.
- Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D. & Yegenoglu, Y. (1993). *Pharmazie*, 48, 308–309.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004).
 J. Pharm. Biomed. Anal. 34, 1117–1124.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o1528-o1529 [doi:10.1107/S1600536808021806]

4-[(E)-2-Furylmethyleneamino]-3-phenyl-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun, Samuel Robinson Jebas, K. V. Sujith, P. S. Patil, B. Kalluraya and S. M. Dharmaprakash

S1. Comment

1,2,4-Triazoles and their derivatives are found to be associated with various biological activities such as anticonvulsant (Kane *et al.*, 1990; Kkgzel *et al.*, 2004), antifungal (Rollas *et al.*, 1993), anticancer (Holla *et al.*, 2003), anti-inflammatory (Modzelewska & Kalabun, 1999) and antibacterial properties (Glerman *et al.*, 1997). Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan *et al.*, 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the threatment of cancer (Clemons *et al.*, 2004) and loreclezole is used as an anticonvulsant (Johnston, 2002) drug. In view of the above properties, we have synthesized the title compound and report here its crystal structure.

Bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen *et al.*, 1987). The furan ring is planar to within ± 0.002 (2) Å and the triazole ring is also planar with a maximum deviation of 0.016 (2) Å for atom C1. The triazole and phenyl rings are twisted away from each other by an angle of 16.14 (9)°. The dihedral angle between the furan and triazole rings is 58.51 (11)°. Intramolecular C—H···N hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein *et al.*, 1995).

The crystal structure is stabilized by intermolecular C—H···O and N—H···S hydrogen bonds together with C—H··· π interactions involving the phenyl ring. The centrosymmetrically related molecules are linked by N—H···S hydrogen bonds to form a dimeric pair (Fig. 2) which are interlinked via C—H···O hydrogen bonds.

S2. Experimental

The title Schiff base compound was obtained by refluxing a mixture of 4-amino-5-methyl-2,4-dihydro-3*H*-1,2,4-triazole-3-thione (0.01 mol), furfural (0.01 mol) in ethanol (30 ml) and 2 drops of concentrated H_2SO_4 for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from acetone-N,N-dimethylformamide (DMF) (1:2) solution by slow evaporation (yield 63%; m.p. 451–453 K). Analysis for $C_{13}H_{10}N_4SO$, found (calculated) in %: C 57.63 (57.77), H 3.62 (3.7), N 20.6 (20.74), S 11.79 (11.85).

S3. Refinement

The N-bound H atom was located in a difference map and refined with a N-H distance restraint of 0.85 (1) Å. C-bound H atoms were positioned geometrically [C-H = 0.93%A] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, viewed along the *b* axis. Hydrogen bonds are shown as dashed lines.

4-[(*E*)-2-Furylmethyleneamino]-3-phenyl-1*H*-1,2,4- triazole-5(4*H*)-thione

Crystal data	
$C_{13}H_{10}N_4OS$	F(000) = 1120
$M_r = 270.31$	$D_{\rm x} = 1.464 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 5448 reflections
a = 27.4006 (6) Å	$\theta = 2.9 - 27.9^{\circ}$
b = 11.4940 (3) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 7.7886 (2) Å	T = 100 K
$V = 2452.96 (10) \text{ Å}^3$	Block, orange
Z = 8	$0.40 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.829, T_{\max} = 0.974$	40042 measured reflections 3627 independent reflections 2573 reflections with $I > 2\sigma(I)$ $R_{int} = 0.072$ $\theta_{max} = 30.2^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -38 \rightarrow 38$ $k = -16 \rightarrow 16$ $l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.125$ S = 1.06 3627 reflections 176 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0649P)^2 + 0.3858P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26$ e Å ⁻³ $\Delta\rho_{min} = -0.32$ e Å ⁻³

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.494570 (15)	0.69781 (4)	0.50297 (6)	0.02259 (13)	
01	0.36669 (4)	1.02453 (10)	0.58350 (18)	0.0258 (3)	
N1	0.44316 (5)	0.52097 (12)	0.6503 (2)	0.0225 (3)	
N2	0.39895 (5)	0.49428 (12)	0.7222 (2)	0.0228 (3)	
N3	0.40473 (5)	0.68093 (11)	0.66047 (19)	0.0190 (3)	
N4	0.38912 (5)	0.79579 (12)	0.6319 (2)	0.0206 (3)	
C1	0.44803 (6)	0.63262 (15)	0.6058 (2)	0.0203 (3)	
C2	0.37554 (6)	0.59359 (14)	0.7269 (2)	0.0204 (4)	
C3	0.32509 (6)	0.60514 (14)	0.7901 (2)	0.0198 (3)	
C4	0.30539 (6)	0.51246 (15)	0.8824 (2)	0.0244 (4)	
H4A	0.3247	0.4484	0.9086	0.029*	
C5	0.25719 (6)	0.51543 (16)	0.9351 (3)	0.0267 (4)	
H5A	0.2444	0.4533	0.9971	0.032*	
C6	0.22781 (6)	0.60973 (16)	0.8967 (2)	0.0259 (4)	

H6A	0.1954	0.6111	0.9320	0.031*	
C7	0.24716 (6)	0.70213 (16)	0.8051 (3)	0.0255 (4)	
H7A	0.2275	0.7656	0.7783	0.031*	
C8	0.29558 (6)	0.70074 (15)	0.7530(2)	0.0229 (4)	
H8A	0.3084	0.7637	0.6931	0.028*	
C9	0.41795 (6)	0.87250 (15)	0.6957 (2)	0.0212 (4)	
H9A	0.4458	0.8494	0.7548	0.025*	
C10	0.40718 (6)	0.99364 (15)	0.6757 (2)	0.0214 (4)	
C11	0.42966 (7)	1.08948 (16)	0.7401 (3)	0.0268 (4)	
H11A	0.4578	1.0913	0.8067	0.032*	
C12	0.40148 (7)	1.18664 (15)	0.6854 (3)	0.0282 (4)	
H12A	0.4075	1.2646	0.7095	0.034*	
C13	0.36459 (7)	1.14332 (15)	0.5921 (3)	0.0289 (4)	
H13A	0.3406	1.1883	0.5399	0.035*	
H1N1	0.4628 (6)	0.4674 (14)	0.619 (3)	0.034 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0170 (2)	0.0210 (2)	0.0298 (3)	0.00050 (15)	0.00408 (17)	0.00147 (18)
01	0.0210 (6)	0.0219 (6)	0.0344 (8)	0.0019 (5)	-0.0013 (5)	0.0001 (6)
N1	0.0169 (7)	0.0191 (7)	0.0316 (9)	0.0034 (5)	0.0022 (6)	0.0014 (6)
N2	0.0161 (7)	0.0206 (7)	0.0317 (9)	0.0010 (5)	0.0025 (6)	0.0013 (6)
N3	0.0153 (6)	0.0172 (7)	0.0244 (8)	0.0004 (5)	-0.0002 (6)	0.0008 (6)
N4	0.0185 (6)	0.0173 (7)	0.0260 (8)	0.0016 (5)	0.0010 (6)	0.0015 (6)
C1	0.0170 (7)	0.0208 (8)	0.0232 (9)	0.0014 (6)	-0.0020 (6)	-0.0018 (7)
C2	0.0182 (8)	0.0182 (8)	0.0247 (9)	-0.0013 (6)	-0.0014 (7)	0.0010 (7)
C3	0.0167 (7)	0.0215 (8)	0.0212 (8)	-0.0018 (6)	-0.0011 (6)	-0.0011 (7)
C4	0.0214 (8)	0.0256 (9)	0.0262 (9)	0.0001 (7)	0.0001 (7)	0.0040 (7)
C5	0.0240 (8)	0.0306 (10)	0.0255 (9)	-0.0038 (7)	0.0025 (7)	0.0058 (8)
C6	0.0199 (8)	0.0320 (10)	0.0259 (9)	-0.0012 (7)	0.0031 (7)	-0.0031 (8)
C7	0.0180 (8)	0.0231 (9)	0.0353 (10)	0.0026 (7)	0.0003 (7)	-0.0044 (8)
C8	0.0206 (8)	0.0204 (8)	0.0279 (10)	-0.0013 (6)	0.0008 (7)	0.0008 (7)
C9	0.0161 (7)	0.0240 (8)	0.0236 (9)	0.0006 (6)	0.0024 (7)	0.0003 (7)
C10	0.0169 (7)	0.0235 (9)	0.0238 (9)	-0.0008 (6)	0.0028 (7)	-0.0001 (7)
C11	0.0214 (8)	0.0254 (9)	0.0334 (10)	-0.0042 (7)	0.0033 (7)	-0.0027 (8)
C12	0.0280 (9)	0.0199 (9)	0.0366 (11)	-0.0031 (7)	0.0106 (8)	-0.0019 (8)
C13	0.0280 (9)	0.0216 (9)	0.0372 (11)	0.0054 (7)	0.0072 (8)	0.0050 (8)

Geometric parameters (Å, °)

S1—C1	1.6820 (17)	C5—C6	1.383 (3)	
O1—C13	1.368 (2)	C5—H5A	0.93	
O1—C10	1.368 (2)	C6—C7	1.385 (3)	
N1—C1	1.336 (2)	C6—H6A	0.93	
N1—N2	1.369 (2)	C7—C8	1.388 (2)	
N1—H1N1	0.853 (9)	С7—Н7А	0.93	
N2—C2	1.310 (2)	C8—H8A	0.93	

N2 C1	1 277 (2)	C0 C10	1 (22 (2))
N3—C1	1.377 (2)	C9—C10	1.432 (2)
N3—C2	1.384 (2)	С9—Н9А	0.93
N3—N4	1.4054 (18)	C10-C11	1.358 (2)
N4—C9	1.284 (2)	C11—C12	1.423 (3)
C2—C3	1.474 (2)	C11—H11A	0.93
$C_3 - C_4$	1 394 (2)	C_{12} C_{13}	1 341 (3)
C_{3} C_{8}	1.394(2) 1 305(2)	C_{12} H_{12A}	0.03
C1 C5	1.393(2) 1.294(2)	C_{12} H_{12A}	0.95
	1.364 (2)	С15—ПІЗА	0.95
С4—Н4А	0.93		
C13—O1—C10	105.50 (14)	C5—C6—C7	119.33 (16)
C1 - N1 - N2	114 19 (14)	C_{5}	120.3
C1 = N1 = H1N1	114.17(14) 122.8(15)	C7 C6 H6A	120.3
N2 N1 H1N1	125.0(15)	C = C = H O A	120.5
N2—N1—HINI	120.9(13)	$C_0 - C_7 - C_8$	120.32 (17)
C2—N2—N1	104.44 (13)	С6—С/—Н/А	119.7
C1—N3—C2	108.72 (13)	С8—С7—Н7А	119.7
C1—N3—N4	126.29 (13)	C7—C8—C3	120.18 (16)
C2—N3—N4	124.37 (13)	С7—С8—Н8А	119.9
C9—N4—N3	113.36 (14)	C3—C8—H8A	119.9
N1—C1—N3	102.77 (14)	N4C9C10	119.92 (16)
N1—C1—S1	128.84 (13)	N4—C9—H9A	120.0
N3—C1—S1	128.36 (13)	С10—С9—Н9А	120.0
N2-C2-N3	109.79 (14)	C11—C10—O1	110.56 (15)
$N_{2} - C_{2} - C_{3}$	123 18 (15)	$C_{11} - C_{10} - C_{9}$	130.92(17)
$N_2 C_2 C_3$	127.01(15)	O1 C10 C9	130.92(17)
$1\sqrt{3}$	127.01(15)	$C_{10} = C_{10} = C_{12}$	116.40(13)
C4 - C3 - C8	119.00 (15)		100.24 (17)
C4—C3—C2	117.83 (15)		126.9
C8—C3—C2	123.05 (15)	C12—C11—H11A	126.9
C5—C4—C3	120.26 (16)	C13—C12—C11	106.25 (16)
C5—C4—H4A	119.9	C13—C12—H12A	126.9
C3—C4—H4A	119.9	C11—C12—H12A	126.9
C6—C5—C4	120.71 (17)	C12—C13—O1	111.45 (16)
С6—С5—Н5А	119.6	C12—C13—H13A	124.3
C4—C5—H5A	119.6	O1—C13—H13A	124.3
C1—N1—N2—C2	-1.5 (2)	C8—C3—C4—C5	0.4 (3)
C1—N3—N4—C9	-60.1 (2)	C2—C3—C4—C5	-175.78 (17)
C2—N3—N4—C9	129.83 (18)	C3—C4—C5—C6	0.3 (3)
N2—N1—C1—N3	2.8 (2)	C4—C5—C6—C7	-0.3(3)
N2-N1-C1-S1	-175.45(13)	C5—C6—C7—C8	-0.3(3)
$C_{2}N_{3}C_{1}N_{1}$	-2.91(19)	C6-C7-C8-C3	10(3)
N_{1} N_{2} C_{1} N_{1}	-174.24(15)	C_{4} C_{3} C_{8} C_{7}	-10(3)
$\Gamma_{1} = \Gamma_{1} = \Gamma_{1}$	174.24(13) 175.22(14)	$C_{1}^{2} = C_{2}^{3} = C_{3}^{3} = C_{7}^{3}$	1.0(3)
$ \begin{array}{c} \mathbb{C}_{-1} \mathbb{N}_{3} \mathbb{C}_{1} \mathbb{C}_{1} \mathbb{C}_{1} \\ \mathbb{N}_{4} \mathbb{N}_{2} \mathbb{C}_{1} \mathbb{C}_{1} \mathbb{C}_{1} \\ \mathbb{C}_{1} \\$	1/3.32(14)	12 - 13 - 10 - 17	1/4.91(1/)
1N4 - IN3 - C1 - S1	4.0 (3)	$N_{3} = N_{4} = C_{3} = C_{10}$	1/9.42 (14)
N1—N2—C2—N3	-0.50 (19)	C13—O1—C10—C11	0.1 (2)
N1—N2—C2—C3	177.88 (17)	C13—O1—C10—C9	177.54 (16)
C1—N3—C2—N2	2.2 (2)	N4—C9—C10—C11	174.88 (19)
N4—N3—C2—N2	173.76 (15)	N4—C9—C10—O1	-2.0 (3)

supporting information

C1—N3—C2—C3	-176.07 (17)	O1—C10—C11—C12	0.1 (2)
N4—N3—C2—C3	-4.5 (3)	C9—C10—C11—C12	-176.88 (18)
N2-C2-C3-C4	14.2 (3)	C10-C11-C12-C13	-0.3 (2)
N3—C2—C3—C4	-167.70 (17)	C11—C12—C13—O1	0.4 (2)
N2-C2-C3-C8	-161.76 (17)	C10-01-C13-C12	-0.3 (2)
N3—C2—C3—C8	16.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N1—H1N1····S1 ⁱ	0.85 (2)	2.42 (2)	3.265 (2)	169 (2)	
C4—H4 <i>A</i> …N2	0.93	2.55	2.859 (2)	100	
C6—H6A···O1 ⁱⁱ	0.93	2.59	3.347 (2)	139	
C8—H8A…N4	0.93	2.29	2.942 (2)	126	
C5—H5 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.92	3.522 (2)	123	

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1/2, -y+3/2, z+1/2; (iii) -x-1/2, y+1/2, z.