organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-(2-bromo-5-fluorophenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate

Hoong-Kun Fun,^a* Samuel Robinson Jebas,^a‡ M. Babu,^b P. S. Patil,^c B. Kalluraya^b and S. M. Dharmaprakash^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 8 July 2008; accepted 12 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.032; wR factor = 0.084; data-to-parameter ratio = 20.6

In the title molecule, C₂₀H₁₈BrFN₂O₂S, the pyrimidine ring adopts a flattened envelope conformation. The halogenated benzene ring is orthogonal to the planar part of the pyrimidine ring [dihedral angle = $89.05 (4)^{\circ}$], while the other phenyl ring is oriented at an angle of 85.14 (5)°. The ethoxy group is disordered over two orientations with site occpancies of ca 0.869 (4) and 0.131 (4). Intramolecular $C-H \cdots Br$ and C-H···O hydrogen bonds generate S(5) and S(6) ring motifs. The crystal structure is stabilized by intermolecular $N-H \cdots S$, $C-H\cdots F$, $C-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds.

Related literature

For the biological activity of pyrimidinone derivatives, see: Atwal (1990); Matsuda & Hirao (1965); Sadanandam et al. (1992). For the synthetic procedure, see: Steele et al. (1998); Manjual et al. (2004); Kappe (1993); Wipf & Cunningham (1995). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

[‡] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Experimental

Crystal data

α β

$C_{20}H_{18}BrFN_2O_2S$	$\gamma = 78.796 \ (1)^{\circ}$
$M_r = 449.33$	V = 947.36 (2) Å ³
Triclinic, P1	Z = 2
a = 10.0455 (1) Å	Mo $K\alpha$ radiation
b = 10.2969 (1) Å	$\mu = 2.31 \text{ mm}^{-1}$
c = 10.3714 (1) Å	T = 100 (2) K
$\alpha = 64.286 \ (1)^{\circ}$	$0.41 \times 0.35 \times 0.22 \text{ mm}$
$\beta = 83.110 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.451, T_{\max} = 0.631$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.084$ S = 1.045490 reflections 267 parameters

30132 measured reflections 5490 independent reflections 4895 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

15 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-1}$ $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N1 \cdot \cdot \cdot S1^{i}$	0.85	2.51	3.327 (2)	162
C1−H1···F1 ⁱⁱ	0.95	2.52	3.370 (2)	148
$C7 - H7 \cdots Br1$	1.00	2.69	3.265 (2)	117
C20−H20···O1 ⁱⁱⁱ	0.95	2.44	3.368 (3)	164
$C21 - H21A \cdots O2$	0.98	2.11	2.737 (3)	120
$C21 - H21B \cdots Br1^{iii}$	0.98	2.91	3.886 (2)	171

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 2, -y, -z; (iii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2628).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.

- Manjual, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665-2671.
- Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195-1197.
- Sadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). *Eur. J. Med. Chem.* 27, 87–92.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315-9318.
- Wipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819-7822.

supporting information

Acta Cryst. (2008). E64, o1526-o1527 [doi:10.1107/S1600536808021685]

Ethyl 4-(2-bromo-5-fluorophenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Hoong-Kun Fun, Samuel Robinson Jebas, M. Babu, P. S. Patil, B. Kalluraya and S. M. Dharmaprakash

S1. Comment

3,4-Dihydropyrimidinones have drawn wide-spread attention due to their pharmaceutical applications. A variety of these derivatives have been screened for antihypertension (Atwal, 1990), antibacterial (Matsuda & Hirao, 1965) and antiinflammatory activities (Sadanandam *et al.*, 1992). The common synthetic routes to these compounds generally involve multi step transformations, which are essentially based on the Biginelli condensation methodology (Steele *et al.*, 1998). These pyrimidinones are also associated with calcium channel blocking activity (Manjual *et al.*, 2004). In 1893, Biginelli reported the first synthesis of dihydropyrimidines by a simple one-pot condensation reaction of ethyl acetoacetate, benzaldehyde and urea. In the following decades the original *cyclo*-condensation reaction has been extended widely to include variations in all three components, allowing access to a large number of muti functionalized dihydropyrimidinone derivatives (Kappe, 1993). Biginelli reaction has recently attracted a great deal of attention and several improved procedures for the preparation of dihydropyrimidinones have been reported within the past few years. Several solid-phase modifications of the Biginelli reaction suitable for the combinatorial chemistry have also been described (Wipf & Cunningham, 1995).

Bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen *et al.*, 1987). The pyrimidine ring adopts a flattened envelope conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.067 (2) Å, $\theta = 132.5 (16)^{\circ}$ and $\varphi = 237 (2)^{\circ}$. The C1-C6 and C15-C20 phenyl rings form dihedral angles of 89.05 (4)° and 85.14 (5)°, respectively, with the N1/N2/C7/C8/C13/C14 plane. Intramolecular C—H···Br and C—H···O hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein *et al.*, 1995), respectively.

The crystal structure is stabilized by intermolecular N—H…S, C—H…F, C—H…O and C—H…Br hydrogen bonds (Table 1 and Fig.2).

S2. Experimental

A mixture of 2-bromo-5-fluorobenzaldehyde (0.01 mol, 2.0301 g), ethyl acetoacetate [0.015 mol, 2 g (2 ml)], phenylthiourea (0.01 mol, 1.5215 g) and concentrated H_2SO_4 (2 drops) in absolute alcohol (10 ml) taken in a beaker (100 ml) was put inside a microwave oven for 4 minutes at 160 Watts (25% MW power). The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallization from ethanol (yield = 77%, m.p = 442–445 K). Composition calculated (found): C 53.45 (53.34), H 4.008 (3.92), N 6.236 (6.15), S 7.1269 (7.03)%.

S3. Refinement

The ethylcarboxylate group is disordered over two orienatations with refined occupancies of 0.869 (4):0.131 (4). The displacement parameters of atoms C11A and C12A were restrained to an approximate isotropic behaviour. The corresponding C—O and C—C distances in the two disorder components were restrained to be equal. All H atoms were positioned geometrically [C-H = 0.95–1.00 Å and N-H = 0.85 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.

Figure 2

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Ethyl 4-(2-bromo-5-fluorophenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate

Crystal data	
$C_{20}H_{18}BrFN_2O_2S$	Z = 2
$M_r = 449.33$	F(000) = 456
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.575 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.0455 (1) Å	Cell parameters from 9996 reflections
b = 10.2969(1) Å	$\theta = 2.2 - 37.5^{\circ}$
c = 10.3714(1) Å	$\mu = 2.31 \text{ mm}^{-1}$
$\alpha = 64.286 (1)^{\circ}$	T = 100 K
$\beta = 83.110 \ (1)^{\circ}$	Block, colourless
$\gamma = 78.796 (1)^{\circ}$	$0.41 \times 0.35 \times 0.22 \text{ mm}$
V = 947.36 (2) Å ³	

Data collection

Bruker SMART APEXII CCD area-detector	30132 measured reflections
diffractometer	5490 independent reflections
Radiation source: fine-focus sealed tube	4895 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.029$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>SADABS</i> ; Bruker, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.451, T_{\max} = 0.631$	$l = -14 \rightarrow 14$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.084$ $S = 1.05$ 5490 reflections267 parameters15 restraintsPrimary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 0.6872P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.01$ e Å ⁻³ $\Delta\rho_{min} = -0.66$ e Å ⁻³

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Br1	0.718042 (18)	0.65172 (2)	-0.42386 (2)	0.02506 (6)	
S1	0.96029 (4)	0.37018 (5)	0.22541 (4)	0.01943 (9)	
F1	1.01209 (13)	0.03875 (13)	-0.17700 (14)	0.0324 (3)	
01	0.50168 (14)	0.40666 (18)	-0.20152 (16)	0.0313 (3)	
N1	0.81604 (15)	0.43472 (17)	0.00399 (15)	0.0196 (3)	
H1N1	0.8781	0.4859	-0.0370	0.023*	
N2	0.73979 (14)	0.26404 (16)	0.21844 (15)	0.0163 (3)	
C1	0.87086 (17)	0.2259 (2)	-0.13630 (19)	0.0209 (3)	
H1	0.8684	0.1647	-0.0365	0.025*	
C2	0.94486 (18)	0.1774 (2)	-0.2313 (2)	0.0236 (3)	
C3	0.95266 (18)	0.2600 (2)	-0.3770 (2)	0.0231 (3)	
H3	1.0052	0.2215	-0.4387	0.028*	
C4	0.88166 (17)	0.4003 (2)	-0.43062 (19)	0.0204 (3)	
H4	0.8841	0.4596	-0.5308	0.024*	
C5	0.80672 (16)	0.45529 (19)	-0.33865 (19)	0.0184 (3)	

C6	0.79770 (16)	0.37081 (19)	-0.19184 (18)	0.0175 (3)	
C7	0.71816 (17)	0.42662 (19)	-0.08487 (18)	0.0176 (3)	
H7	0.6680	0.5269	-0.1394	0.021*	
C8	0.61745 (16)	0.32950 (19)	0.00875 (19)	0.0182 (3)	
С9	0.50415 (18)	0.3362 (2)	-0.0741 (2)	0.0221 (3)	
C13	0.63308 (16)	0.24993 (19)	0.15063 (19)	0.0178 (3)	
C14	0.83214 (16)	0.35640 (18)	0.14314 (17)	0.0158 (3)	
C15	0.73718 (16)	0.19955 (18)	0.37368 (17)	0.0165 (3)	
C16	0.81160 (19)	0.0635 (2)	0.4482 (2)	0.0250 (4)	
H16	0.8712	0.0153	0.3985	0.030*	
C17	0.7980 (2)	-0.0018 (2)	0.5970 (2)	0.0339 (5)	
H17	0.8481	-0.0955	0.6498	0.041*	
C18	0.7111 (2)	0.0701 (3)	0.6680 (2)	0.0335 (5)	
H18	0.7008	0.0245	0.7694	0.040*	
C19	0.6396 (2)	0.2069 (3)	0.5931 (2)	0.0290 (4)	
H19	0.5817	0.2561	0.6429	0.035*	
C20	0.65228 (17)	0.2732 (2)	0.44396 (19)	0.0206 (3)	
H20	0.6033	0.3676	0.3914	0.025*	
C21	0.5474 (2)	0.1379 (2)	0.2489 (2)	0.0261 (4)	
H21A	0.5000	0.1072	0.1922	0.039*	
H21B	0.4807	0.1805	0.3027	0.039*	
H21C	0.6057	0.0531	0.3159	0.039*	
O2	0.40143 (16)	0.26503 (19)	0.00591 (18)	0.0270 (4)	0.869 (4)
C11	0.2885 (2)	0.2674 (3)	-0.0718 (3)	0.0290 (5)	0.869 (4)
H11A	0.2726	0.3622	-0.1566	0.035*	0.869 (4)
H11B	0.2050	0.2570	-0.0093	0.035*	0.869 (4)
C12	0.3186 (3)	0.1458 (3)	-0.1191 (3)	0.0319 (5)	0.869 (4)
H12A	0.2419	0.1492	-0.1712	0.048*	0.869 (4)
H12B	0.3329	0.0519	-0.0350	0.048*	0.869 (4)
H12C	0.4006	0.1568	-0.1819	0.048*	0.869 (4)
O2A	0.4326 (11)	0.2257 (8)	-0.0408 (13)	0.0270 (4)	0.131 (4)
C11A	0.3310 (13)	0.2655 (15)	-0.1426 (13)	0.018 (3)	0.131 (4)
H11C	0.3703	0.2613	-0.2331	0.021*	0.131 (4)
H11D	0.2784	0.3638	-0.1632	0.021*	0.131 (4)
C12A	0.247 (2)	0.147 (2)	-0.060 (2)	0.047 (5)	0.131 (4)
H12D	0.1690	0.1610	-0.1156	0.071*	0.131 (4)
H12E	0.2146	0.1512	0.0314	0.071*	0.131 (4)
H12F	0.3024	0.0519	-0.0417	0.071*	0.131 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02414 (10)	0.02346 (10)	0.02129 (10)	0.00017 (6)	0.00032 (6)	-0.00558 (7)
S1	0.02016 (19)	0.0262 (2)	0.01355 (19)	-0.01177 (15)	0.00010 (14)	-0.00673 (16)
F1	0.0345 (6)	0.0264 (6)	0.0341 (7)	0.0048 (5)	-0.0013 (5)	-0.0146 (5)
01	0.0241 (7)	0.0465 (9)	0.0253 (7)	-0.0044 (6)	-0.0057 (5)	-0.0162 (7)
N1	0.0233 (7)	0.0245 (7)	0.0142 (7)	-0.0131 (6)	0.0005 (5)	-0.0076 (6)
N2	0.0161 (6)	0.0205 (7)	0.0137 (6)	-0.0080 (5)	0.0022 (5)	-0.0072 (5)

Acta Cryst. (2008). E64, o1526-o1527

C1	0.0198 (8)	0.0302 (9)	0.0189 (8)	-0.0095 (7)	0.0022 (6)	-0.0144 (7)
C2	0.0215 (8)	0.0237 (9)	0.0272 (9)	-0.0014 (6)	-0.0021 (7)	-0.0127 (8)
C3	0.0197 (8)	0.0279 (9)	0.0271 (9)	-0.0068 (7)	0.0052 (6)	-0.0167 (8)
C4	0.0186 (7)	0.0270 (9)	0.0190 (8)	-0.0086 (6)	0.0022 (6)	-0.0116 (7)
C5	0.0160 (7)	0.0203 (8)	0.0194 (8)	-0.0038 (6)	-0.0017 (6)	-0.0083 (7)
C6	0.0155 (7)	0.0232 (8)	0.0177 (8)	-0.0049 (6)	-0.0016 (5)	-0.0111 (7)
C7	0.0185 (7)	0.0219 (8)	0.0145 (7)	-0.0044 (6)	-0.0018 (5)	-0.0090 (6)
C8	0.0160 (7)	0.0229 (8)	0.0204 (8)	-0.0053 (6)	0.0006 (6)	-0.0130 (7)
C9	0.0187 (8)	0.0247 (9)	0.0289 (9)	-0.0017 (6)	-0.0039 (6)	-0.0167 (8)
C13	0.0155 (7)	0.0221 (8)	0.0205 (8)	-0.0068 (6)	0.0028 (6)	-0.0127 (7)
C14	0.0171 (7)	0.0176 (7)	0.0146 (7)	-0.0062 (6)	0.0020 (5)	-0.0077 (6)
C15	0.0163 (7)	0.0185 (7)	0.0140 (7)	-0.0073 (6)	0.0011 (5)	-0.0046 (6)
C16	0.0263 (9)	0.0183 (8)	0.0283 (10)	-0.0045 (7)	-0.0025 (7)	-0.0070 (7)
C17	0.0405 (11)	0.0222 (9)	0.0298 (11)	-0.0139 (8)	-0.0113 (9)	0.0036 (8)
C18	0.0395 (11)	0.0444 (12)	0.0150 (9)	-0.0294 (10)	0.0002 (7)	-0.0021 (8)
C19	0.0257 (9)	0.0476 (12)	0.0210 (9)	-0.0191 (8)	0.0087 (7)	-0.0181 (9)
C20	0.0169 (7)	0.0270 (9)	0.0192 (8)	-0.0065 (6)	0.0025 (6)	-0.0107 (7)
C21	0.0262 (9)	0.0348 (10)	0.0230 (9)	-0.0188 (8)	0.0058 (7)	-0.0134 (8)
O2	0.0213 (7)	0.0337 (9)	0.0305 (9)	-0.0104 (6)	-0.0044 (6)	-0.0144 (7)
C11	0.0200 (10)	0.0367 (13)	0.0351 (14)	-0.0058 (9)	-0.0053 (9)	-0.0179 (11)
C12	0.0316 (12)	0.0354 (13)	0.0353 (13)	-0.0111 (10)	-0.0007 (10)	-0.0187 (11)
O2A	0.0213 (7)	0.0337 (9)	0.0305 (9)	-0.0104 (6)	-0.0044 (6)	-0.0144 (7)
C11A	0.016 (5)	0.032 (6)	0.006 (5)	-0.007 (4)	-0.003 (4)	-0.007 (4)
C12A	0.037 (8)	0.059 (9)	0.038 (8)	-0.026 (7)	-0.014 (6)	-0.003 (6)

Geometric parameters (Å, °)

Br1—C5	1.8982 (17)	C15—C20	1.383 (2)
S1—C14	1.6867 (16)	C16—C17	1.392 (3)
F1—C2	1.353 (2)	C16—H16	0.95
O1—C9	1.201 (2)	C17—C18	1.386 (4)
N1-C14	1.325 (2)	C17—H17	0.95
N1—C7	1.463 (2)	C18—C19	1.377 (3)
N1—H1N1	0.85	C18—H18	0.95
N2-C14	1.378 (2)	C19—C20	1.394 (3)
N2-C13	1.412 (2)	C19—H19	0.95
N2-C15	1.450 (2)	C20—H20	0.95
C1—C2	1.371 (2)	C21—H21A	0.98
C1—C6	1.424 (3)	C21—H21B	0.98
C1—H1	0.95	C21—H21C	0.98
C2—C3	1.377 (3)	O2—C11	1.459 (3)
C3—C4	1.380 (3)	C11—C12	1.499 (3)
С3—Н3	0.95	C11—H11A	0.99
C4—C5	1.388 (2)	C11—H11B	0.99
C4—H4	0.95	C12—H12A	0.98
C5—C6	1.390 (2)	C12—H12B	0.98
C6—C7	1.537 (2)	C12—H12C	0.98
С7—С8	1.510 (2)	O2A—C11A	1.431 (12)

С7—Н7	1.00	C11A—C12A	1.501 (15)
C8—C13	1.349 (2)	C11A—H11C	0.99
C8—C9	1.481 (2)	C11A—H11D	0.99
C9—O2A	1.359 (3)	C12A—H12D	0.98
С9—О2	1.361 (2)	C12A—H12E	0.98
C13—C21	1.505 (2)	C12A—H12F	0.98
C15—C16	1.382 (2)		
C14—N1—C7	127.83 (14)	C15—C16—C17	119.04 (18)
C14—N1—H1N1	113.1	C15—C16—H16	120.5
C7—N1—H1N1	118.5	C17—C16—H16	120.5
C14—N2—C13	121.82 (14)	C18—C17—C16	119.8 (2)
C14—N2—C15	118.93 (13)	C18—C17—H17	120.1
C13—N2—C15	118.34 (13)	С16—С17—Н17	120.1
C2—C1—C6	117.93 (17)	C19—C18—C17	120.74 (18)
C2-C1-H1	121.0	C19—C18—H18	119.6
C6—C1—H1	121.0	C17—C18—H18	119.6
F1—C2—C1	117.18 (17)	C18—C19—C20	119.90 (19)
F1—C2—C3	118.70 (16)	C18—C19—H19	120.1
C1—C2—C3	124.11 (18)	С20—С19—Н19	120.1
C2—C3—C4	117.87 (16)	C15—C20—C19	119.04 (18)
С2—С3—Н3	121.1	С15—С20—Н20	120.5
С4—С3—Н3	121.1	С19—С20—Н20	120.5
C3—C4—C5	120.24 (17)	C13—C21—H21A	109.5
C3—C4—H4	119.9	C13—C21—H21B	109.5
C5—C4—H4	119.9	H21A—C21—H21B	109.5
C4—C5—C6	121.62 (16)	C13—C21—H21C	109.5
C4—C5—Br1	116.51 (13)	H21A—C21—H21C	109.5
C6—C5—Br1	121.87 (13)	H21B—C21—H21C	109.5
C5—C6—C1	118.20 (15)	C9—O2—C11	116.68 (18)
C5—C6—C7	123.85 (15)	O2—C11—C12	110.62 (19)
C1—C6—C7	117.90 (15)	O2—C11—H11A	109.5
N1—C7—C8	109.92 (14)	C12—C11—H11A	109.5
N1—C7—C6	107.99 (13)	O2—C11—H11B	109.5
C8—C7—C6	112.44 (13)	C12—C11—H11B	109.5
N1—C7—H7	108.8	H11A—C11—H11B	108.1
С8—С7—Н7	108.8	C11—C12—H12A	109.5
С6—С7—Н7	108.8	C11—C12—H12B	109.5
C13—C8—C9	126.36 (16)	H12A—C12—H12B	109.5
C13—C8—C7	121.87 (14)	C11—C12—H12C	109.5
C9—C8—C7	111.77 (15)	H12A—C12—H12C	109.5
O1—C9—O2A	107.4 (5)	H12B-C12-H12C	109.5
O1—C9—O2	123.54 (17)	C9—O2A—C11A	111.1 (8)
O1—C9—C8	121.38 (17)	O2A—C11A—C12A	99.2 (10)
O2A—C9—C8	124.7 (5)	O2A—C11A—H11C	111.9
O2—C9—C8	114.94 (16)	C12A—C11A—H11C	111.9
C8—C13—N2	120.36 (15)	O2A—C11A—H11D	111.9
C8—C13—C21	125.54 (15)	C12A—C11A—H11D	111.9

supporting information

N2—C13—C21	114.07 (15)	H11C—C11A—H11D	109.6
N1—C14—N2	117.58 (14)	C11A—C12A—H12D	109.5
N1—C14—S1	121.21 (12)	C11A—C12A—H12E	109.5
N2—C14—S1	121.21 (12)	H12D—C12A—H12E	109.5
C16—C15—C20	121.44 (16)	C11A—C12A—H12F	109.5
C16—C15—C20	121.44 (16)	C11A—C12A—H12F	109.5
C16—C15—N2	120.12 (15)	H12D—C12A—H12F	109.5
C20—C15—N2	118.31 (15)	H12E—C12A—H12F	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N1····S1 ⁱ	0.85	2.51	3.327 (2)	162
C1—H1…F1 ⁱⁱ	0.95	2.52	3.370 (2)	148
C7—H7···Br1	1.00	2.69	3.265 (2)	117
C20—H20…O1 ⁱⁱⁱ	0.95	2.44	3.368 (3)	164
C21—H21A····O2	0.98	2.11	2.737 (3)	120
C21—H21B····Br1 ⁱⁱⁱ	0.98	2.91	3.886 (2)	171

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+2, -*y*, -*z*; (iii) -*x*+1, -*y*+1, -*z*.