organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-(2-Pyridylmethoxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate

Shi Guo Zhang^a* and Chao Hou^b

^aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

Received 13 June 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.164; data-to-parameter ratio = 13.3.

In the title organic salt, $C_{18}H_{14}N_3O^+ \cdot ClO_4^- \cdot CH_4O$, there is a $\pi-\pi$ stacking interaction between neighbouring 1,10-phenanthroline rings and the relevant distances are 3.5453 (18) Å for the centroid–centroid distance and 3.354 Å for the perpendicular distance. There is also a relatively close contact between a C–H bond and a symmetry-related pyridine ring. There are classical N–H···O and O–H···N hydrogen bonds and nonclassical C–H···O hydrogen bonds involving the cation, methanol solvent molecule and perchlorate anion.

Related literature

For a related structure, see: Liu et al. (2008).

Experimental

Crystal data

 $C_{18}H_{14}N_{3}O^{+} \cdot CIO_{4}^{-} \cdot CH_{4}O$ $M_{r} = 419.81$ Triclinic, $P\overline{1}$ a = 7.0765 (15) Å b = 10.597 (2) Å c = 14.164 (3) Å $\alpha = 110.003 (3)^{\circ}$ $\beta = 94.999 (3)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.912, T_{\rm max} = 0.957$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.164$ S = 1.053504 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H4···O6	0.81	1.85	2.648 (3)	167
O6−H5···N3	0.89	1.85	2.738 (4)	175
C3-H3···O2	0.93	2.32	3.238 (5)	170
C13−H13B···O6	0.97	2.58	3.405 (4)	143
$C8 - H8 \cdots Cg3^i$	0.93	2.81	3.650 (2)	151

 $\gamma = 105.304(3)^{\circ}$

Z = 2

V = 944.1 (3) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.31 \times 0.18 \text{ mm}$

5027 measured reflections 3504 independent reflections

2695 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.25 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.019$

263 parameters

 $\Delta \rho_{\text{max}} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Symmetry code: (i) -x + 1, -y, -z + 1. Cg3 is the centroid of the pyridine ring

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2007B26).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2085).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). *Acta Cryst.* C64, m58–m60. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2008). E64, o1450 [doi:10.1107/S1600536808020606]

9-(2-Pyridylmethoxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate

Shi Guo Zhang and Chao Hou

S1. Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu *et al.*, 2008) and we have tried to prepare a complex containing Manganese(II) and iron(III) metallic ions and 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline ligand, but we obtained the title organic salt.

Fig. 1 shows the structure, revealing that one of N atoms from phenanthroline ring was protonated and it was turned into a cation. There is a π - π stacking interaction involving symmetry-related 1,10-phenanthroline rings, the relevant distances being $Cg1\cdots Cg2^{i} = 3.5453$ (18) Å and $Cg1\cdots Cg2^{i}_{perp} = 3.354$ Å and $\alpha = 1.09^{\circ}$; there also exits interaction between C8-H8 bond and pyridine ring and the relevant distance is H8… $Cg3^{ii} = 2.81$ Å for H8 atom to the centroid of the pyridine ring and H8… $Cg3^{ii}_{perp} = 2.803$ Å for the perpendicular distance from H8 atom to the pyridine ring plane [symmetry code: (i) -*X*, -*Y*, 1-*Z*; (ii) 1-*X*, -*Y*, 1-*Z*; Cg1, Cg2 and Cg3 are the centroids of the N2/C6C7C10-C12 ring, C4-C9 ring and N3/C14-C18 rings, respectively; $Cg1\cdots Cg2^{i}_{perp}$ is the perpendicular distance from ring Cg1 to ring $Cg2^{i}$; α is the dihedral angle between ring plane Cg1 and ring plane $Cg2^{i}$;]. There exist N-H…O and O-H…N classic hydrogen bonds and C-H…O non-classic hydrogen bonds (Fig. 1 and Table 1) in the asymmetric unit.

S2. Experimental

10 ml methanol solution of 2-((pyridin-2-yl)methoxy)-1,10-phenanthroline (0.1200 g, 0.418 mmol) was added into 20 ml methanol solution containing FeCl₃.6H₂O (0.0565 g, 0.209 mmol) and Mn(ClO₄)₂.6H₂O (0.0757 g, 0.209 mmol), and the mixed solution was stirred for half a hour. Yellow single crystals were obtained after the solution had been allowed to stand at room temperature for three days.

S3. Refinement

Nitrigen-bound H atom and Oxygen-bound H atom were located in a difference Fourier map, then placed in calculated positions with N—H = 0.81 Å and O—H = 0.89 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions with with C—H = 0.97 Å for methyl, C—H = 0.96 Å for methylene and C—H = 0.93 Å for other H atoms, and refined as riding with $U_{iso} = 1.5U_{eq}(C)$ for methyl H and $U_{iso} = 1.2U_{eq}(C)$ for other H atoms.

Figure 1

Structure of title organic salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The classic hydrogen bonds are shown as dashed lines and non-classic hydrogen bonds as double dashed lines.

Figure 2

The packing and π - π stacking interaction (dashed lines) and C—H··· π interaction (dashed lines), the methanol molecule and perchlorate anion have been omitted for clarity.

9-(2-Pyridylmethoxy)-1,10-phenanthrolin-1-ium perchlorate methanol solvate

Z = 2

F(000) = 436

 $\theta = 3.0-25.9^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

Block, yellow

 $0.38 \times 0.31 \times 0.18 \text{ mm}$

5027 measured reflections 3504 independent reflections 2695 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

T = 298 K

 $R_{\rm int} = 0.020$

 $h = -7 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -17 \rightarrow 17$

 $D_{\rm x} = 1.477 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1588 reflections

Crystal data

 $\begin{array}{l} {\rm C}_{18}{\rm H}_{14}{\rm N}_{3}{\rm O}^+{\rm \cdot CIO_4}^-{\rm \cdot CH_4O}\\ M_r = 419.81\\ {\rm Triclinic,}\ P1\\ {\rm Hall\ symbol:\ -P\ 1}\\ a = 7.0765\ (15)\ {\rm \mathring{A}}\\ b = 10.597\ (2)\ {\rm \mathring{A}}\\ c = 14.164\ (3)\ {\rm \mathring{A}}\\ a = 110.003\ (3)^\circ\\ \beta = 94.999\ (3)^\circ\\ \gamma = 105.304\ (3)^\circ\\ V = 944.1\ (3)\ {\rm \mathring{A}}^3\end{array}$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.912, \ T_{\max} = 0.957$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.164$	neighbouring sites
S = 1.05	H-atom parameters constrained
3504 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0858P)^2 + 0.2952P]$
263 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.42$ e Å ⁻³ $\Delta ho_{ m min} = -0.23$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2377 (5)	0.4244 (3)	0.6774 (2)	0.0530 (7)	
H1	0.2292	0.4775	0.7435	0.064*	
C2	0.2448 (5)	0.4829 (3)	0.6041 (3)	0.0613 (8)	

H2	0.2393	0.5744	0.6204	0.074*
C3	0.2598 (5)	0.4057 (3)	0.5080 (2)	0.0546 (7)
H3	0.2663	0.4450	0.4584	0.066*
C4	0.2655 (4)	0.2661 (3)	0.4831 (2)	0.0430 (6)
C5	0.2549 (4)	0.2104 (3)	0.55982 (18)	0.0374 (6)
C6	0.2521 (3)	0.0678 (3)	0.53855 (18)	0.0349 (5)
C7	0.2587 (4)	-0.0143 (3)	0.43867 (19)	0.0402 (6)
C8	0.2705 (4)	0.0441 (3)	0.3616 (2)	0.0471 (7)
H8	0.2750	-0.0120	0.2955	0.057*
С9	0.2753 (4)	0.1789 (3)	0.3827 (2)	0.0485 (7)
Н9	0.2851	0.2153	0.3315	0.058*
C10	0.2529 (4)	-0.1564 (3)	0.4190 (2)	0.0443 (6)
H10	0.2592	-0.2151	0.3541	0.053*
C11	0.2382 (4)	-0.2049 (3)	0.4948 (2)	0.0455 (6)
H11	0.2333	-0.2976	0.4831	0.055*
C12	0.2304 (4)	-0.1128 (3)	0.59278 (19)	0.0386 (6)
C13	0.2012 (4)	-0.0886 (3)	0.7665 (2)	0.0490 (7)
H13A	0.1173	-0.1480	0.7956	0.059*
H13B	0.1426	-0.0160	0.7652	0.059*
C14	0.4068 (4)	-0.0208 (3)	0.8319 (2)	0.0460 (7)
C15	0.5178 (5)	-0.1004 (3)	0.8526 (2)	0.0557 (8)
H15	0.4653	-0.1986	0.8265	0.067*
C16	0.7067 (5)	-0.0345 (4)	0.9121 (3)	0.0692 (9)
H16	0.7833	-0.0868	0.9270	0.083*
C17	0.7788 (6)	0.1094 (4)	0.9488 (3)	0.0753 (10)
H17	0.9061	0.1570	0.9890	0.090*
C18	0.6621 (6)	0.1827 (4)	0.9257 (3)	0.0720 (10)
H18	0.7132	0.2808	0.9511	0.086*
C19	0.2308 (7)	0.3748 (4)	0.9157 (3)	0.0887 (12)
H19A	0.2483	0.3543	0.9762	0.133*
H19B	0.1107	0.4000	0.9102	0.133*
H19C	0.3431	0.4521	0.9197	0.133*
Cl1	0.20777 (12)	0.45705 (7)	0.21213 (5)	0.0541 (3)
N1	0.2429 (3)	0.2941 (2)	0.65502 (16)	0.0419 (5)
H4	0.2362	0.2694	0.7032	0.050*
N2	0.2387 (3)	0.0189 (2)	0.61631 (15)	0.0377 (5)
N3	0.4780 (4)	0.1207 (3)	0.86832 (19)	0.0580 (7)
01	0.2091 (3)	-0.17350 (18)	0.66282 (14)	0.0476 (5)
02	0.2322 (8)	0.5077 (4)	0.3177 (2)	0.1432 (16)
O3	0.2709 (7)	0.5724 (3)	0.1857 (3)	0.1279 (13)
O4	0.3128 (7)	0.3648 (4)	0.1769 (3)	0.1583 (17)
05	0.0081 (6)	0.3882 (4)	0.1659 (3)	0.1494 (16)
O6	0.2165 (4)	0.2545 (2)	0.82875 (15)	0.0664 (6)
Н5	0.3072	0.2151	0.8417	0.100*

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0681 (19)	0.0396 (14)	0.0503 (16)	0.0211 (14)	0.0085 (14)	0.0135 (12)
C2	0.080 (2)	0.0411 (15)	0.068 (2)	0.0208 (15)	0.0100 (17)	0.0261 (15)
C3	0.0631 (19)	0.0527 (17)	0.0588 (18)	0.0173 (15)	0.0088 (15)	0.0356 (15)
C4	0.0392 (14)	0.0474 (15)	0.0473 (15)	0.0123 (12)	0.0085 (12)	0.0248 (12)
C5	0.0343 (13)	0.0415 (13)	0.0373 (13)	0.0109 (11)	0.0062 (10)	0.0170 (11)
C6	0.0291 (12)	0.0387 (13)	0.0363 (13)	0.0085 (10)	0.0057 (10)	0.0156 (10)
C7	0.0315 (13)	0.0474 (14)	0.0397 (14)	0.0116 (11)	0.0057 (10)	0.0149 (11)
C8	0.0455 (15)	0.0615 (17)	0.0344 (13)	0.0174 (13)	0.0117 (11)	0.0169 (12)
C9	0.0496 (16)	0.0619 (18)	0.0435 (15)	0.0187 (14)	0.0125 (12)	0.0298 (13)
C10	0.0430 (15)	0.0437 (14)	0.0389 (14)	0.0149 (12)	0.0062 (11)	0.0064 (11)
C11	0.0461 (15)	0.0361 (13)	0.0488 (16)	0.0137 (12)	0.0051 (12)	0.0100 (12)
C12	0.0339 (13)	0.0379 (13)	0.0434 (14)	0.0105 (11)	0.0031 (11)	0.0162 (11)
C13	0.0567 (17)	0.0508 (16)	0.0479 (16)	0.0167 (14)	0.0156 (13)	0.0276 (13)
C14	0.0619 (18)	0.0460 (15)	0.0369 (14)	0.0193 (13)	0.0143 (12)	0.0211 (12)
C15	0.075 (2)	0.0495 (16)	0.0492 (17)	0.0266 (15)	0.0100 (15)	0.0215 (13)
C16	0.078 (2)	0.080 (2)	0.060 (2)	0.039 (2)	0.0054 (17)	0.0305 (18)
C17	0.072 (2)	0.082 (3)	0.061 (2)	0.019 (2)	-0.0055 (17)	0.0218 (19)
C18	0.085 (3)	0.0527 (18)	0.065 (2)	0.0110 (18)	-0.0040 (18)	0.0188 (16)
C19	0.124 (4)	0.088 (3)	0.057 (2)	0.051 (3)	0.022 (2)	0.0168 (19)
Cl1	0.0777 (6)	0.0433 (4)	0.0435 (4)	0.0249 (4)	0.0107 (3)	0.0149 (3)
N1	0.0504 (13)	0.0393 (11)	0.0388 (12)	0.0157 (10)	0.0074 (10)	0.0173 (9)
N2	0.0398 (12)	0.0377 (11)	0.0367 (11)	0.0126 (9)	0.0070 (9)	0.0152 (9)
N3	0.0745 (18)	0.0465 (14)	0.0524 (15)	0.0183 (13)	0.0056 (13)	0.0201 (11)
01	0.0615 (12)	0.0371 (9)	0.0455 (11)	0.0141 (9)	0.0073 (9)	0.0189 (8)
O2	0.287 (5)	0.119 (3)	0.0502 (16)	0.101 (3)	0.037 (2)	0.0340 (17)
03	0.204 (4)	0.087 (2)	0.108 (2)	0.035 (2)	0.043 (2)	0.0598 (19)
O4	0.217 (4)	0.144 (3)	0.135 (3)	0.143 (3)	0.026 (3)	0.015 (2)
05	0.096 (3)	0.119 (3)	0.166 (4)	-0.003 (2)	-0.004 (2)	0.010 (3)
O6	0.0970 (17)	0.0684 (14)	0.0451 (12)	0.0420 (13)	0.0156 (11)	0.0226 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.318 (3)	C13—O1	1.451 (3)
C1—C2	1.377 (4)	C13—C14	1.500 (4)
C1—H1	0.9300	C13—H13A	0.9700
C2—C3	1.357 (4)	C13—H13B	0.9700
С2—Н2	0.9300	C14—N3	1.340 (4)
C3—C4	1.411 (4)	C14—C15	1.377 (4)
С3—Н3	0.9300	C15—C16	1.375 (5)
C4—C5	1.402 (4)	C15—H15	0.9300
C4—C9	1.426 (4)	C16—C17	1.362 (5)
C5—N1	1.361 (3)	C16—H16	0.9300
C5—C6	1.431 (3)	C17—C18	1.363 (5)
C6—N2	1.368 (3)	C17—H17	0.9300
C6—C7	1.397 (3)	C18—N3	1.337 (4)

C7—C10	1.423 (4)	C18—H18	0.9300
C7—C8	1.425 (4)	C19—O6	1.410 (4)
C8—C9	1.346 (4)	С19—Н19А	0.9600
С8—Н8	0.9300	С19—Н19В	0.9600
С9—Н9	0.9300	С19—Н19С	0.9600
C10—C11	1.340 (4)	Cl1—O4	1.368 (3)
C10—H10	0.9300	Cl1—O3	1.375 (3)
C11—C12	1.413 (4)	Cl1—O2	1.383 (3)
C11—H11	0.9300	Cl1—O5	1.388 (4)
C12—N2	1.303 (3)	N1—H4	0.8111
C12—O1	1.354 (3)	O6—H5	0.8900
N1—C1—C2	120.9 (3)	C14—C13—H13A	109.5
N1—C1—H1	119.6	O1—C13—H13B	109.5
C2—C1—H1	119.6	C14—C13—H13B	109.5
C3—C2—C1	119.4 (3)	H13A—C13—H13B	108.1
С3—С2—Н2	120.3	N3—C14—C15	121.6 (3)
C1—C2—H2	120.3	N3—C14—C13	116.9 (3)
C2—C3—C4	120.3 (3)	C15—C14—C13	121.5 (3)
С2—С3—Н3	119.9	C16—C15—C14	119.8 (3)
С4—С3—Н3	119.9	C16—C15—H15	120.1
C5—C4—C3	118.2 (2)	C14—C15—H15	120.1
C5—C4—C9	119.1 (2)	C17—C16—C15	118.4 (3)
C3—C4—C9	122.7 (2)	C17—C16—H16	120.8
N1—C5—C4	118.6 (2)	C15—C16—H16	120.8
N1—C5—C6	120.4 (2)	C16—C17—C18	119.2 (3)
C4—C5—C6	121.0 (2)	С16—С17—Н17	120.4
N2—C6—C7	123.9 (2)	С18—С17—Н17	120.4
N2—C6—C5	118.3 (2)	N3—C18—C17	123.4 (3)
C7—C6—C5	117.8 (2)	N3—C18—H18	118.3
C6—C7—C10	116.8 (2)	C17—C18—H18	118.3
C6—C7—C8	120.5 (2)	O6—C19—H19A	109.5
С10—С7—С8	122.7 (2)	O6—C19—H19B	109.5
C9—C8—C7	121.2 (2)	H19A—C19—H19B	109.5
С9—С8—Н8	119.4	O6—C19—H19C	109.5
С7—С8—Н8	119.4	H19A—C19—H19C	109.5
C8—C9—C4	120.4 (2)	H19B—C19—H19C	109.5
С8—С9—Н9	119.8	O4—C11—O3	111.0 (3)
С4—С9—Н9	119.8	O4—C11—O2	111.7 (2)
C11—C10—C7	119.4 (2)	O3—C11—O2	107.0 (2)
C11—C10—H10	120.3	O4—C11—O5	108.2 (3)
С7—С10—Н10	120.3	O3—Cl1—O5	107.6 (3)
C10—C11—C12	119.0 (2)	O2—C11—O5	111.2 (3)
C10—C11—H11	120.5	C1—N1—C5	122.6 (2)
C12—C11—H11	120.5	C1—N1—H4	113.1
N2—C12—O1	121.1 (2)	C5—N1—H4	124.3
N2—C12—C11	124.7 (2)	C12—N2—C6	116.2 (2)
O1—C12—C11	114.2 (2)	C18—N3—C14	117.6 (3)

O1—C13—C14	110.5 (2)	C12—O1—C13	119.09 (19)
O1—C13—H13A	109.5	C19—O6—H5	109.6
$\begin{array}{c} 01 &C13 &C14 \\ 01 &C13 &H13A \end{array}$ $\begin{array}{c} N1 &C1 &C2 &C3 \\ C1 &C2 &C3 &C4 \\ C2 &C3 &C4 &C5 \\ C2 &C3 &C4 &C5 \\ C2 &C3 &C4 &C9 \\ C3 &C4 &C5 &N1 \\ C3 &C6 &C7 \\ C4 &C5 &C6 &N2 \\ N1 &C5 &C6 &C7 \\ C4 &C5 &C6 &C7 \\ N2 &C6 &C7 &C10 \\ N2 &C6 &C7 &C8 \\ C5 &C6 &C7 &C8 \\ \end{array}$	$ \begin{array}{c} 110.5 (2) \\ 109.5 \\ \hline -0.8 (5) \\ 0.8 (5) \\ 0.1 (4) \\ 178.2 (3) \\ \hline -1.1 (4) \\ -179.2 (2) \\ 177.5 (2) \\ \hline -0.6 (4) \\ \hline -0.5 (3) \\ \hline -179.1 (2) \\ 178.1 (2) \\ \hline -0.5 (4) \\ \hline -0.6 (4) \\ \hline -179.1 (2) \\ 179.3 (2) \\ 0.8 (4) \end{array} $	$\begin{array}{c} C12 & - O1 & - C13 \\ C19 & - O6 & - H5 \end{array}$ $\begin{array}{c} C7 & - C10 & - C11 & - C12 \\ C10 & - C11 & - C12 & - N2 \\ C10 & - C11 & - C12 & - O1 \\ O1 & - C13 & - C14 & - N3 \\ O1 & - C13 & - C14 & - C15 \\ N3 & - C14 & - C15 & - C16 \\ C13 & - C14 & - C15 & - C16 \\ C14 & - C15 & - C16 & - C17 \\ C15 & - C16 & - C17 & - C18 \\ C16 & - C17 & - C18 & - N3 \\ C2 & - C1 & - N1 & - C5 \\ C4 & - C5 & - N1 & - C1 \\ C6 & - C5 & - N1 & - C1 \\ O1 & - C12 & - N2 & - C6 \\ C11 & - C12 & - N2 & - C6 \\ C7 & - C6 & - N2 & - C12 \\ \end{array}$	$ \begin{array}{c} 119.09 (19) \\ 109.6 \\ \hline -0.5 (4) \\ -0.8 (4) \\ 177.9 (2) \\ 115.5 (3) \\ -63.9 (3) \\ 0.0 (4) \\ 179.3 (3) \\ -0.2 (5) \\ 0.2 (5) \\ 0.0 (6) \\ -0.1 (4) \\ 1.1 (4) \\ -177.5 (2) \\ -177.3 (2) \\ 1.3 (4) \\ -0 6 (3) \end{array} $
C6-C7-C8-C9	-0.1 (4)	C5-C6-N2-C12	178.0 (2) -0.2 (5) 0.2 (4) -179.2 (3) -1.8 (3) 179.4 (2) -90.4 (3)
C10-C7-C8-C9	179.9 (3)	C17-C18-N3-C14	
C7-C8-C9-C4	-1.0 (4)	C15-C14-N3-C18	
C5-C4-C9-C8	1.3 (4)	C13-C14-N3-C18	
C3-C4-C9-C8	-176.7 (3)	N2-C12-O1-C13	
C6-C7-C10-C11	1.1 (4)	C11-C12-O1-C13	
C8-C7-C10-C11	-178.8 (2)	C14-C13-O1-C12	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H4…O6	0.81	1.85	2.648 (3)	167
O6—H5…N3	0.89	1.85	2.738 (4)	175
С3—Н3…О2	0.93	2.32	3.238 (5)	170
C13—H13 <i>B</i> ···O6	0.97	2.58	3.405 (4)	143
C8—H8····Cg3 ⁱ	0.93	2.81	3.650 (2)	151

Symmetry code: (i) -x+1, -y, -z+1.