Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 catena-Poly[copper(II)-bis(μ-2,4-dichloro-6-formylphenolato)$\left.\kappa^{3} O, O^{\prime}: \mathrm{Cl}^{4} ; \kappa^{3} \mathrm{Cl}^{4}: O, O^{\prime}\right]$

Ying Fan, ${ }^{\text {a }}$ Wei You, ${ }^{\text {a }}$ Jian-Lan Liu, ${ }^{\text {a }}$ Hui-Fen Qian ${ }^{\text {a* }}$ and Wei Huang ${ }^{\text {b }} \ddagger$

${ }^{\text {a }}$ College of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: whuang@nju.edu.cn

Received 25 June 2008; accepted 3 July 2008
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.034 ; w R$ factor $=0.103$; data-to-parameter ratio $=13.9$.

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Cu}^{\text {II }}$ atom lies on a centre of inversion and adopts a [4+2] coordination mode, with two long axial $\mathrm{Cu}-\mathrm{Cl}$ coordinative bonds complementing four $\mathrm{Cu}-\mathrm{O}$ bonds from two 2,4-dichloro-6-formylphenolate ligands in a distorted square plane. $\pi-\pi$ stacking interactions are also formed between neighbouring aromatic rings, with a centroid-centroid separation of 3.624 (2) A.

Related literature

For related compounds, see: Duan et al. (2007); Fan, You, Liu et al. (2008); Fan, You, Qian et al. (2008); Harkat et al. (2008); Sun \& Gao (2005); Zhang et al. (2006).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)_{2}\right] \quad M_{r}=443.53$

Orthorhombic, $P b c a$
$a=8.1564$ (8) \AA
$Z=4$
$b=12.4746$ (12) A
$c=14.7296(14) \AA$
$V=1498.7(3) \AA^{3}$
Data collection
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.750, T_{\text {max }}=0.811$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.103$
$S=1.06$
1471 reflections
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$S=1.06$
1471 reflections

Mo $K \alpha$ radiation
$\mu=2.19 \mathrm{~mm}^{-1}$
$T=291$ (2) K
$0.14 \times 0.12 \times 0.10 \mathrm{~mm}$

7424 measured reflections 1471 independent reflections 1215 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.906(2)$	$\mathrm{Cu} 1-\mathrm{Cl}^{2 i}$	$3.207(1)$	
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.943(2)$			
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.13(8)$	$\mathrm{O}^{2}-\mathrm{Cu} 1-\mathrm{O} 2$	$92.87(8)$	
Symmetry codes:	(i)	$-x+2,-y+2,-z+1 ;$	(ii)	$x+1, y, z ;$
$-x+1,-y+2,-z+1$.			(iii)	

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

WH acknowledges financial aid from the National Natural Science Foundation of China (grant No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2288).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Duan, X. F., Zeng, J., Zhang, Z. B. \& Zi, G. F. (2007). J. Org. Chem. 72, 1028310286.

Fan, Y., You, W., Liu, J.-L., Qian, H.-F. \& Huang, W. (2008). Acta Cryst. E64, o1080.
Fan, Y., You, W., Qian, H.-F., Liu, J.-L. \& Huang, W. (2008). Acta Cryst. E64, o799.
Harkat, H., Blanc, A., Weibel, J. M. \& Pale, P. (2008). J. Org. Chem. 73, 16201623.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, Y.-X. \& Gao, G.-Z. (2005). Acta Cryst. E61, m354-m355.
Zhang, G., Yang, G. \& Ma, J. S. (2006). J. Chem. Res. pp. 19-21.

[^0]
supporting information

catena-Poly[copper(II)-bis(μ-2,4-dichloro-6-formylphenolato)$\left.\kappa^{3} O, O^{\prime}: \mathrm{Cl}^{4} ; \kappa^{3} \mathrm{Cl}^{4}: O, O^{\prime}\right]$

Ying Fan, Wei You, Jian-Lan Liu, Hui-Fen Qian and Wei Huang

S1. Comment

The design and synthesis of derivatives of salicylaldehyde and their metal complexes are fascinating areas of research, which can be used in a variety of studies such as drug design, life science, catalysis, and so on (Harkat et al., 2008; Duan et al., 2007). In our previous studies, we have reported the X-ray single-crystal structures of 3,5-dichloro-2-hydroxybenzaldehyde and 3,5-dibromo-2-hydroxybenzaldehyde (Fan et al., 2008a, b). In this paper, we report the X-ray singlecrystal structure of the title $\mathrm{Cu}^{\text {II }}$ complex.
In the title compound (Fig. 1), the coordination geometry of the central $\mathrm{Cu}^{\text {II }}$ ion can be described as [4+2]. Four $\mathrm{Cu}-$ O bonds from two 3,5-dichloro-2-hydroxybenzaldehyde anions constitute a distorted square coordination plane with the bond lengths varying from 1.906 (2) to 1.943 (2) \AA (Table 1), which are in good agreement with those found in similar $\mathrm{Cu}^{\text {II }}$ complexes (Sun \& Gao, 2005; Zhang et al., 2006). Two adjacent Cl atoms from two 3,5-dichloro-2-hydroxybenzaldehyde anions (Cl2, symmetry codes: $1+x, y, z$ and $1-x, 2-y, 1-z$) occupy two axial positions by weak coordinative bonds with the same $\mathrm{Cu}-\mathrm{Cl}$ bond length of 3.207 (1) \AA (Fig. 2). In addition, these molecules are further stabilized by $\pi-\pi$ stacking interactions with the centroid-to-centroid separation of 3.624 (2) \AA, forming one-dimensional chain motifs (Fig. 2). A dihedral angle of 45.3 (1) ${ }^{\circ}$ is formed between the planes of molecules in neighbouring chains.

S2. Experimental

A solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 0.020 \mathrm{~g})$ in methanol $(5 \mathrm{ml})$ was added to a methanol solution (20 ml) of 3,5-di-chloro-2-hydroxybenzaldehyde ($0.2 \mathrm{mmol}, 0.039 \mathrm{~g}$). The resulting mixture was refluxed for 2 h , cooled and evaporated slowly at room temperature in air to give dark red single crystals suitable for X-ray diffraction measurement. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4} \mathrm{Cu}$: C, 37.91. $\mathrm{H}, 1.36 \%$; found: C, $37.85 ; \mathrm{H}, 1.59 \%$.

FT-IR (KBr pellets, cm^{-1}): $3058(\mathrm{~m}), 1605(\mathrm{vs}), 1510(\mathrm{~s}), 1438(\mathrm{~s}), 1420(\mathrm{~s}), 1337(\mathrm{~s}), 1217(\mathrm{~s}), 1162(\mathrm{~s}), 887(\mathrm{~m}), 766$ $(s), 720(m), 600(m)$ and $455(m)$.

S3. Refinement

H atoms bonded to C atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1

Molecular structure showing displacement ellipsoids at the 30% probability level for non- H atoms. Cu1 lies on a centre of inversion: unlabelled atoms are related to labelled atoms by the symmetry code $2-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}$.

Figure 2

A perspective view of one chain motif, showing long $\mathrm{Cu}-\mathrm{Cl}$ coordinative bonds and $\pi-\pi$ stacking interactions (dashed lines).
catena-Poly[copper(II)-bis(μ-2,4-dichloro-6-formylphenolato)- $\left.\kappa^{3} O, O^{\prime}: \mathrm{Cl}^{4} ; \kappa^{3} \mathrm{Cl}^{4}: O, O^{\prime}\right]$

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)_{2}\right]$

$$
\begin{aligned}
& F(000)=876 \\
& D_{\mathrm{x}}=1.966 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3128 \text { reflections } \\
& \theta=2.8-27.6^{\circ} \\
& \mu=2.19 \mathrm{~mm}^{-1} \\
& T=291 \mathrm{~K} \\
& \text { Block, red } \\
& 0.14 \times 0.12 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.750, T_{\text {max }}=0.811$

> 7424 measured reflections
> 1471 independent reflections
> 1215 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.043$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.8^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-15 \rightarrow 15$
> $l=-11 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.103$
$S=1.06$
1471 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	1.0000	1.0000	0.5000	$0.0350(2)$
C1	$0.6397(3)$	$0.9163(2)$	$0.43110(19)$	$0.0300(6)$
C2	$0.6929(3)$	$1.0203(2)$	$0.4048(2)$	$0.0283(6)$
C3	$0.5807(4)$	$1.0793(2)$	$0.3514(2)$	$0.0310(6)$
C4	$0.4281(4)$	$1.0410(2)$	$0.3285(2)$	$0.0348(7)$
H4	0.3569	1.0829	0.2943	0.042^{*}
C5	$0.3807(3)$	$0.9390(2)$	$0.3569(2)$	$0.0334(7)$
C6	$0.4844(3)$	$0.8770(2)$	$0.4061(2)$	$0.0324(7)$
H6	0.4528	0.8083	0.4233	0.039^{*}
C7	$0.7396(4)$	$0.8478(3)$	$0.4859(2)$	$0.0371(7)$
H7	0.6969	0.7805	0.4993	0.045^{*}
C11	$0.64045(10)$	$1.20455(6)$	$0.31242(6)$	$0.0445(3)$
C12	$0.18463(10)$	$0.89331(8)$	$0.33032(6)$	$0.0473(3)$
O1	$0.8330(2)$	$1.06231(16)$	$0.42655(15)$	$0.0367(5)$
O2	$0.8767(3)$	$0.86838(18)$	$0.51754(15)$	$0.0413(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0256(3)$	$0.0313(3)$	$0.0481(4)$	$0.0010(2)$	$-0.0058(2)$	$0.0057(2)$
C1	$0.0251(14)$	$0.0316(15)$	$0.0332(16)$	$0.0020(11)$	$-0.0008(12)$	$0.0006(12)$
C2	$0.0244(14)$	$0.0287(14)$	$0.0318(15)$	$0.0025(11)$	$0.0021(12)$	$0.0003(11)$
C3	$0.0304(15)$	$0.0287(14)$	$0.0339(15)$	$0.0033(12)$	$0.0019(13)$	$0.0006(12)$
C 4	$0.0309(15)$	$0.0380(16)$	$0.0356(17)$	$0.0081(14)$	$-0.0035(13)$	$-0.0012(13)$
C5	$0.0241(13)$	$0.0436(17)$	$0.0325(15)$	$-0.0012(13)$	$-0.0007(12)$	$-0.0059(13)$
C6	$0.0302(15)$	$0.0319(16)$	$0.0352(16)$	$-0.0033(12)$	$0.0001(12)$	$-0.0019(12)$
C7	$0.0322(16)$	$0.0310(15)$	$0.0481(18)$	$-0.0002(14)$	$-0.0035(14)$	$0.0044(13)$
C11	$0.0438(5)$	$0.0313(4)$	$0.0583(5)$	$0.0029(3)$	$-0.0019(4)$	$0.0106(3)$
C12	$0.0299(4)$	$0.0576(5)$	$0.0544(5)$	$-0.0064(4)$	$-0.0109(3)$	$-0.0036(4)$
O1	$0.0258(10)$	$0.0321(11)$	$0.0522(13)$	$-0.0022(9)$	$-0.0064(9)$	$0.0076(9)$
O2	$0.0302(12)$	$0.0345(12)$	$0.0592(14)$	$-0.0006(9)$	$-0.0110(10)$	$0.0104(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 1$	1.906 (2)	C2-C3	1.413 (4)
$\mathrm{Cu}-\mathrm{O} 1^{\text {i }}$	1.906 (2)	C3-C4	1.375 (4)
$\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	1.943 (2)	C3-Cl1	1.735 (3)
$\mathrm{Cu} 1-\mathrm{O} 2$	1.943 (2)	C4-C5	1.394 (4)
$\mathrm{Cu} 1-\mathrm{Cl}^{2 i}$	3.207 (1)	C4-H4	0.930
$\mathrm{Cu} 1-\mathrm{Cl}^{2 i i}$	3.207 (1)	C5-C6	1.356 (4)
C1-C6	1.408 (4)	C5- Cl 2	1.742 (3)
C1-C2	1.422 (4)	C6-H6	0.930
C1-C7	1.431 (4)	C7-O2	1.238 (4)
C2-O1	1.297 (3)	C7-H7	0.930
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Ol}^{\text {i }}$	180	C3-C4-C5	119.7 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{2}$	87.13 (8)	C3-C4-H4	120.2
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	92.87 (8)	C5-C4-H4	120.2
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	92.87 (8)	C6-C5-C4	120.5 (3)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	87.13 (8)	C6- $55-\mathrm{Cl} 2$	120.4 (2)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2$	180	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	119.1 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2$	121.4 (3)	C5-C6-C1	120.2 (3)
C6-C1-C7	116.9 (3)	C5-C6-H6	119.9
C2-C1-C7	121.7 (3)	C1-C6-H6	119.9
O1-C2-C3	119.8 (2)	O2-C7-C1	127.0 (3)
O1-C2-C1	124.7 (3)	O2-C7-H7	116.5
C3-C2-C1	115.4 (2)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7$	116.5
C4-C3-C2	122.8 (3)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cu} 1$	127.25 (18)
C4-C3-Cl1	119.1 (2)	$\mathrm{C} 7-\mathrm{O} 2-\mathrm{Cu} 1$	126.4 (2)
C2-C3-Cl1	118.1 (2)		

[^1]
[^0]: \ddagger Additional correspondence author.

[^1]: Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $x+1, y, z$; (iii) $-x+1,-y+2,-z+1$.

