metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[diagua-1 κ^2 O-bis[μ_3 -2-(1H-tetrazol-5-yl)benzoato(2-)]dicadmium(II)]

Xiu-Zhi Li, Bao-Zhen Wu and Zhi-Rong Qu*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: quzr@seu.edu.cn

Received 17 May 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.018; wR factor = 0.046; data-to-parameter ratio = 12.7.

The title compound, $[Cd_2(C_8H_4N_4O_2)_2(H_2O)_2]_n$, is a coordination polymer prepared by the hydrothermal reaction of cadmium(II) chloride and 2-(1H-tetrazol-5-yl)benzoic acid. Two types of coordinated cadmium cations exist in the structure. One is located on a twofold axis and is coordinated by four O and two N atoms from four symmetry-related ligands, forming a trigonal-prismatic coordination polyhedron. The other is located on an inversion center and is octahedrally coordinated by two N and two O atoms from two ligands in equatorial sites, and two water molecules in axial sites. The organic ligand bridges three Cd atoms, through a carboxylate group and two N atoms of the tetrazolate unit. This mode of coordination results in a two-dimensional framework. The crystal structure is stabilized by intermolecular O-H···O and O−H···N hydrogen bonds.

Related literature

For the chemistry of tetrazole derivatives, see: Xiong et al. (2002); Xue et al. (2002); Dunica et al. (1991); Wang et al. (2005); Wittenberger et al. (1993); Hu et al. (2007).

Experimental

Crystal data

[Cd₂(C₈H₄N₄O₂)₂(H₂O)₂] V = 2025.4 (7) Å³ $M_r = 637.16$ Z = 4Monoclinic, C2/c Mo $K\alpha$ radiation a = 19.886 (4) Å $\mu = 2.15 \text{ mm}^{-1}$ b = 7.3522 (15) Å T = 293 (2) K c = 15.409 (3) Å $0.35 \times 0.30 \times 0.10 \text{ mm}$ $\beta = 115.97 (3)^{\circ}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.473, T_{\max} = 0.809$

Refinement

D

$R[F^2 > 2\sigma(F^2)] = 0.018$	H atoms treated by a mixture of
$wR(F^2) = 0.046$	independent and constrained
S = 1.13	refinement
1976 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
156 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

8913 measured reflections

 $R_{\rm int} = 0.029$

1976 independent reflections

1922 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

-	-			
$-H \cdot \cdot \cdot A$		D-H	$H \cdot \cdot \cdot A$	$D \cdots$

A $D - H \cdot \cdot \cdot A$ $O1W = H1W \cdots O2^{i}$ 0.75 (4) 2.758 (2) 2.06 (4) 156 (4) O1W-H2W···N2ⁱⁱ 0.87 (4) 2.14 (4) 2.961 (3) 155 (3)

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) -x, -y + 2, -z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

This work was supported by a Start-up Grant from Southeast University to ZRQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2178).

References

- Dunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem. 56, 2395-2400.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.
- Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.
- Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.
- Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.

supporting information

Acta Cryst. (2008). E64, m1008 [doi:10.1107/S1600536808020503]

Poly[diaqua-1 κ^2 O-bis[μ_3 -2-(1*H*-tetrazol-5-yl)benzoato(2–)]dicadmium(II)]

Xiu-Zhi Li, Bao-Zhen Wu and Zhi-Rong Qu

S1. Comment

Coordination frameworks have received much attention over the past decade because of their potential applications. Multifunctional organic ligands are necessary to construct such frameworks. 2-(1*H*-tetrazol-5-yl)benzoic acid is a ligand with two functional groups, one carboxylate group and one tetrazole ring. Tetrazole compounds have a wide range of applications in coordination chemistry, medicinal chemistry and material science (Hu *et al.*, 2007; Xiong *et al.*, 2002; Xue *et al.*, 2002; Wang *et al.*, 2005; Dunica *et al.*, 1991; Wittenberger *et al.*, 1993). We report here the crystal structure of the title compound, which was obtained by the hydrothermal reaction of cadmium chloride and 2-(1*H*-tetrazol-5-yl)benzoic acid.

In the structure of this compound, two types of coordinated cadmium cations exist (Fig. 1). Cd1 is located on a 2-fold rotation axis, and is trigonal prismatically coordinated by two O and two N from four different ligands. While Cd2 is loacated on an inversion center, and is octahedrally coordinated by two N and two O from two ligands at equatorial sites, and two O atoms of H₂O at axial sites. The organic ligand bridges three Cd atoms by coordinating one Cd atom through one N atom from the tetrazole unit, by coordinating the other Cd atom through one O atom and one μ_3 -O from the carboxylate unit, and by coordinating a third Cd atom through a N atom from the tetrazole unit and one μ_3 -O from the carboxylate unit. Such an arrangement makes Cd1 and Cd2 bridged by one μ_3 -O carboxylate group and the tetrazole unit, resulting in a two-dimensional framework (Fig. 2). The crystal structure is stabilized by intermolecular O—H…O and O —H…N hydrogen bonds (Table 1).

S2. Experimental

A mixture of $CdCl_2$ (0.2 mmol) and 2-(1*H*-tetrazol-5-yl)benzoic acid (0.2 mmol) in H_2O (4 ml) was heated in a Pyrex tube at 373 K for two days. After slowly cooling down to room temperature over a period of 12 h., colourless crystals of the title compound suitable for diffraction were isolated.

S3. Refinement

Water H atoms were found in a difference map and refined freely. Other H atoms positions were calculated geometrically and these H atoms were allowed to ride on their carrier C atoms with C—H = 0.93 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, -y + 1, -z; (B) -x, +y, 1/2 - z; (C) +x, +y - 1, +z; (D) -x, +y - 1, 1/2 - z.]

Figure 2

Packing diagram of the title compound, showing the structure along the *b* axis. No displacement parameters are displayed and H atoms have been omitted for clarity.

(I)

Crystal data	
$[Cd_{2}(C_{8}H_{4}N_{4}O_{2})_{2}(H_{2}O)_{2}]$ $M_{r} = 637.16$ Monoclinic, C2/c Hall symbol: -C 2yc a = 19.886 (4) Å b = 7.3522 (15) Å c = 15.409 (3) Å $\beta = 115.97$ (3)° V = 2025.4 (7) Å ³ Z = 4	F(000) = 1232 $D_x = 2.090 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation, \$\lambda\$ = 0.71073 Å Cell parameters from 0 reflections \$\theta\$ = 3.1-27.5° \$\mu\$ = 2.15 mm}^{-1} T = 293 K Block, colourless 0.35 \times 0.30 \times 0.10 mm
Data collection Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ CCD Profile fitting scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.473, T_{max} = 0.809$	8913 measured reflections 1976 independent reflections 1922 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -24 \rightarrow 24$ $k = -9 \rightarrow 9$ $l = -18 \rightarrow 18$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.018$ wR(F^2) = 0.046	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.13	$w = 1/[\sigma^2(F_o^2) + (0.0214P)^2 + 3.1517P]$
1976 reflections	where $P = (F_o^2 + 2F_c^2)/3$
156 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\min} = -0.42 \text{ e} \text{ Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick,
Secondary atom site location: difference Fourier map	2008), Fc*=kFc[1+0.001xFc $^{2}\lambda^{3}/\sin(2\theta)$] ^{-1/4} Extinction coefficient: 0.00235 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.0000	0.21274 (3)	0.2500	0.02355 (9)
Cd2	0.0000	0.5000	0.0000	0.02567 (9)
O1	0.05131 (10)	0.4374 (2)	0.16197 (11)	0.0376 (4)
O1W	0.11318 (10)	0.6113 (3)	0.00533 (13)	0.0352 (4)
H1W	0.115 (2)	0.579 (5)	-0.040 (3)	0.063 (11)*
H2W	0.115 (2)	0.730 (6)	0.006 (3)	0.071 (11)*
O2	0.09395 (10)	0.4136 (2)	0.31727 (11)	0.0361 (4)
N1	-0.01798 (10)	1.0095 (2)	0.13491 (13)	0.0239 (4)
N2	-0.08259 (11)	1.0024 (2)	0.05335 (14)	0.0303 (4)
N3	-0.08190 (11)	0.8588 (3)	0.00480 (13)	0.0319 (4)
N4	-0.01705 (10)	0.7689 (2)	0.05357 (13)	0.0264 (4)
C1	0.12913 (12)	0.6784 (3)	0.26098 (15)	0.0235 (4)
C2	0.09950 (11)	0.8385 (3)	0.20847 (14)	0.0223 (4)
C3	0.14406 (14)	0.9941 (3)	0.23224 (17)	0.0308 (5)
Н3	0.1253	1.1003	0.1971	0.037*
C4	0.21556 (14)	0.9938 (3)	0.3061 (2)	0.0409 (6)
H4	0.2444	1.0989	0.3208	0.049*
C5	0.24392 (14)	0.8370 (4)	0.3581 (2)	0.0450 (6)
Н5	0.2921	0.8361	0.4082	0.054*
C6	0.20091 (13)	0.6821 (3)	0.33610 (17)	0.0361 (5)
H6	0.2203	0.5772	0.3722	0.043*
C7	0.08845 (12)	0.5008 (3)	0.24438 (16)	0.0225 (4)
C8	0.02201 (11)	0.8642 (3)	0.13370 (14)	0.0204 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
Cd1	0.03345 (14)	0.01501 (12)	0.01947 (13)	0.000	0.00909 (9)	0.000
Cd2	0.03771 (15)	0.01834 (13)	0.01698 (13)	0.00252 (8)	0.00830 (10)	-0.00369 (7)
01	0.0559 (11)	0.0246 (8)	0.0209 (8)	-0.0100 (8)	0.0062 (7)	-0.0002 (6)
O1W	0.0392 (10)	0.0341 (10)	0.0287 (9)	0.0054 (7)	0.0116 (7)	0.0008 (7)
O2	0.0511 (10)	0.0304 (9)	0.0210 (7)	-0.0135 (8)	0.0105 (7)	0.0019 (6)

N1	0.0276 (9)	0.0179 (8)	0.0205 (9)	0.0017 (7)	0.0052 (7)	-0.0029 (6)	
N2	0.0298 (10)	0.0247 (10)	0.0277 (10)	0.0045 (7)	0.0047 (8)	-0.0028 (7)	
N3	0.0328 (10)	0.0261 (10)	0.0259 (9)	0.0037 (8)	0.0028 (8)	-0.0050 (8)	
N4	0.0298 (9)	0.0218 (9)	0.0214 (9)	0.0027 (7)	0.0053 (7)	-0.0048 (7)	
C1	0.0256 (10)	0.0215 (10)	0.0223 (10)	-0.0005 (8)	0.0095 (8)	-0.0014 (8)	
C2	0.0256 (10)	0.0211 (10)	0.0204 (10)	-0.0008 (8)	0.0102 (8)	-0.0019 (8)	
C3	0.0334 (13)	0.0233 (11)	0.0325 (13)	-0.0042 (9)	0.0113 (10)	0.0011 (8)	
C4	0.0319 (13)	0.0332 (13)	0.0482 (16)	-0.0132 (10)	0.0090 (11)	-0.0041 (10)	
C5	0.0262 (12)	0.0430 (14)	0.0456 (15)	-0.0062 (11)	-0.0029 (10)	0.0007 (12)	
C6	0.0295 (12)	0.0306 (12)	0.0352 (13)	0.0011 (10)	0.0022 (10)	0.0063 (10)	
C7	0.0242 (11)	0.0199 (10)	0.0212 (11)	0.0029 (7)	0.0077 (9)	0.0006 (7)	
C8	0.0264 (10)	0.0156 (9)	0.0195 (9)	-0.0017 (8)	0.0102 (8)	-0.0010 (7)	

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.2251 (17)	N1—N2	1.349 (3)	
Cd1—N1 ⁱⁱ	2.2251 (17)	N1—Cd1 ^v	2.2251 (17)	
Cd1—O2	2.2473 (16)	N2—N3	1.298 (3)	
Cd1—O2 ⁱⁱⁱ	2.2473 (16)	N3—N4	1.347 (3)	
Cd101	2.6117 (17)	N4—C8	1.333 (3)	
Cd1—O1 ⁱⁱⁱ	2.6118 (17)	C1—C6	1.390 (3)	
Cd1—C7 ⁱⁱⁱ	2.779 (2)	C1—C2	1.404 (3)	
Cd2—N4 ^{iv}	2.2251 (18)	C1—C7	1.498 (3)	
Cd2—N4	2.2251 (18)	C2—C3	1.394 (3)	
Cd201	2.2916 (16)	C2—C8	1.477 (3)	
Cd2-O1 ^{iv}	2.2916 (16)	C3—C4	1.378 (4)	
Cd2—O1W	2.3623 (19)	С3—Н3	0.9300	
Cd2-O1W ^{iv}	2.3623 (19)	C4—C5	1.376 (4)	
O1—C7	1.247 (3)	C4—H4	0.9300	
O1W—H1W	0.75 (4)	C5—C6	1.375 (3)	
O1W—H2W	0.87 (4)	С5—Н5	0.9300	
O2—C7	1.256 (3)	С6—Н6	0.9300	
N1—C8	1.337 (3)			
N1 ⁱ —Cd1—N1 ⁱⁱ	95 61 (9)	Cd2—01—Cd1	127 14 (7)	
$N1^{i}$ —Cd1—O2	128 32 (7)	Cd2 = O1W = H1W	107(3)	
$N1^{ii}$ —Cd1—O2	105 23 (6)	Cd2 = O1W = H2W	107(3) 112(2)	
$N1^{i}$ —Cd1—Q2 ⁱⁱⁱ	105.23 (6)	$H1W \rightarrow O1W \rightarrow H2W$	108 (4)	
$N1^{ii}$ —Cd1— $O2^{iii}$	128.32 (7)	C7—O2—Cd1	101.17 (13)	
Ω_{2} —Cd1— Ω_{2}^{iii}	97.83 (9)	C8-N1-N2	106.63 (16)	
$N1^{i}$ —Cd1—O1	88.50 (6)	$C8-N1-Cd1^{v}$	131.21 (14)	
N1 ⁱⁱ —Cd1—O1	151.13 (6)	N2—N1—Cd1 ^v	121.56 (13)	
02-Cd1-01	52.34 (5)	N3—N2—N1	108.79 (17)	
$O2^{iii}$ —Cd1—O1	77.28 (6)	N2—N3—N4	109.07 (17)	
N1 ⁱ —Cd1—O1 ⁱⁱⁱ	151.13 (6)	C8—N4—N3	106.63 (17)	
N1 ⁱⁱ —Cd1—O1 ⁱⁱⁱ	88.50 (6)	C8—N4—Cd2	133.51 (14)	
O2—Cd1—O1 ⁱⁱⁱ	77.28 (6)	N3—N4—Cd2	119.53 (13)	
O2 ⁱⁱⁱ —Cd1—O1 ⁱⁱⁱ	52.34 (5)	C6—C1—C2	118.9 (2)	
	× /			

O1—Cd1—O1 ⁱⁱⁱ	101.55 (8)	C6—C1—C7	116.11 (19)
N1 ⁱ —Cd1—C7 ⁱⁱⁱ	130.83 (7)	C2—C1—C7	125.01 (19)
N1 ⁱⁱ —Cd1—C7 ⁱⁱⁱ	111.72 (7)	C3—C2—C1	118.60 (19)
O2—Cd1—C7 ⁱⁱⁱ	83.94 (7)	C3—C2—C8	115.22 (19)
O2 ⁱⁱⁱ —Cd1—C7 ⁱⁱⁱ	26.32 (6)	C1—C2—C8	126.00 (18)
O1—Cd1—C7 ⁱⁱⁱ	86.03 (6)	C4—C3—C2	121.5 (2)
O1 ⁱⁱⁱ —Cd1—C7 ⁱⁱⁱ	26.51 (6)	С4—С3—Н3	119.2
N4 ^{iv} —Cd2—N4	180.00 (10)	С2—С3—Н3	119.3
N4 ^{iv} —Cd2—O1	99.09 (6)	C5—C4—C3	119.6 (2)
N4—Cd2—O1	80.91 (6)	C5—C4—H4	120.2
$N4^{iv}$ —Cd2—O1 ^{iv}	80.91 (6)	C3—C4—H4	120.2
N4—Cd2—O1 ^{iv}	99.09 (6)	C6—C5—C4	119.9 (2)
O1-Cd2-O1 ^{iv}	180.0	С6—С5—Н5	120.1
N4 ^{iv} —Cd2—O1W	91.33 (7)	С4—С5—Н5	120.0
N4—Cd2—O1W	88.67 (7)	C5—C6—C1	121.5 (2)
O1—Cd2—O1W	93.94 (7)	С5—С6—Н6	119.3
O1 ^{iv} —Cd2—O1W	86.06 (7)	С1—С6—Н6	119.2
$N4^{iv}$ —Cd2—O1 W^{iv}	88.67 (7)	O1—C7—O2	120.06 (19)
$N4$ — $Cd2$ — $O1W^{iv}$	91.33 (7)	O1—C7—C1	122.33 (19)
O1—Cd2—O1W ^{iv}	86.06 (7)	O2—C7—C1	117.60 (19)
$O1^{iv}$ —Cd2—O1 W^{iv}	93.94 (7)	N4—C8—N1	108.88 (18)
$O1W$ — $Cd2$ — $O1W^{iv}$	180.00 (9)	N4—C8—C2	129.86 (18)
C7—O1—Cd2	144.77 (14)	N1—C8—C2	120.98 (17)
C7—O1—Cd1	84.22 (13)		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, *y*-1, -*z*+1/2; (iii) -*x*, *y*, -*z*+1/2; (iv) -*x*, -*y*+1, -*z*; (v) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
$01W - H1W \cdots O2^{vi}$ $01W - H2W \cdots N2^{vii}$	0.75 (4) 0.87 (4)	2.06 (4) 2.14 (4)	2.758 (2) 2.961 (3)	156 (4) 155 (3)	

Symmetry codes: (vi) x, -y+1, z-1/2; (vii) -x, -y+2, -z.