organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Diisopropylanilinium chloride

Ivan Samardjiev* and Brian Samas

Pharmaceutical Sciences, Pfizer Global R&D, Eastern Point Road, Groton, CT 06340, LISA

Correspondence e-mail: ivan.j.samardjiev@pfizer.com

Received 7 April 2008; accepted 12 June 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.037; *wR* factor = 0.112; data-to-parameter ratio = 16.3.

The title compound, $C_{12}H_{20}N^+ \cdot Cl^-$, crystallizes with the chloride anions situated on twofold axes, while the cation is on a general position. All conventional hydrogen-bond donors and acceptors are utilized, forming a hydrogen-bonded ladder motif along the c axis. Investigation of the torsion angles between aromatic systems and isopropyl groups reveals unusual geometrical features. One isopropyl groups exhibits an expected eclipsed conformation with respect to the aromatic ring. The other isopropyl group shows a slight twist with respect to the aromatic ring. The short $Cl \cdot \cdot HC$ (methine) contact (2.88 Å) observed in the asymmetric unit is the probable reason for the twist feature around the isopropyl area.

Related literature

For the structure of the tetrahydrofuran solvate of the title salt, see: Bond & Doyle (2003).

Cl-

Experimental

Crystal data

$C_{12}H_{20}N^+ \cdot Cl^-$	
$M_r = 213.74$	
Orthorhombic, Pbcn	
a = 13.0390 (3) Å	
b = 21.0436 (4) Å	
c = 8.9968 (2) Å	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.451, T_{\max} = 0.597$

Refinement

D-

N1

N1 **N**1

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.112$	independent and constrained
S = 1.00	refinement
2343 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
144 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

V = 2468.61 (9) Å³

 $0.36 \times 0.23 \times 0.21 \text{ mm}$

23541 measured reflections

2343 independent reflections

2248 reflections with $I > 2\sigma(I)$

Cu Ka radiation $\mu = 2.43 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.028$

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$3-H13X\cdots Cl1X^{i}$	0.90 (2)	2.54 (2)	3.3777 (12)	154.7 (15)
$3-H13Y\cdots Cl1Y$	0.93 (2)	2.16 (2)	3.0753 (12)	167.2 (16)
$3-H13Z\cdots Cl1X$	0.921 (19)	2.352 (19)	3.2493 (12)	164.8 (14)

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

Data collection: SMART (Bruker, 2006; cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge Jon Bordner for his crystallographic mentoring and support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2172).

References

Bond, A. D. & Doyle, E. L. (2003). Chem. Commun. pp. 2324-2325.

Bruker (2006). SMART for WNT/2000 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1480 [doi:10.1107/S160053680801790X]

2,6-Diisopropylanilinium chloride

Ivan Samardjiev and Brian Samas

S1. Comment

2,6-DIPA chloride is frequently used as a starting material for pharmaceutical synthesis. Hydrochloric acid is a desirable acid for salt formation and during our efforts to purify DIPA by salt formation and crystallization, we formed the title 1:1 salt (Fig. 1). Chlorine anions have an interesting 50:50 occupancy positions, sitting on 2-fold axis with x,y,z coordinates as follows: Cl1X (0, y, 1/4) and Cl1Y (0, y, 3/4).

The structure has all conventional hydrogen-bond donors used. In the crystal structure, four of the protonated NH_3 groups face the counter-ions sitting on above mentioned special positions, forming two-dimensional sheets parallel to the (010) planes (Fig. 2). Hydrogen-bond network confirms the following interactions between 50% populated Cl⁻ anions and polar ends of DIPAH⁺ (NH_3^+ groups): Cl1X participates a hydrogen-bonding interaction with H13X (2.54 Å separation), H13Z (2.35 Å), and H13Y (2.16 Å) are hydrogen-bonded to Cl1X and Cl1Y, respectively. There is an additional short contact within van der Waals radii between Cl1X and H7 (2.88 Å) yet this interaction does not occur with the Cl1Y occupancy.

The torsion angles from the aromatic group to the isopropyl groups are interesting. The expectation is that the isopropyl groups would eclipse the aromatic ring plane so that the C7—H7 and C10—H10 bonds lie in the same plane as atoms N13, C1, C6 and C7. One of these groups exhibits such a conformation (C1—C2—C10—H10 = -0.21°), while the other shows a slight twist (C1—C6—C7—H7 = -34.62°). The above mentioned Cl1X…H7 short contact is the probable reason for the obvious twist event around C1—C6—C7—H7 area. Similar events are observed in a related DIPA chloride salt structure, where only one of isopropyl hydrogen experiences van der Waals contacts with a Cl⁻ anion (Bond & Doyle, 2003).

S2. Experimental

A stock solution of DIPA was made in 2-propanol (85 mg, 2 ml). To a crystallizer vessel, 0.43 ml of stock solution was added with 1 equivalent of concentrated hydrochloric acid. For salt formation participation we gradually added 6 ml of methyl *t*-butyl ether, then the sample was purged with dry nitrogen for evaporation until dryness, allowed to evaporate over 24 h mark. A crystal of the title salt was removed from the crystallizer vessel and mounted on a MiTeGen loop with Paratone-N oil.

S3. Refinement

H atoms bonded to C atoms were placed in idealized positions and refined using a riding model with C—H = 0.93 Å for Csp^2 —H, 0.96 Å for CH₃, and 0.98 Å for CH. U_{iso} (H) values were fixed to 0.08 Å². H atoms bound to N3 were located in a difference maps and their positions and isotropic displacement parameters were refined freely.

C5

Figure 1

C12

View of the constituents of (I), showing the atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.

C4

C2

Figure 2

The crystal structure viewed along the [001] direction, showing four Cl⁻ anions spaced between four DIPA⁺ cations.

2,6-Diisopropylanilinium chloride

Crystal data

C₁₂H₂₀N⁺·Cl⁻ $M_r = 213.74$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 13.0390 (3) Å b = 21.0436 (4) Å c = 8.9968 (2) Å V = 2468.61 (9) Å³ Z = 8 F(000) = 928 $D_x = 1.150 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 Å Cell parameters from 9259 reflections $\theta = 4.0-70.8^{\circ}$ $\mu = 2.43 \text{ mm}^{-1}$ T = 173 KPrism, colourless $0.36 \times 0.23 \times 0.21 \text{ mm}$ Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: Rotating Anode Montel Multilayer Optics monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2002) $T_{\min} = 0.451, T_{\max} = 0.597$	23541 measured reflections 2343 independent reflections 2248 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 71.7^{\circ}, \ \theta_{min} = 4.0^{\circ}$ $h = -15 \rightarrow 15$ $k = -25 \rightarrow 20$ $l = -10 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.112$ S = 1.00 2343 reflections 144 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0758P)^2 + 1.0624P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.029$ $\Delta\rho_{max} = 0.35$ e Å ⁻³ $\Delta\rho_{min} = -0.21$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.79245 (10)	0.88741 (6)	0.98360 (14)	0.0207 (3)	
C2	0.77502 (10)	0.84000 (6)	1.08919 (15)	0.0238 (3)	
C3	0.67345 (11)	0.82064 (6)	1.11109 (16)	0.0276 (3)	
H3	0.6592	0.7891	1.1806	0.080*	
C4	0.59411 (11)	0.84748 (7)	1.03134 (17)	0.0296 (3)	
H4	0.5271	0.8341	1.0476	0.080*	
C5	0.61414 (10)	0.89426 (7)	0.92708 (16)	0.0276 (3)	
H5	0.5601	0.9119	0.8738	0.080*	
C6	0.71389 (11)	0.91548 (6)	0.90040 (15)	0.0229 (3)	
C7	0.73500 (11)	0.96575 (6)	0.78298 (16)	0.0250 (3)	
H7	0.7931	0.9913	0.8179	0.080*	
C8	0.64526 (13)	1.01091 (8)	0.75817 (17)	0.0356 (4)	
H8A	0.5916	0.9891	0.7059	0.080*	
H8B	0.6678	1.0467	0.7005	0.080*	
H8C	0.6199	1.0254	0.8524	0.080*	
C9	0.76786 (13)	0.93367 (8)	0.63763 (16)	0.0357 (4)	
H9A	0.8242	0.9054	0.6568	0.080*	
H9B	0.7887	0.9655	0.5674	0.080*	
H9C	0.7113	0.9100	0.5977	0.080*	
C10	0.85921 (11)	0.80846 (6)	1.17924 (16)	0.0276 (3)	
H10	0.9249	0.8271	1.1493	0.080*	
C11	0.84443 (14)	0.82083 (9)	1.34518 (18)	0.0418 (4)	
H11A	0.8456	0.8658	1.3635	0.080*	
H11B	0.8987	0.8008	1.3999	0.080*	

H11C	0.7797	0.8037	1.3764	0.080*	
C12	0.86270 (15)	0.73722 (8)	1.1448 (2)	0.0491 (5)	
H12A	0.7992	0.7179	1.1742	0.080*	
H12B	0.9182	0.7180	1.1985	0.080*	
H12C	0.8729	0.7311	1.0401	0.080*	
N13	0.89957 (8)	0.90795 (6)	0.95727 (13)	0.0218 (3)	
H13X	0.9045 (14)	0.9424 (9)	0.899 (2)	0.034 (5)*	
H13Y	0.9357 (15)	0.8761 (9)	0.908 (2)	0.036 (4)*	
H13Z	0.9318 (14)	0.9187 (8)	1.045 (2)	0.030 (4)*	
Cl1X	1.0000	0.97357 (2)	1.2500	0.02472 (17)	
Cl1Y	1.0000	0.80980 (2)	0.7500	0.03006 (18)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0213 (6)	0.0208 (6)	0.0200 (6)	-0.0023 (4)	0.0011 (5)	-0.0029 (5)
C2	0.0270 (7)	0.0224 (6)	0.0221 (7)	-0.0008(5)	0.0012 (5)	-0.0014 (5)
C3	0.0306 (7)	0.0243 (6)	0.0279 (7)	-0.0061 (5)	0.0033 (6)	0.0016 (5)
C4	0.0244 (7)	0.0315 (7)	0.0329 (8)	-0.0085 (5)	0.0015 (6)	-0.0022 (6)
C5	0.0238 (7)	0.0307 (7)	0.0282 (7)	-0.0025 (5)	-0.0039 (5)	-0.0015 (6)
C6	0.0255 (7)	0.0229 (6)	0.0204 (7)	-0.0018 (5)	-0.0013 (5)	-0.0023 (5)
C7	0.0247 (7)	0.0267 (7)	0.0237 (6)	-0.0012 (5)	-0.0028 (5)	0.0032 (5)
C8	0.0318 (8)	0.0357 (8)	0.0392 (9)	0.0041 (7)	-0.0018 (6)	0.0106 (6)
C9	0.0462 (9)	0.0374 (8)	0.0235 (7)	-0.0010(7)	0.0013 (6)	0.0029 (6)
C10	0.0296 (7)	0.0275 (7)	0.0258 (7)	-0.0001 (5)	-0.0005 (6)	0.0059 (5)
C11	0.0436 (9)	0.0560 (10)	0.0259 (8)	-0.0009 (7)	-0.0025 (7)	0.0044 (7)
C12	0.0539 (11)	0.0319 (8)	0.0614 (12)	0.0133 (7)	-0.0163 (9)	-0.0029 (8)
N13	0.0217 (6)	0.0230 (6)	0.0208 (6)	-0.0015 (4)	0.0001 (4)	0.0008 (5)
Cl1X	0.0248 (3)	0.0249 (3)	0.0244 (3)	0.000	-0.00197 (15)	0.000
Cl1Y	0.0339 (3)	0.0247 (3)	0.0315 (3)	0.000	0.00491 (17)	0.000

Geometric parameters (Å, °)

C1—C2	1.3962 (18)	C8—H8C	0.9600	
C1—C6	1.3994 (19)	С9—Н9А	0.9600	
C1—N13	1.4812 (16)	С9—Н9В	0.9600	
С2—С3	1.3996 (19)	С9—Н9С	0.9600	
C2-C10	1.5171 (19)	C10-C11	1.528 (2)	
C3—C4	1.380 (2)	C10-C12	1.532 (2)	
С3—Н3	0.9300	C10—H10	0.9800	
C4—C5	1.385 (2)	C11—H11A	0.9600	
C4—H4	0.9300	C11—H11B	0.9600	
С5—С6	1.3959 (19)	C11—H11C	0.9600	
С5—Н5	0.9300	C12—H12A	0.9600	
С6—С7	1.5202 (19)	C12—H12B	0.9600	
С7—С8	1.524 (2)	C12—H12C	0.9600	
С7—С9	1.533 (2)	N13—H13X	0.90 (2)	
С7—Н7	0.9800	N13—H13Y	0.93 (2)	

C8—H8A	0.9600	N13—H13Z	0.921 (19)
C8—H8B	0.9600		
C2—C1—C6	123.12 (12)	С7—С9—Н9А	109.5
C2-C1-N13	118.08 (11)	С7—С9—Н9В	109.5
C6-C1-N13	118.79 (11)	H9A—C9—H9B	109.5
C1—C2—C3	117.24 (12)	С7—С9—Н9С	109.5
C1—C2—C10	123.93 (12)	Н9А—С9—Н9С	109.5
C3—C2—C10	118.83 (12)	H9B—C9—H9C	109.5
C4—C3—C2	121.14 (13)	C2-C10-C11	110.86 (12)
С4—С3—Н3	119.4	C2-C10-C12	109.97 (12)
С2—С3—Н3	119.4	C11—C10—C12	111.61 (14)
C3—C4—C5	120.12 (13)	C2-C10-H10	108.1
C3—C4—H4	119.9	C11—C10—H10	108.1
C5—C4—H4	119.9	C12—C10—H10	108.1
C4—C5—C6	121.31 (13)	C10-C11-H11A	109.5
C4—C5—H5	119.3	C10-C11-H11B	109.5
С6—С5—Н5	119.3	H11A—C11—H11B	109.5
C5—C6—C1	117.07 (12)	C10-C11-H11C	109.5
C5—C6—C7	120.72 (12)	H11A—C11—H11C	109.5
C1—C6—C7	122.20 (12)	H11B—C11—H11C	109.5
C6—C7—C8	113.37 (12)	C10-C12-H12A	109.5
C6—C7—C9	109.69 (11)	C10-C12-H12B	109.5
C8—C7—C9	111.36 (12)	H12A—C12—H12B	109.5
С6—С7—Н7	107.4	C10-C12-H12C	109.5
С8—С7—Н7	107.4	H12A—C12—H12C	109.5
С9—С7—Н7	107.4	H12B—C12—H12C	109.5
С7—С8—Н8А	109.5	C1—N13—H13X	113.4 (11)
С7—С8—Н8В	109.5	C1—N13—H13Y	110.0 (12)
H8A—C8—H8B	109.5	H13X—N13—H13Y	105.1 (16)
C7—C8—H8C	109.5	C1—N13—H13Z	111.5 (11)
H8A—C8—H8C	109.5	H13X—N13—H13Z	105.7 (15)
H8B—C8—H8C	109.5	H13Y—N13—H13Z	110.9 (16)
C6-C1-C2-C3	-0.23 (19)	N13—C1—C6—C5	179.19 (11)
N13—C1—C2—C3	-179.18 (11)	C2-C1-C6-C7	-178.28 (12)
C6-C1-C2-C10	179.28 (12)	N13—C1—C6—C7	0.66 (18)
N13—C1—C2—C10	0.33 (19)	C5—C6—C7—C8	28.51 (18)
C1—C2—C3—C4	0.0 (2)	C1—C6—C7—C8	-153.01 (13)
C10—C2—C3—C4	-179.55 (13)	C5—C6—C7—C9	-96.67 (15)
C2—C3—C4—C5	0.2 (2)	C1—C6—C7—C9	81.80 (16)
C3—C4—C5—C6	-0.2 (2)	C1-C2-C10-C11	118.08 (15)
C4—C5—C6—C1	0.0 (2)	C3—C2—C10—C11	-62.42 (16)
C4—C5—C6—C7	178.53 (13)	C1-C2-C10-C12	-118.01 (16)
C2—C1—C6—C5	0.25 (19)	C3—C2—C10—C12	61.49 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N13—H13 X ···Cl1 X ¹	0.90 (2)	2.54 (2)	3.3777 (12)	154.7 (15)
N13—H13 <i>Y</i> ···Cl1 <i>Y</i>	0.93 (2)	2.16 (2)	3.0753 (12)	167.2 (16)
N13—H13Z…Cl1X	0.921 (19)	2.352 (19)	3.2493 (12)	164.8 (14)

Symmetry code: (i) -x+2, -y+2, -z+2.