Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(5-methylpyrazine-2-carboxylato)diphenyltin(IV)

Zhongjun Gao

Department of Chemistry, Jining University, Shandong 273155, People's Republic of China

Correspondence e-mail: zhongjungao@yahoo.cn

Received 23 April 2008; accepted 28 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.035; wR factor = 0.132; data-to-parameter ratio = 14.0.

In the molecule of the title compound, $[Sn(C_6H_5)_2 (C_6H_5N_2O_2)_2$, two O and one N atoms from the two 5methylpyrazine-2-carboxylate ligands and one C atom of a phenyl group form a distorted square-planar arrangement in the equatorial plane around the Sn atom, while the distorted octahedral coordination is completed by an N atom of one of the 5-methylpyrazine-2-carboxylate ligands and a C atom of the other phenyl group in the axial positions. In the crystal structure, intermolecular $C-H\cdots O$ hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For general background, see: Gielen et al. (1988). For related literature, see: Vollano et al. (1984); Ma et al. (2004).

Experimental

Crystal data $[Sn(C_6H_5)_2(C_6H_5N_2O_2)_2]$ $M_r = 547.13$ Monoclinic, $P2_1/n$ a = 12.030 (4) Å b = 14.658 (5) Å c = 13.409 (5) Å $\beta = 91.872 \ (4)^{\circ}$

 $V = 2363.2 (14) \text{ Å}^3$ Z = 4Mo Ka radiation $\mu = 1.12 \text{ mm}^{-1}$ T = 298 (2) K $0.45 \times 0.43 \times 0.18 \ \text{mm}$ $R_{\rm int} = 0.039$

12010 measured reflections

4166 independent reflections

2732 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.633, T_{\max} = 0.824$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	298 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
4166 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-O1	2.086 (4)	Sn1-C19	2.130 (6)
Sn1-O3	2.091 (4)	Sn1-N1	2.357 (4)
Sn1-C13	2.117 (5)	Sn1-N3	2.363 (5)
O1-Sn1-O3	149.56 (15)	C13-Sn1-N1	163.15 (18)
O1-Sn1-C13	97.14 (18)	C19-Sn1-N1	90.17 (18)
O3-Sn1-C13	101.11 (18)	O1-Sn1-N3	83.74 (16)
O1-Sn1-C19	101.5 (2)	O3-Sn1-N3	73.16 (16)
O3-Sn1-C19	96.7 (2)	C13-Sn1-N3	87.08 (18)
C13-Sn1-C19	105.6 (2)	C19-Sn1-N3	165.3 (2)
O1-Sn1-N1	73.49 (15)	N1-Sn1-N3	78.12 (15)
O3-Sn1-N1	82.40 (15)		

Table 2	_	
Hydrogen-bond geometry	(Å.	0,

$D - H \cdots A$	<i>D</i> -Н	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C12-H12C\cdots O2^{i}\\ C14-H14\cdots O2^{i} \end{array}$	0.96	2.51	3.315 (3)	142
	0.93	2.57	3.298 (3)	135

Symmetry code: (i) -x, -y, -z + 2.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Science Foundation of Shandong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2458).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873-876.
- Ma, C. L., Han, Y. F., Zhang, R. F. & Wang, D. Q. (2004). Dalton Trans. pp. 1832-1840.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.

supporting information

Acta Cryst. (2008). E64, m867 [doi:10.1107/S1600536808016139]

Bis(5-methylpyrazine-2-carboxylato)diphenyltin(IV)

Zhongjun Gao

S1. Comment

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen *et al.*, 1988). 5-methylpyrazine-2-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures (Ma *et al.*, 2004).

The molecule of the title compound, (I), (Fig. 1) consists of two phenyl and two (5-methylpyrazine-2-carboxylate) groups bonded to the Sn atom and has a monomeric structure. The two O and the one N atoms of the two 2-methyl-pyrazine -5-carboxylate ligands and the one C atom of the one phenyl group in the equatorial plane around the Sn atom form a distorted square-planar arrangement, while the distorted octahedral coordination is completed by the one N atom of the one 5-methylpyrazine-2-carboxylate ligand and the one C atom of the other phenyl group in the axial positions (Table 1 and Fig. 1). The Sn1-O1 [2.086 (4) Å] and Sn1-O3 [2.091 (4) Å] bonds are much shorter than the van der Waal's sum of 4.0 Å (Vollano *et al.*, 1984).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

For the preparation of the title compound, a mixture of diphenyltin dichloride (344 mg, 1.0 mmol), 5-methylpyrazine-2-carboxylic acid (276 mg, 2.0 mmol) and sodium ethoxide (136 mg, 2.0 mmol) in ethanol (80 ml) was heated under reflux for 12 h at 303 K. The resulting clear solution was evaporated under vacuum and the product recrystallized from a mixture of methanol to yield colorless, block-like crystals of (I) (yield; 377 mg, 69%, m.p. 459 K). Analysis, calculated for (I): C 52.68, H, 3.68; N 10.24%; found: C 52.96, H 3.87, N, 10.11%.

S3. Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Bis(5-methylpyrazine-2-carboxylato)diphenyltin(IV)

Crystal data

 $[Sn(C_6H_5)_2(C_6H_5N_2O_2)_2]$ $M_r = 547.13$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.030 (4) Å b = 14.658 (5) Å c = 13.409 (5) Å $\beta = 91.872$ (4)° V = 2363.2 (14) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	12010 measured reflections
diffractometer	4166 independent reflections
Radiation source: fine-focus sealed tube	2732 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -17 \rightarrow 14$
$T_{\min} = 0.633, \ T_{\max} = 0.824$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.05	H-atom parameters constrained
4166 reflections	$w = 1/[\sigma^2(F_o^2) + (0.066P)^2 + 2.0808P]$
298 parameters	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.56 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F(000) = 1096

 $\theta = 2.2 - 24.0^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$

Block, colorless

 $0.45 \times 0.43 \times 0.18 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.538 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3659 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.03995 (3)	0.25533 (2)	0.90574 (3)	0.04317 (17)	
0.0859 (4)	0.2891 (3)	1.0739 (3)	0.0440 (11)	
0.1584 (4)	0.3005 (4)	1.2707 (4)	0.0611 (13)	
-0.1259 (4)	0.2163 (3)	0.9852 (3)	0.0473 (11)	
-0.3408 (5)	0.1915 (4)	1.0421 (5)	0.0788 (17)	
	x 0.03995 (3) 0.0859 (4) 0.1584 (4) -0.1259 (4) -0.3408 (5)	x y 0.03995 (3) 0.25533 (2) 0.0859 (4) 0.2891 (3) 0.1584 (4) 0.3005 (4) -0.1259 (4) 0.2163 (3) -0.3408 (5) 0.1915 (4)	x y z 0.03995 (3) 0.25533 (2) 0.90574 (3) 0.0859 (4) 0.2891 (3) 1.0739 (3) 0.1584 (4) 0.3005 (4) 1.2707 (4) -0.1259 (4) 0.2163 (3) 0.9852 (3) -0.3408 (5) 0.1915 (4) 1.0421 (5)	xyz $U_{iso}*/U_{eq}$ 0.03995 (3)0.25533 (2)0.90574 (3)0.04317 (17)0.0859 (4)0.2891 (3)1.0739 (3)0.0440 (11)0.1584 (4)0.3005 (4)1.2707 (4)0.0611 (13)-0.1259 (4)0.2163 (3)0.9852 (3)0.0473 (11)-0.3408 (5)0.1915 (4)1.0421 (5)0.0788 (17)

01	0.0994 (3)	0.1346 (2)	0.9701 (3)	0.0517 (10)
02	0.1706 (4)	0.0621 (3)	1.1024 (4)	0.0853 (15)
03	-0.0532(3)	0.3752 (2)	0.9163 (3)	0.0545 (10)
04	-0.2151 (4)	0.4402 (3)	0.9433 (4)	0.0946 (16)
C1	0.1354 (5)	0.1303 (4)	1.0620 (5)	0.0557 (15)
C2	0.1298 (5)	0.2175 (4)	1.1213 (4)	0.0450 (13)
C3	0.1662 (5)	0.2249 (4)	1.2196 (5)	0.0556 (15)
H3	0.1976	0.1740	1.2509	0.067*
C4	0 1149 (5)	0.3732(4)	1 2234 (4)	0.0541(15)
C5	0.0804(5)	0.3667(4)	1.2231(1) 1.1242(4)	$0.05 \Pi (15)$ 0.0488 (14)
е <i>р</i> Н5	0.0525	0.4184	1 0918	0.059*
C6	0.1053 (6)	0.4589(4)	1 2806 (5)	0.082(2)
Н6 4	0.1337	0.4496	1.2000 (5)	0.122*
H6R	0.0286	0.4490	1.3470	0.122
H6C	0.1474	0.4707	1 2494	0.122
C7	-0.1548(5)	0.3744(4)	0.9450(5)	0.122
C?	-0.1066(5)	0.3744(4) 0.2842(4)	0.9430(3)	0.0570(10)
	-0.1900(3)	0.2642(4) 0.2725(5)	0.9824 (4)	0.0313(14) 0.075(2)
0	-0.3049(0)	0.2725 (5)	1.0100 (0)	0.073 (2)
П9 С10	-0.5557	0.3217	1.00/8	0.090°
C10	-0.2/15(6)	0.1230(5)	1.044 / (5)	0.0649 (18)
	-0.1606 (5)	0.1348 (4)	1.0159 (4)	0.0536 (15)
HII	-0.111/	0.0857	1.0183	0.064*
C12	-0.3116 (6)	0.0326 (5)	1.0790 (6)	0.091 (2)
H12A	-0.3885	0.0371	1.0953	0.136*
H12B	-0.2685	0.0138	1.1369	0.136*
H12C	-0.3037	-0.0115	1.0267	0.136*
C13	-0.0319 (4)	0.1966 (4)	0.7745 (4)	0.0469 (13)
C14	-0.0653 (5)	0.1070 (4)	0.7688 (5)	0.0665 (17)
H14	-0.0584	0.0704	0.8253	0.080*
C15	-0.1086 (6)	0.0704 (5)	0.6821 (6)	0.080 (2)
H15	-0.1298	0.0094	0.6801	0.096*
C16	-0.1207 (6)	0.1231 (7)	0.5990 (6)	0.088 (2)
H16	-0.1514	0.0983	0.5405	0.105*
C17	-0.0877 (6)	0.2125 (7)	0.6012 (5)	0.083 (2)
H17	-0.0953	0.2487	0.5444	0.100*
C18	-0.0427 (5)	0.2482 (4)	0.6896 (5)	0.0645 (18)
H18	-0.0194	0.3087	0.6911	0.077*
C19	0.1901 (5)	0.3181 (4)	0.8612 (4)	0.0556 (15)
C20	0.2684 (7)	0.2621 (5)	0.8185 (7)	0.084 (2)
H20	0.2541	0.1998	0.8142	0.101*
C21	0.3653 (7)	0.2945 (8)	0.7828 (7)	0.111 (3)
H21	0.4156	0.2557	0.7529	0.134*
C22	0.3867 (8)	0.3866 (7)	0.7921 (6)	0.104 (2)
H22	0.4537	0.4096	0.7701	0.124*
C23	0.3137 (7)	0.4438 (6)	0.8320 (6)	0.090 (2)
H23	0.3286	0.5060	0.8365	0.108*
C24	0.2133 (6)	0.4077 (5)	0.8671 (5)	0.0750 (19)
H24	0.1620	0.4469	0.8950	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0388 (2)	0.0483 (3)	0.0423 (2)	0.00011 (17)	-0.00113 (16)	0.00171 (17)
N1	0.040 (3)	0.046 (2)	0.046 (3)	-0.006 (2)	0.001 (2)	0.003 (2)
N2	0.058 (3)	0.075 (4)	0.050 (3)	-0.005 (3)	-0.006(2)	0.004 (3)
N3	0.045 (3)	0.049 (3)	0.048 (3)	0.000 (2)	-0.001 (2)	-0.003 (2)
N4	0.068 (4)	0.081 (4)	0.090 (4)	0.002 (3)	0.025 (3)	-0.005 (3)
01	0.054 (2)	0.047 (2)	0.055 (2)	0.0109 (17)	-0.0018 (19)	-0.0026 (17)
O2	0.121 (4)	0.052 (3)	0.081 (3)	0.018 (3)	-0.015 (3)	0.012 (2)
O3	0.058 (3)	0.046 (2)	0.059 (2)	0.0037 (18)	-0.009(2)	0.0066 (17)
O4	0.080 (4)	0.067 (3)	0.136 (5)	0.030 (3)	0.001 (3)	0.006 (3)
C1	0.051 (4)	0.053 (4)	0.063 (4)	0.004 (3)	-0.005 (3)	0.011 (3)
C2	0.044 (3)	0.049 (3)	0.042 (3)	-0.003 (3)	0.002 (3)	0.006 (3)
C3	0.051 (4)	0.063 (4)	0.052 (4)	0.000 (3)	-0.006 (3)	0.011 (3)
C4	0.053 (4)	0.063 (4)	0.046 (3)	-0.008 (3)	-0.003 (3)	-0.006 (3)
C5	0.044 (3)	0.048 (3)	0.053 (3)	-0.004 (2)	-0.001 (3)	0.000 (3)
C6	0.096 (6)	0.081 (5)	0.068 (5)	-0.004(4)	-0.004 (4)	-0.023 (4)
C7	0.053 (4)	0.057 (4)	0.061 (4)	0.015 (3)	-0.005 (3)	-0.003 (3)
C8	0.044 (4)	0.059 (3)	0.051 (3)	0.007 (3)	0.004 (3)	-0.015 (3)
C9	0.060 (5)	0.080 (5)	0.085 (5)	0.023 (4)	0.008 (4)	-0.003 (4)
C10	0.064 (5)	0.075 (5)	0.057 (4)	-0.014 (4)	0.018 (3)	-0.013 (3)
C11	0.054 (4)	0.053 (4)	0.055 (4)	-0.003 (3)	0.009 (3)	-0.005 (3)
C12	0.087 (6)	0.098 (6)	0.090 (6)	-0.033 (4)	0.032 (4)	0.002 (4)
C13	0.039 (3)	0.057 (4)	0.045 (3)	-0.005 (3)	-0.001 (3)	-0.003 (3)
C14	0.065 (4)	0.065 (4)	0.069 (4)	-0.005 (3)	-0.015 (3)	-0.007 (3)
C15	0.074 (5)	0.071 (5)	0.095 (6)	-0.006 (4)	-0.017 (4)	-0.027 (4)
C16	0.059 (5)	0.132 (8)	0.072 (5)	-0.004 (5)	-0.004 (4)	-0.036 (5)
C17	0.062 (5)	0.143 (7)	0.044 (4)	-0.010 (5)	-0.001 (3)	0.004 (4)
C18	0.051 (4)	0.095 (5)	0.047 (4)	-0.015 (3)	0.002 (3)	0.006 (3)
C19	0.051 (3)	0.066 (4)	0.050 (3)	-0.007 (3)	-0.001 (3)	0.001 (3)
C20	0.069 (5)	0.089 (5)	0.095 (5)	-0.006 (4)	0.026 (4)	0.003 (4)
C21	0.077 (5)	0.147 (6)	0.112 (6)	-0.008 (5)	0.042 (4)	-0.001 (5)
C22	0.082 (5)	0.130 (6)	0.099 (5)	-0.030 (5)	0.015 (4)	0.003 (5)
C23	0.097 (5)	0.096 (5)	0.077 (5)	-0.038 (4)	0.006 (4)	0.002 (4)
C24	0.073 (4)	0.089 (5)	0.063 (4)	-0.023 (4)	0.003 (3)	0.007 (3)

Geometric parameters (Å, °)

Sn1—O1	2.086 (4)	С9—Н9	0.9300
Sn1—O3	2.091 (4)	C10—C11	1.411 (8)
Sn1—C13	2.117 (5)	C10—C12	1.488 (9)
Sn1—C19	2.130 (6)	C11—H11	0.9300
Sn1—N1	2.357 (4)	C12—H12A	0.9600
Sn1—N3	2.363 (5)	C12—H12B	0.9600
N1—C5	1.324 (7)	C12—H12C	0.9600
N1—C2	1.328 (7)	C13—C18	1.370 (8)
N2—C3	1.308 (8)	C13—C14	1.375 (8)

N2—C4	1 338 (7)	C14—C15	1 368 (9)
N3—C8	1 309 (7)	C14—H14	0.9300
N3—C11	1.305(7)	C_{15}	1.360(10)
N4—C10	1 305 (8)	C15—H15	0.9300
N4_C9	1 336 (9)	C_{16}	1.370(10)
$\Omega_1 = C_2$	1.330(9) 1.204(7)	C_{16} H_{16}	0.0300
01 - 01	1.294 (7)	$C_{10} = 1110$	1.380(10)
02 - 01	1.207(0) 1.202(7)	C17 - U17	1.389 (10)
03-07	1.292 (7)		0.9300
04-07	1.207 (7)		0.9300
C1 = C2	1.508 (8)	C19—C24	1.344 (9)
$C_2 = C_3$	1.379 (8)	C19—C20	1.387 (9)
С3—Н3	0.9300	C20—C21	1.361 (11)
C4—C5	1.384 (7)	C20—H20	0.9300
C4—C6	1.477 (8)	C21—C22	1.380 (12)
С5—Н5	0.9300	C21—H21	0.9300
С6—Н6А	0.9600	C22—C23	1.339 (11)
С6—Н6В	0.9600	C22—H22	0.9300
С6—Н6С	0.9600	C23—C24	1.413 (9)
С7—С8	1.506 (9)	С23—Н23	0.9300
C8—C9	1.379 (9)	C24—H24	0.9300
O1—Sn1—O3	149.56 (15)	N4—C9—C8	121.0 (6)
O1—Sn1—C13	97.14 (18)	N4—C9—H9	119.5
O3—Sn1—C13	101.11 (18)	С8—С9—Н9	119.5
O1—Sn1—C19	101.5 (2)	N4—C10—C11	120.5 (6)
O3—Sn1—C19	96.7 (2)	N4-C10-C12	118.7 (6)
C13—Sn1—C19	105.6 (2)	C11—C10—C12	120.8 (6)
O1—Sn1—N1	73.49 (15)	N3—C11—C10	120.2 (6)
O3—Sn1—N1	82.40 (15)	N3—C11—H11	119.9
C13—Sn1—N1	163.15 (18)	C10—C11—H11	119.9
C19—Sn1—N1	90.17 (18)	C10—C12—H12A	109.5
O1—Sn1—N3	83.74 (16)	C10—C12—H12B	109.5
O3—Sn1—N3	73.16 (16)	H12A—C12—H12B	109.5
C13— $Sn1$ — $N3$	87.08 (18)	C10—C12—H12C	109.5
C19— $Sn1$ — $N3$	165.3 (2)	H12A - C12 - H12C	109.5
N1— $Sn1$ — $N3$	78 12 (15)	H12B-C12-H12C	109.5
$C_5 N_1 C_2$	1174(5)	C_{18} C_{13} C_{14}	117.5 (6)
C_5 N1 S_2	130.8(4)	$C_{18} - C_{13} - S_{n1}$	117.5(0) 119 5(4)
C_2 _N1_Sn1	111.6(4)	C14-C13-Sn1	117.3(4) 123.0(4)
$C_2 = N_1 = C_4$	117.5 (5)	C_{15} C_{14} C_{13} C_{15} C_{14} C_{13}	123.0(4) 121.7(7)
$C_3 = N_2 = C_4$	117.3(5) 118.7(5)	C15 C14 H14	121.7(7)
$C_{0} = N_{0} = C_{11}$	118.7(3)	$C_{13} = C_{14} = H_{14}$	119.2
$C_{11} = N_{2} = S_{11}$	111.1(4) 120.2(4)	$C_{13} - C_{14} - \Pi_{14}$	117.4
C10 N4 C0	127.3 (4)	$C_{10} = C_{13} = C_{14}$	120.1 (7)
C_{10} N4 C_{9}	110.7(0)	C10-C15-H15	119.9
$C_1 = O_1 = S_{11}$	122.3 (3)	C14—C15—H15	119.9
C/-O3-Sn1	121.8 (3)	C15—C16—C17	120.2 (7)
02-01-01	124.7 (6)	C15—C16—H16	119.9
02—C1—C2	119.0 (6)	C17—C16—H16	119.9

O1—C1—C2	116.2 (5)	C16—C17—C18	118.9 (7)
N1—C2—C3	120.2 (5)	С16—С17—Н17	120.5
N1-C2-C1	116.2 (5)	C18—C17—H17	120.5
C3—C2—C1	123.5 (5)	C13—C18—C17	121.7 (7)
N2—C3—C2	122.7 (6)	C13—C18—H18	119.2
N2—C3—H3	118.6	C17—C18—H18	119.2
С2—С3—Н3	118.6	C24—C19—C20	117.4 (6)
N2—C4—C5	120.0 (5)	C24—C19—Sn1	125.6 (5)
N2—C4—C6	117.9 (5)	C20-C19-Sn1	116.9 (5)
C5—C4—C6	122.1 (6)	C21—C20—C19	122.6 (8)
N1—C5—C4	122.0 (5)	С21—С20—Н20	118.7
N1—C5—H5	119.0	С19—С20—Н20	118.7
С4—С5—Н5	119.0	C20—C21—C22	118.0 (9)
C4—C6—H6A	109.5	C20—C21—H21	121.0
C4—C6—H6B	109.5	C22—C21—H21	121.0
H6A—C6—H6B	109.5	C23—C22—C21	121.8 (9)
С4—С6—Н6С	109.5	С23—С22—Н22	119.1
Н6А—С6—Н6С	109.5	C21—C22—H22	119.1
Н6В—С6—Н6С	109.5	C22—C23—C24	118.5 (8)
O4—C7—O3	124.2 (6)	С22—С23—Н23	120.7
O4—C7—C8	120.0 (6)	С24—С23—Н23	120.7
O3—C7—C8	115.9 (5)	C19—C24—C23	121.6 (7)
N3—C8—C9	121.1 (6)	C19—C24—H24	119.2
N3—C8—C7	116.9 (5)	C23—C24—H24	119.2
C9—C8—C7	122.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A	
C12—H12C···O2 ⁱ	0.96	2.51	3.315 (3)	142	
C14—H14…O2 ⁱ	0.93	2.57	3.298 (3)	135	

Symmetry code: (i) -x, -y, -z+2.